/*
 * Copyright (C) 2015, 2016 "IoT.bzh"
 * Author "Romain Forlot" <romain.forlot@iot.bzh>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *	 http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "can-encoder.hpp"

#include "canutil/write.h"
#include "../utils/openxc-utils.hpp"
#include "message-definition.hpp"
#include "../utils/converter.hpp"

/**
 * @brief Allows to encode data for a signal
 *
 * @param sig The signal to know its location
 * @param data The data to encode
 * @param filter If true that will generate the filter BCM for the signal
 * @param factor If true that will use the factor of the signal else 1
 * @param offset If true that will use the offset of the signal else 0
 */
void encoder_t::encode_data(std::shared_ptr<signal_t> sig, std::vector<uint8_t> &data, bool filter, bool factor, bool offset)
{
	uint32_t bit_size = sig->get_bit_size();
	uint32_t bit_position = sig->get_bit_position();
	float factor_v = factor ? sig->get_factor() : 1;
	float offset_v = offset ? sig->get_offset() : 0;

	int new_start_byte = 0;
	int new_end_byte = 0;
	uint8_t new_start_bit = 0;
	uint8_t new_end_bit = 0;

	converter_t::signal_to_bits_bytes(bit_position, bit_size, new_start_byte, new_end_byte, new_start_bit, new_end_bit);
	std::vector<uint8_t> data_signal(new_end_byte - new_start_byte + 1, 0xFF);

	if(filter)
	{
		uint8_t mask_first_v = static_cast<uint8_t>(0xFF >> new_start_bit);
		uint8_t mask_last_v = static_cast<uint8_t>(0xFF << (7 - new_end_bit));

		if(new_start_byte == new_end_byte)
		{
			data_signal[0] = mask_first_v & mask_last_v;
		}
		else
		{
			data_signal[0] = mask_first_v;
			data_signal[new_end_byte - new_start_byte] = mask_last_v;
		}
	}
	else
	{
		bitfield_encode_float(sig->get_last_value(),
				      new_start_bit,
				      bit_size,
				      factor_v,
				      offset_v,
				      data_signal.data(),
				      bit_size);
	}

	for(size_t i = new_start_byte; i <= new_end_byte ; i++)
		data[i] = data[i] | data_signal[i-new_start_byte];
}

/**
 * @brief Allows to build a multi frame message with correct data to be send
 *
 * @param signal The CAN signal to write, including the bit position and bit size.
 * @param value The encoded integer value to write in the CAN signal.
 * @param message A multi frame message to complete
 * @param factor If true that will use the factor of the signal else 1
 * @param offset If true that will use the offset of the signal else 0
 * @return message_t*  The message that is generated
 */
message_t* encoder_t::build_frame(const std::shared_ptr<signal_t>& signal, uint64_t value, message_t *message, bool factor, bool offset)
{
	signal->set_last_value(static_cast<float>(value));
	std::vector<uint8_t> data(message->get_length(), 0);

	for(const auto& sig: signal->get_message()->get_signals())
		encode_data(sig, data, false, factor, offset);

	message->set_data(data);
	return message;
}

/**
 * @brief Allows to build a message_t with correct data to be send
 *
 * @param signal The CAN signal to write, including the bit position and bit size.
 * @param value The encoded integer value to write in the CAN signal.
 * @param factor If true that will use the factor of the signal else 1
 * @param offset If true that will use the offset of the signal else 0
 * @return message_t* The message that is generated
 */
message_t* encoder_t::build_message(const std::shared_ptr<signal_t>& signal, uint64_t value, bool factor, bool offset)
{
	message_t *message;
	std::vector<uint8_t> data;
	switch(signal->get_message()->get_flags())
	{
		case CAN_PROTOCOL_WITH_FD_FRAME:
			message = new can_message_t(CANFD_MAX_DLEN,
						    signal->get_message()->get_id(),
						    CANFD_MAX_DLEN,
						    false,
						    signal->get_message()->get_flags(),
						    data,
						    0);
			return build_frame(signal, value, message, factor, offset);
#ifdef USE_FEATURE_J1939
		case J1939_PROTOCOL:
			message = new j1939_message_t(signal->get_message()->get_length(),
						      data,
						      0,
						      J1939_NO_NAME,
						      signal->get_message()->get_id(),
						      J1939_NO_ADDR);
			return build_frame(signal, value, message, factor, offset);
#endif
		case CAN_PROTOCOL:
			message = new can_message_t(CAN_MAX_DLEN,
						    signal->get_message()->get_id(),
						    CAN_MAX_DLEN,
						    false,
						    signal->get_message()->get_flags(),
						    data,
						    0);
			return build_frame(signal, value, message, factor, offset);
		default:
			message = new can_message_t(CAN_MAX_DLEN,
						    signal->get_message()->get_id(),
						    CAN_MAX_DLEN,
						    false,
						    signal->get_message()->get_flags(),
						    data,
						    0);
			return build_frame(signal, value, message, factor, offset);
	}

