From af1a266670d040d2f4083ff309d732d648afba2a Mon Sep 17 00:00:00 2001 From: Angelos Mouzakitis Date: Tue, 10 Oct 2023 14:33:42 +0000 Subject: Add submodule dependency files Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec --- .../edk2/MdePkg/Library/BaseLib/BaseLibInternals.h | 869 +++++++++++++++++++++ 1 file changed, 869 insertions(+) create mode 100644 roms/edk2/MdePkg/Library/BaseLib/BaseLibInternals.h (limited to 'roms/edk2/MdePkg/Library/BaseLib/BaseLibInternals.h') diff --git a/roms/edk2/MdePkg/Library/BaseLib/BaseLibInternals.h b/roms/edk2/MdePkg/Library/BaseLib/BaseLibInternals.h new file mode 100644 index 000000000..6837d67d9 --- /dev/null +++ b/roms/edk2/MdePkg/Library/BaseLib/BaseLibInternals.h @@ -0,0 +1,869 @@ +/** @file + Declaration of internal functions in BaseLib. + + Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.
+ SPDX-License-Identifier: BSD-2-Clause-Patent + +**/ + +#ifndef __BASE_LIB_INTERNALS__ +#define __BASE_LIB_INTERNALS__ + +#include +#include +#include +#include +#include + +// +// Math functions +// + +/** + Shifts a 64-bit integer left between 0 and 63 bits. The low bits + are filled with zeros. The shifted value is returned. + + This function shifts the 64-bit value Operand to the left by Count bits. The + low Count bits are set to zero. The shifted value is returned. + + @param Operand The 64-bit operand to shift left. + @param Count The number of bits to shift left. + + @return Operand << Count + +**/ +UINT64 +EFIAPI +InternalMathLShiftU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + +/** + Shifts a 64-bit integer right between 0 and 63 bits. The high bits + are filled with zeros. The shifted value is returned. + + This function shifts the 64-bit value Operand to the right by Count bits. The + high Count bits are set to zero. The shifted value is returned. + + @param Operand The 64-bit operand to shift right. + @param Count The number of bits to shift right. + + @return Operand >> Count + +**/ +UINT64 +EFIAPI +InternalMathRShiftU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + +/** + Shifts a 64-bit integer right between 0 and 63 bits. The high bits + are filled with original integer's bit 63. The shifted value is returned. + + This function shifts the 64-bit value Operand to the right by Count bits. The + high Count bits are set to bit 63 of Operand. The shifted value is returned. + + @param Operand The 64-bit operand to shift right. + @param Count The number of bits to shift right. + + @return Operand arithmetically shifted right by Count + +**/ +UINT64 +EFIAPI +InternalMathARShiftU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + +/** + Rotates a 64-bit integer left between 0 and 63 bits, filling + the low bits with the high bits that were rotated. + + This function rotates the 64-bit value Operand to the left by Count bits. The + low Count bits are filled with the high Count bits of Operand. The rotated + value is returned. + + @param Operand The 64-bit operand to rotate left. + @param Count The number of bits to rotate left. + + @return Operand <<< Count + +**/ +UINT64 +EFIAPI +InternalMathLRotU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + +/** + Rotates a 64-bit integer right between 0 and 63 bits, filling + the high bits with the high low bits that were rotated. + + This function rotates the 64-bit value Operand to the right by Count bits. + The high Count bits are filled with the low Count bits of Operand. The rotated + value is returned. + + @param Operand The 64-bit operand to rotate right. + @param Count The number of bits to rotate right. + + @return Operand >>> Count + +**/ +UINT64 +EFIAPI +InternalMathRRotU64 ( + IN UINT64 Operand, + IN UINTN Count + ); + +/** + Switches the endianess of a 64-bit integer. + + This function swaps the bytes in a 64-bit unsigned value to switch the value + from little endian to big endian or vice versa. The byte swapped value is + returned. + + @param Operand A 64-bit unsigned value. + + @return The byte swapped Operand. + +**/ +UINT64 +EFIAPI +InternalMathSwapBytes64 ( + IN UINT64 Operand + ); + +/** + Multiplies a 64-bit unsigned integer by a 32-bit unsigned integer + and generates a 64-bit unsigned result. + + This function multiplies the 64-bit unsigned value Multiplicand by the 32-bit + unsigned value Multiplier and generates a 64-bit unsigned result. This 64- + bit unsigned result is returned. + + @param Multiplicand A 64-bit unsigned value. + @param Multiplier A 32-bit unsigned value. + + @return Multiplicand * Multiplier + +**/ +UINT64 +EFIAPI +InternalMathMultU64x32 ( + IN UINT64 Multiplicand, + IN UINT32 Multiplier + ); + +/** + Multiplies a 64-bit unsigned integer by a 