/* * Copyright (C) 2015, 2016 "IoT.bzh" * Author "Romain Forlot" <romain.forlot@iot.bzh> * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "can/can-bus.hpp" #include <map> #include <cerrno> #include <vector> #include <string> #include <fcntl.h> #include <unistd.h> #include <net/if.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <json-c/json.h> #include <linux/can/raw.h> #include "can/can-decoder.hpp" #include "utils/openxc-utils.hpp" #include "obd2/diagnostic-manager.hpp" extern "C" { #include <afb/afb-binding.h> } /******************************************************************************** * * can_bus_t method implementation * *********************************************************************************/ /** * @brief Class constructor * * @param struct afb_binding_interface *interface between daemon and binding * @param int file handle to the json configuration file. */ can_bus_t::can_bus_t(int conf_file) : conf_file_{conf_file} { } /** * @brief thread to decoding raw CAN messages. * * @desc It will take from the can_message_q_ queue the next can message to process then it will search * about signal subscribed if there is a valid afb_event for it. We only decode signal for which a * subscription has been made. Can message will be decoded using translateSignal that will pass it to the * corresponding decoding function if there is one assigned for that signal. If not, it will be the default * noopDecoder function that will operate on it. */ void can_bus_t::can_decode_message() { can_message_t can_message; std::vector <CanSignal*> signals; openxc_VehicleMessage vehicle_message; openxc_DynamicField search_key, decoded_message; decoder_t decoder; while(is_decoding_) { std::unique_lock<std::mutex> can_message_lock(can_message_mutex_); new_can_message_cv_.wait(can_message_lock); can_message = next_can_message(); /* First we have to found which CanSignal it is */ search_key = build_DynamicField((double)can_message.get_id()); signals.clear(); find_can_signals(search_key, signals); /* Decoding the message ! Don't kill the messenger ! */ for(auto& sig : signals) { std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex()); std::map<std::string, struct afb_event>& s = get_subscribed_signals(); /* DEBUG message to make easier debugger STL containers... DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name])); DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)])); DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name)); DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name))); */ if( s.find(sig->generic_name) != s.end() && afb_event_is_valid(s[sig->generic_name])) { decoded_message = decoder.translateSignal(*sig, can_message, get_can_signals()); openxc_SimpleMessage s_message = build_SimpleMessage(sig->generic_name, decoded_message); vehicle_message = build_VehicleMessage_with_SimpleMessage(openxc_DynamicField_Type::openxc_DynamicField_Type_NUM, s_message); std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(vehicle_message); new_decoded_can_message_.notify_one(); } } } } /** * @brief thread to push events to suscribers. It will read subscribed_signals map to look * which are events that has to be pushed. */ void can_bus_t::can_event_push() { openxc_VehicleMessage v_message; openxc_SimpleMessage s_message; json_object* jo; while(is_pushing_) { std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_); new_decoded_can_message_.wait(decoded_can_message_lock); v_message = next_vehicle_message(); s_message = get_simple_message(v_message); { std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex()); std::map<std::string, struct afb_event>& s = get_subscribed_signals(); if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)])) { jo = json_object_new_object(); jsonify_simple(s_message, jo); afb_event_push(s[std::string(s_message.name)], jo); } } } } /** * @brief Will initialize threads that will decode * and push subscribed events. */ void can_bus_t::start_threads() { is_decoding_ = true; th_decoding_ = std::thread(&can_bus_t::can_decode_message, this); if(!th_decoding_.joinable()) is_decoding_ = false; is_pushing_ = true; th_pushing_ = std::thread(&can_bus_t::can_event_push, this); if(!th_pushing_.joinable()) is_pushing_ = false; } /** * @brief Will stop all threads holded by can_bus_t object * which are decoding and pushing then will wait that's * they'll finish their job. */ void can_bus_t::stop_threads() { is_decoding_ = false; is_pushing_ = false; } /** * @brief Will initialize can_bus_dev_t objects after reading * the configuration file passed in the constructor. */ int can_bus_t::init_can_dev() { std::vector<std::string> devices_name; int i; size_t t; devices_name = read_conf(); if (! devices_name.empty()) { t = devices_name.size(); i=0; for(const auto& device : devices_name) { can_devices_m_[device] = std::make_shared<can_bus_dev_t>(device); if (can_devices_m_[device]->open() == 0) { i++; DEBUG(binder_interface, "Start reading thread"); NOTICE(binder_interface, "%s device opened and reading", device.c_str()); can_devices_m_[device]->start_reading(*this); } else ERROR(binder_interface, "Can't open device %s", device.c_str()); } NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t); return 0; } ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?"); return 1; } /** * @brief read the conf_file_ and will parse json objects * in it searching for canbus objects devices name. * * @return Vector of can bus device name string. */ std::vector<std::string> can_bus_t::read_conf() { std::vector<std::string> ret; json_object *jo, *canbus; int n, i; const char* taxi; FILE *fd = fdopen(conf_file_, "r"); if (fd) { std::string fd_conf_content; std::fseek(fd, 0, SEEK_END); fd_conf_content.resize(std::ftell(fd)); std::rewind(fd); std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd); std::fclose(fd); DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str()); jo = json_tokener_parse(fd_conf_content.c_str()); if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus)) {/** * @brief Telling if the pushing thread is running * This is the boolean value on which the while loop * take its condition. Set it to false will stop the * according thread. * * @return true if pushing thread is running, false if not. */ ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it."); ret.clear(); } else if (json_object_get_type(canbus) != json_type_array) { taxi = json_object_get_string(canbus); DEBUG(binder_interface, "Can bus found: %s", taxi); ret.push_back(std::string(taxi)); } else { n = json_object_array_length(canbus); for (i = 0 ; i < n ; i++) ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i))); } return ret; } ERROR(binder_interface, "Problem at reading the conf file"); ret.clear(); return ret; } /** * @brief return new_can_message_cv_ member * * @return return new_can_message_cv_ member */ std::condition_variable& can_bus_t::get_new_can_message_cv() { return new_can_message_cv_; } /** * @brief return can_message_mutex_ member * * @return return can_message_mutex_ member */ std::mutex& can_bus_t::get_can_message_mutex() { return can_message_mutex_; } /** * @brief Return first can_message_t on the queue * * @return a can_message_t */ can_message_t can_bus_t::next_can_message() { can_message_t can_msg; if(!can_message_q_.empty()) { can_msg = can_message_q_.front(); can_message_q_.pop(); DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(), can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]); return can_msg; } return can_msg; } /** * @brief Push a can_message_t into the queue * * @param the const reference can_message_t object to push into the queue */ void can_bus_t::push_new_can_message(const can_message_t& can_msg) { can_message_q_.push(can_msg); } /** * @brief Return first openxc_VehicleMessage on the queue * * @return a openxc_VehicleMessage containing a decoded can message */ openxc_VehicleMessage can_bus_t::next_vehicle_message() { openxc_VehicleMessage v_msg; if(! vehicle_message_q_.empty()) { v_msg = vehicle_message_q_.front(); vehicle_message_q_.pop(); DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped"); return v_msg; } return v_msg; } /** * @brief Push a openxc_VehicleMessage into the queue * * @param the const reference openxc_VehicleMessage object to push into the queue */ void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg) { vehicle_message_q_.push(v_msg); } /** * @brief Return a map with the can_bus_dev_t initialized * * @return map can_bus_dev_m_ map */ std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::get_can_devices() { return can_devices_m_; } /******************************************************************************** * * can_bus_dev_t method implementation * *********************************************************************************/ /** * @brief Class constructor * * @param const string representing the device name into the linux /dev tree */ can_bus_dev_t::can_bus_dev_t(const std::string& dev_name) : device_name_{dev_name}, can_socket_{-1}, diagnostic_manager_{diagnostic_manager_t(*this)} {} /** * @brief Open the can socket and returning it * * @return */ int can_bus_dev_t::open() { const int canfd_on = 1; const int timestamp_on = 1; struct ifreq ifr; struct timeval timeout; DEBUG(binder_interface, "CAN Handler socket : %d", can_socket_); if (can_socket_ >= 0) return 0; can_socket_ = ::socket(PF_CAN, SOCK_RAW, CAN_RAW); DEBUG(binder_interface, "CAN Handler socket