/* * Copyright (C) 2015, 2016 "IoT.bzh" * Author "Romain Forlot" * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "can-bus.hpp" #include "can-signals.hpp" #include "can-decoder.hpp" #include "../binding/configuration.hpp" #include "../utils/signals.hpp" #include "../utils/openxc-utils.hpp" extern "C" { #include } /// @brief Class constructor /// /// @param[in] conf_file - handle to the json configuration file. can_bus_t::can_bus_t(utils::config_parser_t conf_file) : conf_file_{conf_file} {} /// @brief Will make the decoding operation on a classic CAN message. It will not /// handle CAN commands nor diagnostic messages that have their own method to get /// this happens. /// /// It will add to the vehicle_message queue the decoded message and tell the event push /// thread to process it. /// /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. /// /// @return How many signals has been decoded. int can_bus_t::process_can_signals(const can_message_t& can_message) { int processed_signals = 0; struct utils::signals_found signals; openxc_DynamicField search_key, decoded_message; openxc_VehicleMessage vehicle_message; configuration_t& conf = configuration_t::instance(); utils::signals_manager_t& sm = utils::signals_manager_t::instance(); // First we have to found which can_signal_t it is search_key = build_DynamicField((double)can_message.get_id()); signals = sm.find_signals(search_key); // Decoding the message ! Don't kill the messenger ! for(const auto& sig : signals.can_signals) { std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); std::map& s = sm.get_subscribed_signals(); if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()])) { bool send = true; decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_all_can_signals(), &send); if(send) { openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message); vehicle_message = build_VehicleMessage(s_message); std::lock_guard decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(vehicle_message); } processed_signals++; } } DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size()); return processed_signals; } /// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal /// corresponding and will add the vehicle_message to the queue of event to pushed before notifying /// the event push thread to process it. /// /// @param[in] manager - the diagnostic manager object that handle diagnostic communication /// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. /// /// @return How many signals has been decoded. int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message) { int processed_signals = 0; utils::signals_manager_t& sm = utils::signals_manager_t::instance(); std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); std::map& s = sm.get_subscribed_signals(); openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message); if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) && (s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name]))) { std::lock_guard decoded_can_message_lock(decoded_can_message_mutex_); push_new_vehicle_message(vehicle_message); processed_signals++; } return processed_signals; } /// @brief thread to decoding raw CAN messages. /// /// Depending on the nature of message, if arbitration ID matches ID for a diagnostic response /// then decoding a diagnostic message else use classic CAN signals decoding functions. /// /// It will take from the can_message_q_ queue the next can message to process then it search /// about signal subscribed if there is a valid afb_event for it. We only decode signal for which a /// subscription has been made. Can message will be decoded using translateSignal that will pass it to the /// corresponding decoding function if there is one assigned for that signal. If not, it will be the default /// noopDecoder function that will operate on it. /// /// TODO: make diagnostic messages parsing optionnal. void can_bus_t::can_decode_message() { can_message_t can_message; while(is_decoding_) { { std::unique_lock can_message_lock(can_message_mutex_); new_can_message_cv_.wait(can_message_lock); while(!can_message_q_.empty()) { can_message = next_can_message(); if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message)) process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message); else process_can_signals(can_message); } } new_decoded_can_message_.notify_one(); } } /// @brief thread to push events to suscribers. It will read subscribed_signals map to look /// which are events that has to be pushed. void can_bus_t::can_event_push() { openxc_VehicleMessage v_message; openxc_SimpleMessage s_message; json_object* jo; utils::signals_manager_t& sm = utils::signals_manager_t::instance(); while(is_pushing_) { std::unique_lock decoded_can_message_lock(decoded_can_message_mutex_); new_decoded_can_message_.wait(decoded_can_message_lock); while(!vehicle_message_q_.empty()) { v_message = next_vehicle_message(); s_message = get_simple_message(v_message); { std::lock_guard subscribed_signals_lock(sm.get_subscribed_signals_mutex()); std::map& s = sm.get_subscribed_signals(); if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)])) { jo = json_object_new_object(); jsonify_simple(s_message, jo); if(afb_event_push(s[std::string(s_message.name)], jo) == 0) on_no_clients(std::string(s_message.name)); } } } } } /// @brief Will initialize threads that will decode /// and push subscribed events. void can_bus_t::start_threads() { is_decoding_ = true; th_decoding_ = std::thread(&can_bus_t::can_decode_message, this); if(!th_decoding_.joinable()) is_decoding_ = false; is_pushing_ = true; th_pushing_ = std::thread(&can_bus_t::can_event_push, this); if(!th_pushing_.joinable()) is_pushing_ = false; } /// @brief Will stop all threads holded by can_bus_t object /// which are decoding and pushing then will wait that's /// they'll finish their job. void can_bus_t::stop_threads() { is_decoding_ = false; is_pushing_ = false; } /// @brief return new_can_message_cv_ member /// /// @return return new_can_message_cv_ member std::condition_variable& can_bus_t::get_new_can_message_cv() { return new_can_message_cv_; } /// @brief return can_message_mutex_ member /// /// @return return can_message_mutex_ member std::mutex& can_bus_t::get_can_message_mutex() { return can_message_mutex_; } /// @brief Return first can_message_t on the queue /// /// @return a can_message_t can_message_t can_bus_t::next_can_message() { can_message_t can_msg; if(!can_message_q_.empty()) { can_msg = can_message_q_.front(); can_message_q_.pop(); DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(), can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]); return can_msg; } return can_msg; } /// @brief Push a can_message_t into the queue /// /// @param[in] can_msg - the const reference can_message_t object to push into the queue void can_bus_t::push_new_can_message(const can_message_t& can_msg) { can_message_q_.push(can_msg); } /// @brief Return first openxc_VehicleMessage on the queue /// /// @return a openxc_VehicleMessage containing a decoded can message openxc_VehicleMessage can_bus_t::next_vehicle_message() { openxc_VehicleMessage v_msg; if(! vehicle_message_q_.empty()) { v_msg = vehicle_message_q_.front(); vehicle_message_q_.pop(); DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__); return v_msg; } return v_msg; } /// @brief Push a openxc_VehicleMessage into the queue /// /// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg) { vehicle_message_q_.push(v_msg); } /// @brief Return the shared pointer on the can_bus_dev_t initialized /// with device_name "bus" /// /// @param[in] bus - CAN bus device name to retrieve. /// /// @return A shared pointer on an object can_bus_dev_t void can_bus_t::set_can_devices() { can_devices_ = conf_file_.get_devices_name(); if(can_devices_.empty()) { ERROR(binder_interface, "%s: No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.", __FUNCTION__, conf_file_.filepath().c_str()); } } int can_bus_t::get_can_device_index(const std::string& bus_name) const { int i = 0; for(const auto& d: can_devices_) { if(d.first == bus_name) break; i++; } return i; } const std::string can_bus_t::get_can_device_name(const std::string& id_name) const { std::string ret; for(const auto& d: can_devices_) { if(d.first == id_name) { ret = d.second; break; } } return ret; }