64-bit unsigned integer + and generates a 64-bit unsigned result. + + This function multiples the 64-bit unsigned value Multiplicand by the 64-bit + unsigned value Multiplier and generates a 64-bit unsigned result. This 64- + bit unsigned result is returned. + + @param Multiplicand A 64-bit unsigned value. + @param Multiplier A 64-bit unsigned value. + + @return Multiplicand * Multiplier + +**/ +UINT64 +EFIAPI +InternalMathMultU64x64 ( + IN UINT64 Multiplicand, + IN UINT64 Multiplier + ); + +/** + Divides a 64-bit unsigned integer by a 32-bit unsigned integer and + generates a 64-bit unsigned result. + + This function divides the 64-bit unsigned value Dividend by the 32-bit + unsigned value Divisor and generates a 64-bit unsigned quotient. This + function returns the 64-bit unsigned quotient. + + @param Dividend A 64-bit unsigned value. + @param Divisor A 32-bit unsigned value. + + @return Dividend / Divisor + +**/ +UINT64 +EFIAPI +InternalMathDivU64x32 ( + IN UINT64 Dividend, + IN UINT32 Divisor + ); + +/** + Divides a 64-bit unsigned integer by a 32-bit unsigned integer and + generates a 32-bit unsigned remainder. + + This function divides the 64-bit unsigned value Dividend by the 32-bit + unsigned value Divisor and generates a 32-bit remainder. This function + returns the 32-bit unsigned remainder. + + @param Dividend A 64-bit unsigned value. + @param Divisor A 32-bit unsigned value. + + @return Dividend % Divisor + +**/ +UINT32 +EFIAPI +InternalMathModU64x32 ( + IN UINT64 Dividend, + IN UINT32 Divisor + ); + +/** + Divides a 64-bit unsigned integer by a 32-bit unsigned integer and + generates a 64-bit unsigned result and an optional 32-bit unsigned remainder. + + This function divides the 64-bit unsigned value Dividend by the 32-bit + unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder + is not NULL, then the 32-bit unsigned remainder is returned in Remainder. + This function returns the 64-bit unsigned quotient. + + @param Dividend A 64-bit unsigned value. + @param Divisor A 32-bit unsigned value. + @param Remainder A pointer to a 32-bit unsigned value. This parameter is + optional and may be NULL. + + @return Dividend / Divisor + +**/ +UINT64 +EFIAPI +InternalMathDivRemU64x32 ( + IN UINT64 Dividend, + IN UINT32 Divisor, + OUT UINT32 *Remainder OPTIONAL + ); + +/** + Divides a 64-bit unsigned integer by a 64-bit unsigned integer and + generates a 64-bit unsigned result and an optional 64-bit unsigned remainder. + + This function divides the 64-bit unsigned value Dividend by the 64-bit + unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder + is not NULL, then the 64-bit unsigned remainder is returned in Remainder. + This function returns the 64-bit unsigned quotient. + + @param Dividend A 64-bit unsigned value. + @param Divisor A 64-bit unsigned value. + @param Remainder A pointer to a 64-bit unsigned value. This parameter is + optional and may be NULL. + + @return Dividend / Divisor + +**/ +UINT64 +EFIAPI +InternalMathDivRemU64x64 ( + IN UINT64 Dividend, + IN UINT64 Divisor, + OUT UINT64 *Remainder OPTIONAL + ); + +/** + Divides a 64-bit signed integer by a 64-bit signed integer and + generates a 64-bit signed result and an optional 64-bit signed remainder. + + This function divides the 64-bit signed value Dividend by the 64-bit + signed value Divisor and generates a 64-bit signed quotient. If Remainder + is not NULL, then the 64-bit signed remainder is returned in Remainder. + This function returns the 64-bit signed quotient. + + @param Dividend A 64-bit signed value. + @param Divisor A 64-bit signed value. + @param Remainder A pointer to a 64-bit signed value. This parameter is + optional and may be NULL. + + @return Dividend / Divisor + +**/ +INT64 +EFIAPI +InternalMathDivRemS64x64 ( + IN INT64 Dividend, + IN INT64 Divisor, + OUT INT64 *Remainder OPTIONAL + ); + +/** + Transfers control to a function starting with a new stack. + + Transfers control to the function specified by EntryPoint using the + new stack specified by NewStack and passing in the parameters specified + by Context1 and Context2. Context1 and Context2 are optional and may + be NULL. The function EntryPoint must never return. + Marker will be ignored on IA-32, x64, and EBC. + IPF CPUs expect one additional parameter of type VOID * that specifies + the new backing store pointer. + + If EntryPoint is NULL, then ASSERT(). + If NewStack is NULL, then ASSERT(). + + @param EntryPoint A pointer to function to call with the new stack. + @param Context1 A pointer to the context to pass into the EntryPoint + function. + @param Context2 A pointer to the context to pass into the EntryPoint + function. + @param NewStack A pointer