# SPDX-License-Identifier: Apache-2.0 # # Copyright (c) 2023 Malik Talha # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import Text from snips_inference_agl import SnipsNLUEngine class SnipsInterface: """ SnipsInterface is a class for interacting with the Snips Natural Language Understanding Engine (Snips NLU). """ def __init__(self, model_path: Text): """ Initialize the SnipsInterface instance with the provided Snips NLU model. Args: model_path (Text): The path to the Snips NLU model. """ self.engine = SnipsNLUEngine.from_path(model_path) def preprocess_text(self, text): """ Preprocess the input text by converting it to lowercase, removing leading/trailing spaces, and removing special characters and punctuation. Args: text (str): The input text to preprocess. Returns: str: The preprocessed text. """ # text to lower case and remove trailing and leading spaces preprocessed_text = text.lower().strip() # remove special characters, punctuation, and extra whitespaces preprocessed_text = re.sub(r'[^\w\s]', '', preprocessed_text).strip() preprocessed_text = re.sub(r'percent', '', preprocessed_text) # replace ° with " degrees" preprocessed_text = re.sub(r'°', ' degrees ', preprocessed_text) return preprocessed_text def extract_intent(self, text: Text): """ Extract the intent from preprocessed text using the Snips NLU engine. Args: text (Text): The preprocessed input text. Returns: dict: The intent extraction result as a dictionary. """ preprocessed_text = self.preprocess_text(text) result = self.engine.parse(preprocessed_text) return result def process_intent(self, intent_output): """ Extract intent and slot values from Snips NLU output. Args: intent_output (dict): The intent extraction result from Snips NLU. Returns: tuple: A tuple containing the intent name (str) and a dictionary of intent actions (entity-value pairs). """ intent_actions = {} intent = intent_output['intent']['intentName'] slots = intent_output.get('slots', []) for slot in slots: action = slot['entity'] value = slot['value']['value'] intent_actions[action] = value return intent, intent_actions