correctly initialized : %d", can_socket_); if (can_socket_ < 0) ERROR(binder_interface, "socket could not be created. Error was : %s", ::strerror(errno)); else { /* Set timeout for read */ ::setsockopt(can_socket_, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout, sizeof(timeout)); /* Set timestamp for receveid frame */ if (::setsockopt(can_socket_, SOL_SOCKET, SO_TIMESTAMP, ×tamp_on, sizeof(timestamp_on)) < 0) WARNING(binder_interface, "setsockopt SO_TIMESTAMP error: %s", ::strerror(errno)); DEBUG(binder_interface, "Switch CAN Handler socket to use fd mode"); /* try to switch the socket into CAN_FD mode */ if (::setsockopt(can_socket_, SOL_CAN_RAW, CAN_RAW_FD_FRAMES, &canfd_on, sizeof(canfd_on)) < 0) { NOTICE(binder_interface, "Can not switch into CAN Extended frame format."); is_fdmode_on_ = false; } else { DEBUG(binder_interface, "Correctly set up CAN socket to use FD frames."); is_fdmode_on_ = true; } /* Attempts to open a socket to CAN bus */ ::strcpy(ifr.ifr_name, device_name_.c_str()); DEBUG(binder_interface, "ifr_name is : %s", ifr.ifr_name); if(::ioctl(can_socket_, SIOCGIFINDEX, &ifr) < 0) ERROR(binder_interface, "ioctl failed. Error was : %s", strerror(errno)); else { txAddress_.can_family = AF_CAN; txAddress_.can_ifindex = ifr.ifr_ifindex; /* And bind it to txAddress */ DEBUG(binder_interface, "Bind the socket"); if (::bind(can_socket_, (struct sockaddr *)&txAddress_, sizeof(txAddress_)) < 0) ERROR(binder_interface, "Bind failed. %s", strerror(errno)); else return 0; } close(); } return -1; } /** * @brief Open the can socket and returning it * * @return */ int can_bus_dev_t::close() { ::close(can_socket_); can_socket_ = -1; return can_socket_; } /** * @brief Read the can socket and retrieve canfd_frame * * @param const struct afb_binding_interface* interface pointer. Used to be able to log * using application framework logger. */ std::pair<struct canfd_frame&, size_t> can_bus_dev_t::read() { ssize_t nbytes; //int maxdlen; struct canfd_frame cfd; /* Test that socket is really opened */ if (can_socket_ < 0) { ERROR(binder_interface, "read_can: Socket unavailable. Closing thread."); is_running_ = false; } nbytes = ::read(can_socket_, &cfd, CANFD_MTU); /* if we did not fit into CAN sized messages then stop_reading. */ if (nbytes != CANFD_MTU && nbytes != CAN_MTU) { if (errno == ENETDOWN) ERROR(binder_interface, "read: %s CAN device down", device_name_); ERROR(binder_interface, "read: Incomplete CAN(FD) frame"); ::memset(&cfd, 0, sizeof(cfd)); } DEBUG(binder_interface, "read: Found id: %X, length: %X, data %02X%02X%02X%02X%02X%02X%02X%02X", cfd.can_id, cfd.len, cfd.data[0], cfd.data[1], cfd.data[2], cfd.data[3], cfd.data[4], cfd.data[5], cfd.data[6], cfd.data[7]); return std::pair<struct canfd_frame&, size_t>(cfd, nbytes); } /** * @brief start reading threads and set flag is_running_ * * @param can_bus_t reference can_bus_t. it will be passed to the thread * to allow using can_bus_t queue. */ void can_bus_dev_t::start_reading(can_bus_t& can_bus) { DEBUG(binder_interface, "Launching reading thread"); is_running_ = true; th_reading_ = std::thread(&can_bus_dev_t::can_reader, this, std::ref(can_bus)); if(!th_reading_.joinable()) is_running_ = false; } /** * @brief stop the reading thread setting flag is_running_ to false and * and wait that the thread finish its job. */ void can_bus_dev_t::stop_reading() { is_running_ = false; } /** * * @brief Thread function used to read the can socket. * * @param[in] can_bus_dev_t object to be used to read the can socket * @param[in] can_bus_t object used to fill can_message_q_ queue */ void can_bus_dev_t::can_reader(can_bus_t& can_bus) { can_message_t can_message; while(is_running_) { can_message.convert_from_canfd_frame(read()); { std::lock_guard<std::mutex> can_message_lock(can_bus.get_can_message_mutex()); can_bus.push_new_can_message(can_message); } can_bus.get_new_can_message_cv().notify_one(); } } /** * @brief Send a can message from a can_message_t object. * * @param const can_message_t& can_msg: the can message object to send * @param const struct afb_binding_interface* interface pointer. Used to be able to log * using application framework logger. */ int can_bus_dev_t::send_can_message(can_message_t& can_msg) { ssize_t nbytes; canfd_frame f; f = can_msg.convert_to_canfd_frame(); if(can_socket_ >= 0) { nbytes = ::sendto(can_socket_, &f, sizeof(struct canfd_frame), 0, (struct sockaddr*)&txAddress_, sizeof(txAddress_)); if (nbytes == -1) { ERROR(binder_interface, "send_can_message: Sending CAN frame failed."); return -1; } return (int)nbytes; } else { ERROR(binder_interface, "send_can_message: socket not initialized. Attempt to reopen can device socket."); open(); } return 0; }