/* * Copyright (C) 2015, 2018 "IoT.bzh" * Author "Romain Forlot" * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "can-bus.hpp" #include "signals.hpp" #include "can-decoder.hpp" #include "../binding/application.hpp" #include "../utils/signals.hpp" #include "../utils/openxc-utils.hpp" /// @brief Class destructor /// /// @param[in] conf_file - Stop threads and unlock them to correctly finish them /// even without any activity on the CAN bus. can_bus_t::~can_bus_t() { stop_threads(); new_can_message_cv_.notify_one(); } /// @brief Class constructor can_bus_t::can_bus_t() {} /// @brief Fills the CAN device map member with value from device /// /// @param[in] mapping configuration section. void can_bus_t::set_can_devices(json_object *mapping) { if (! mapping) { AFB_ERROR("Can't initialize CAN buses with this empty mapping."); return; } struct json_object_iterator it = json_object_iter_begin(mapping); struct json_object_iterator end = json_object_iter_end(mapping); while (! json_object_iter_equal(&it, &end)) { can_devices_mapping_.push_back(std::make_pair( json_object_iter_peek_name(&it), json_object_get_string(json_object_iter_peek_value(&it)) )); json_object_iter_next(&it); } } /// @brief Take a decoded message to determine if its value complies with the desired /// filters. /// /// @param[in] vehicle_message - The decoded message to be analyzed. /// @param[in] can_subscription - the subscription which will be notified depending /// on its filtering values. Filtering values are stored in the event_filtermember. /// /// @return True if the value is compliant with event filter values, false if not... bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr can_subscription) { bool send = false; if(is_valid(vehicle_message)) { float min = can_subscription->get_min(); float max = can_subscription->get_max(); double value = get_numerical_from_DynamicField(vehicle_message); send = (value < min || value > max) ? false : true; } return send; } /// @brief Will make the decoding operation on a classic CAN message. It will not /// handle CAN commands nor diagnostic messages that have their own method to get /// this happens. /// /// It will add to the vehicle_message queue the decoded message and tell the event push /// thread to process it. /// /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. /// /// @return How many signals has been decoded. void can_bus_t::process_signals(std::shared_ptr message, map_subscription& s) { int subscription_id = message->get_sub_id(); openxc_DynamicField decoded_message; openxc_VehicleMessage vehicle_message; if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event())) { bool send = true; // First we have to found which signal_t it is std::shared_ptr subscription = s[subscription_id]; openxc_SimpleMessage s_message; // messages if(subscription->get_message_definition() != nullptr) { openxc_DynamicField dynamicField_tmp; json_object *signal_json_tmp; decoded_message = build_DynamicField_json(json_object_new_array()); for(std::shared_ptr sig : subscription->get_message_definition()->get_signals()) { signal_json_tmp = json_object_new_object(); dynamicField_tmp = decoder_t::translate_signal(*sig, message, &send); json_object_object_add(signal_json_tmp,"name", json_object_new_string(sig->get_name().c_str())); jsonify_DynamicField(dynamicField_tmp,signal_json_tmp); if(sig != nullptr && sig->get_unit() != "") json_object_object_add(signal_json_tmp, "unit", json_object_new_string(sig->get_unit().c_str())); json_object_array_add(decoded_message.json_value,signal_json_tmp); } } else // signal { decoded_message = decoder_t::translate_signal(*subscription->get_signal(), message, &send); } s_message = build_SimpleMessage(subscription->get_name(), decoded_message); vehicle_message = build_VehicleMessage(s_message, message->get_timestamp()); if(send && apply_filter(vehicle_message, subscription)) { std::lock_guard decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(subscription_id, vehicle_message); AFB_DEBUG("%s CAN signals processed.", subscription->get_name().c_str()); } } } /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying /// the event push thread to process it. /// /// @param[in] manager - the diagnostic manager object that handle diagnostic communication /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. /// /// @return How many signals has been decoded. void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, std::shared_ptr message, map_subscription& s) { int subscription_id = message->get_sub_id(); openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(message); if (message->get_timestamp()) vehicle_message.timestamp = message->get_timestamp(); if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) && s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event())) { if (apply_filter(vehicle_message, s[subscription_id])) { std::lock_guard decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(subscription_id, vehicle_message); AFB_DEBUG("%s CAN signals processed.", s[subscription_id]->get_name().c_str()); } } } /// @brief thread to decoding raw CAN messages. /// /// Depending on the nature of message, if arbitration