to the new stack to use for the EntryPoint + function. + @param Marker VA_LIST marker for the variable argument list. + +**/ +VOID +EFIAPI +InternalSwitchStack ( + IN SWITCH_STACK_ENTRY_POINT EntryPoint, + IN VOID *Context1, OPTIONAL + IN VOID *Context2, OPTIONAL + IN VOID *NewStack, + IN VA_LIST Marker + ); + + +/** + Worker function that returns a bit field from Operand. + + Returns the bitfield specified by the StartBit and the EndBit from Operand. + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + @param EndBit The ordinal of the most significant bit in the bit field. + + @return The bit field read. + +**/ +UINTN +EFIAPI +BitFieldReadUint ( + IN UINTN Operand, + IN UINTN StartBit, + IN UINTN EndBit + ); + + +/** + Worker function that reads a bit field from Operand, performs a bitwise OR, + and returns the result. + + Performs a bitwise OR between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData. All other bits in Operand are + preserved. The new value is returned. + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + @param EndBit The ordinal of the most significant bit in the bit field. + @param OrData The value to OR with the read value from the value + + @return The new value. + +**/ +UINTN +EFIAPI +BitFieldOrUint ( + IN UINTN Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINTN OrData + ); + + +/** + Worker function that reads a bit field from Operand, performs a bitwise AND, + and returns the result. + + Performs a bitwise AND between the bit field specified by StartBit and EndBit + in Operand and the value specified by AndData. All other bits in Operand are + preserved. The new value is returned. + + @param Operand Operand on which to perform the bitfield operation. + @param StartBit The ordinal of the least significant bit in the bit field. + @param EndBit The ordinal of the most significant bit in the bit field. + @param AndData The value to And with the read value from the value + + @return The new value. + +**/ +UINTN +EFIAPI +BitFieldAndUint ( + IN UINTN Operand, + IN UINTN StartBit, + IN UINTN EndBit, + IN UINTN AndData + ); + + +/** + Worker function that checks ASSERT condition for JumpBuffer + + Checks ASSERT condition for JumpBuffer. + + If JumpBuffer is NULL, then ASSERT(). + For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT(). + + @param JumpBuffer A pointer to CPU context buffer. + +**/ +VOID +EFIAPI +InternalAssertJumpBuffer ( + IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer + ); + + +/** + Restores the CPU context that was saved with SetJump(). + + Restores the CPU context from the buffer specified by JumpBuffer. + This function never returns to the caller. + Instead is resumes execution based on the state of JumpBuffer. + + @param JumpBuffer A pointer to CPU context buffer. + @param Value The value to return when the SetJump() context is restored. + +**/ +VOID +EFIAPI +InternalLongJump ( + IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer, + IN UINTN Value + ); + + +/** + Check if a Unicode character is a decimal character. + + This internal function checks if a Unicode character is a + decimal character. The valid decimal character is from + L'0' to L'9'. + + @param Char The character to check against. + + @retval TRUE If the Char is a decmial character. + @retval FALSE If the Char is not a decmial character. + +**/ +BOOLEAN +EFIAPI +InternalIsDecimalDigitCharacter ( + IN CHAR16 Char + ); + + +/** + Convert a Unicode character to numerical value. + + This internal function only deal with Unicode character + which maps to a valid hexadecimal ASII character, i.e. + L'0' to L'9', L'a' to L'f' or L'A' to L'F'. For other + Unicode character, the value returned does not make sense. + + @param Char The character to convert. + + @return The numerical value converted. + +**/ +UINTN +EFIAPI +InternalHexCharToUintn ( + IN CHAR16 Char + ); + + +/** + Check if a Unicode character is a hexadecimal character. + + This internal function checks if a Unicode character is a + decimal character. The valid hexadecimal character is + L'0' to L'9', L'a' to L'f', or L'A' to L'F'. + + + @param Char The character to check against. + + @retval TRUE If the Char is a hexadecmial character. + @retval FALSE If the Char is not a hexadecmial character. + +**/ +BOOLEAN +EFIAPI +InternalIsHexaDecimalDigitCharacter ( + IN CHAR16 Char + ); + + +/** + Check if a ASCII character is a decimal character. + + This internal function checks if a Unicode character is a + decimal character. The valid decimal character is from + '0' to '9'. + + @param Char The character to check against. + + @retval TRUE If the Char is a decmial character. + @retval FALSE If the Char is not