}

/// @brief Encode a boolean into an integer, fit for a CAN signal bitfield.
///
/// This is a shortcut for encodeDynamicField(CanSignal*, openxc_DynamicField*,
/// bool*) that takes care of creating the DynamicField object for you with the
/// boolean value.
///
/// @param[in] signal  - The CAN signal to encode this value for..
/// @param[in] value - The boolean value to encode
/// @param[out] send - An output argument that will be set to false if the value should
///     not be sent for any reason.
///
/// @return Returns the encoded integer. If 'send' is changed to false, the field could
/// not be encoded and the return value is undefined.
///
uint64_t encoder_t::encode_boolean(const signal_t& signal, bool value, bool* send)
{
	return encode_number(signal, float(value), send);
}
/// @brief Encode a float into an integer, fit for a CAN signal's bitfield.
///
/// This is a shortcut for encodeDynamicField(CanSignal*, openxc_DynamicField*,
/// bool*) that takes care of creating the DynamicField object for you with the
/// float value.
///
/// @param[in] signal  - The CAN signal to encode this value for.
/// @param[in] value - The float value to encode.
/// @param[out] send - This output argument will always be set to false, so the caller will
///      know not to publish this value to the pipeline.
///
/// @return Returns the encoded integer. If 'send' is changed to false, the field could
/// not be encoded and the return value is undefined.
///
uint64_t encoder_t::encode_number(const signal_t& signal, float value, bool* send)
{
	return float_to_fixed_point(value, signal.get_factor(), signal.get_offset());
}

/// @brief Encode a string into an integer, fit for a CAN signal's bitfield.
///
/// Be aware that the behavior is undefined if there are multiple values assigned
/// to a single state. See https://github.com/openxc/vi-firmware/issues/185.
///
/// This is a shortcut for encodeDynamicField(CanSignal*, openxc_DynamicField*,
/// bool*) that takes care of creating the DynamicField object for you with the
/// string state value.
///
/// @param[in] signal  - The details of the signal that contains the state mapping.
/// @param[in] value - The string state value to encode.
/// @param[out] send - An output argument that will be set to false if the value should
///     not be sent for any reason.
///
/// @return Returns the encoded integer. If 'send' is changed to false, the field could
/// not be encoded and the return value is undefined.
///
uint64_t encoder_t::encode_state(const signal_t& signal, const std::string& state, bool* send)
{
	uint64_t value = 0;
	if(state == "")
	{
		AFB_DEBUG("Can't write state of "" -- not sending");
		*send = false;
	}
	else
	{
		uint64_t signal_state = signal.get_states(state);
		if(signal_state != -1) {
			value = signal_state;
		} else {
			AFB_DEBUG("Couldn't find a valid signal state for %s", state.c_str());
			*send = false;
		}
	}
	return value;
}

/// @brief Parse a signal from a CAN message and apply any required
/// transforations to get a human readable value.
///
/// If the signal_t has a non-NULL 'decoder' field, the raw CAN signal value
/// will be passed to the decoder before returning.
///
/// @param[in] signal - The details of the signal to decode and forward.
/// @param[in] value - The numerical value that will be converted to a boolean.
/// @param[out] send - An output parameter that will be flipped to false if the value could
///      not be decoded.
///
/// @return The decoder returns an openxc_DynamicField, which may contain a number,
/// string or boolean. If 'send' is false, the return value is undefined.
///
uint64_t encoder_t::encode_DynamicField( signal_t& signal, const openxc_DynamicField& field, bool* send)
{
	uint64_t value = 0;
	switch(field.type) {
		case openxc_DynamicField_Type_STRING:
			value = encode_state(signal, field.string_value, send);
			break;
		case openxc_DynamicField_Type_NUM:
			value = encode_number(signal, (float)field.numeric_value, send);
			break;
		case openxc_DynamicField_Type_BOOL:
			value = encode_boolean(signal, field.boolean_value, send);
			break;
		default:
			AFB_DEBUG("Dynamic field didn't have a value, can't encode");
			*send = false;
			break;
	}
	return value;
}