ID matches ID for a diagnostic response /// then decoding a diagnostic message else use classic CAN signals decoding functions. /// /// It will take from the can_message_q_ queue the next can message to process then it search /// about signal subscribed if there is a valid afb_event for it. We only decode signal for which a /// subscription has been made. Can message will be decoded using translate_signal that will pass it to the /// corresponding decoding function if there is one assigned for that signal. If not, it will be the default /// noopDecoder function that will operate on it. /// /// TODO: make diagnostic messages parsing optionnal. void can_bus_t::can_decode_message() { utils::signals_manager_t& sm = utils::signals_manager_t::instance(); while(is_decoding_) { std::unique_lock can_message_lock(can_message_mutex_); new_can_message_cv_.wait(can_message_lock); while(!can_message_q_.empty()) { std::shared_ptr message = next_can_message(); can_message_lock.unlock(); { std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); map_subscription& s = sm.get_subscribed_signals(); if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(message)) process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), message, s); else process_signals(message, s); } can_message_lock.lock(); } new_decoded_can_message_.notify_one(); can_message_lock.unlock(); } } /// @brief thread to push events to suscribers. It will read subscribed_signals map to look /// which are events that has to be pushed. void can_bus_t::can_event_push() { json_object* jo; utils::signals_manager_t& sm = utils::signals_manager_t::instance(); while(is_pushing_) { std::unique_lock decoded_can_message_lock(decoded_can_message_mutex_); new_decoded_can_message_.wait(decoded_can_message_lock); while(!vehicle_message_q_.empty()) { std::pair v_message = next_vehicle_message(); decoded_can_message_lock.unlock(); { std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); map_subscription& s = sm.get_subscribed_signals(); if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event())) { jo = json_object_new_object(); jsonify_vehicle(v_message.second, s[v_message.first]->get_signal(), jo); if(afb_event_push(s[v_message.first]->get_event(), jo) == 0) { if(v_message.second.has_diagnostic_response) on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s); else on_no_clients(s[v_message.first], s); } } } decoded_can_message_lock.lock(); } decoded_can_message_lock.unlock(); } } /// @brief Will initialize threads that will decode /// and push subscribed events. void can_bus_t::start_threads() { is_decoding_ = true; th_decoding_ = std::thread(&can_bus_t::can_decode_message, this); th_decoding_.detach(); is_pushing_ = true; th_pushing_ = std::thread(&can_bus_t::can_event_push, this); th_pushing_.detach(); } /// @brief Will stop all threads holded by can_bus_t object /// which are decoding and pushing then will wait that's /// they'll finish their job. void can_bus_t::stop_threads() { is_decoding_ = false; is_pushing_ = false; } /// @brief return new_can_message_cv_ member /// /// @return return new_can_message_cv_ member std::condition_variable& can_bus_t::get_new_can_message_cv() { return new_can_message_cv_; } /// @brief return can_message_mutex_ member /// /// @return return can_message_mutex_ member std::mutex& can_bus_t::get_can_message_mutex() { return can_message_mutex_; } /// @brief Return first can_message_t on the queue /// /// @return a can_message_t std::shared_ptr can_bus_t::next_can_message() { std::shared_ptr msg; if(!can_message_q_.empty()) { msg = can_message_q_.front(); can_message_q_.pop(); std::string debug = msg->get_debug_message(); AFB_DEBUG(debug.c_str()); return msg; } return msg; } /// @brief Push a message_t into the queue /// /// @param[in] msg - the const reference message_t object to push into the queue void can_bus_t::push_new_can_message(std::shared_ptr msg) { can_message_q_.push(msg); } /// @brief Return first openxc_VehicleMessage on the queue /// /// @return a openxc_VehicleMessage containing a decoded can message std::pair can_bus_t::next_vehicle_message() { std::pair v_msg; if(! vehicle_message_q_.empty()) { v_msg = vehicle_message_q_.front(); vehicle_message_q_.pop(); AFB_DEBUG("next vehicle message poped"); return v_msg; } return v_msg; } /// @brief Push a openxc_VehicleMessage into the queue /// /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg) { vehicle_message_q_.push(std::make_pair(subscription_id, v_msg)); } /// @brief Return the CAN device index from the map /// map are sorted so index depend upon alphabetical sorting. int can_bus_t::get_can_device_index(const std::string& bus_name) const { int i = 0; for(const auto& d: can_devices_mapping_) { if(d.first == bus_name) break; i++; } return i; } /// @brief Return CAN device name from a logical CAN device name gotten from /// the signals.json description file which comes from a CAN databases file in /// general. const std::string can_bus_t::get_can_device_name(const std::string& id_name) const { std::string ret = ""; for(const auto& d: can_devices_mapping_) { if(d.first == id_name) { ret = d.second; break; } } return ret; }