a decmial character. + +**/ +BOOLEAN +EFIAPI +InternalAsciiIsDecimalDigitCharacter ( + IN CHAR8 Char + ); + + +/** + Check if a ASCII character is a hexadecimal character. + + This internal function checks if a ASCII character is a + decimal character. The valid hexadecimal character is + L'0' to L'9', L'a' to L'f', or L'A' to L'F'. + + + @param Char The character to check against. + + @retval TRUE If the Char is a hexadecmial character. + @retval FALSE If the Char is not a hexadecmial character. + +**/ +BOOLEAN +EFIAPI +InternalAsciiIsHexaDecimalDigitCharacter ( + IN CHAR8 Char + ); + + +/** + Convert a ASCII character to numerical value. + + This internal function only deal with Unicode character + which maps to a valid hexadecimal ASII character, i.e. + '0' to '9', 'a' to 'f' or 'A' to 'F'. For other + ASCII character, the value returned does not make sense. + + @param Char The character to convert. + + @return The numerical value converted. + +**/ +UINTN +EFIAPI +InternalAsciiHexCharToUintn ( + IN CHAR8 Char + ); + + +// +// Ia32 and x64 specific functions +// +#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64) + +/** + Reads the current Global Descriptor Table Register(GDTR) descriptor. + + Reads and returns the current GDTR descriptor and returns it in Gdtr. This + function is only available on IA-32 and x64. + + @param Gdtr The pointer to a GDTR descriptor. + +**/ +VOID +EFIAPI +InternalX86ReadGdtr ( + OUT IA32_DESCRIPTOR *Gdtr + ); + +/** + Writes the current Global Descriptor Table Register (GDTR) descriptor. + + Writes and the current GDTR descriptor specified by Gdtr. This function is + only available on IA-32 and x64. + + @param Gdtr The pointer to a GDTR descriptor. + +**/ +VOID +EFIAPI +InternalX86WriteGdtr ( + IN CONST IA32_DESCRIPTOR *Gdtr + ); + +/** + Reads the current Interrupt Descriptor Table Register(GDTR) descriptor. + + Reads and returns the current IDTR descriptor and returns it in Idtr. This + function is only available on IA-32 and x64. + + @param Idtr The pointer to an IDTR descriptor. + +**/ +VOID +EFIAPI +InternalX86ReadIdtr ( + OUT IA32_DESCRIPTOR *Idtr + ); + +/** + Writes the current Interrupt Descriptor Table Register(GDTR) descriptor. + + Writes the current IDTR descriptor and returns it in Idtr. This function is + only available on IA-32 and x64. + + @param Idtr The pointer to an IDTR descriptor. + +**/ +VOID +EFIAPI +InternalX86WriteIdtr ( + IN CONST IA32_DESCRIPTOR *Idtr + ); + +/** + Save the current floating point/SSE/SSE2 context to a buffer. + + Saves the current floating point/SSE/SSE2 state to the buffer specified by + Buffer. Buffer must be aligned on a 16-byte boundary. This function is only + available on IA-32 and x64. + + @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context. + +**/ +VOID +EFIAPI +InternalX86FxSave ( + OUT IA32_FX_BUFFER *Buffer + ); + +/** + Restores the current floating point/SSE/SSE2 context from a buffer. + + Restores the current floating point/SSE/SSE2 state from the buffer specified + by Buffer. Buffer must be aligned on a 16-byte boundary. This function is + only available on IA-32 and x64. + + @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context. + +**/ +VOID +EFIAPI +InternalX86FxRestore ( + IN CONST IA32_FX_BUFFER *Buffer + ); + +/** + Enables the 32-bit paging mode on the CPU. + + Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables + must be properly initialized prior to calling this service. This function + assumes the current execution mode is 32-bit protected mode. This function is + only available on IA-32. After the 32-bit paging mode is enabled, control is + transferred to the function specified by EntryPoint using the new stack + specified by NewStack and passing in the parameters specified by Context1 and + Context2. Context1 and Context2 are optional and may be NULL. The function + EntryPoint must never return. + + There are a number of constraints that must be followed before calling this + function: + 1) Interrupts must be disabled. + 2) The caller must be in 32-bit protected mode with flat descriptors. This + means all descriptors must have a base of 0 and a limit of 4GB. + 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat + descriptors. + 4) CR3 must point to valid page tables that will be used once the transition + is complete, and those page tables must guarantee that the pages for this + function and the stack are identity mapped. + + @param EntryPoint A pointer to function to call with the new stack after + paging is enabled. + @param Context1 A pointer to the context to pass into the EntryPoint + function as the first parameter after paging is enabled. + @param Context2 A pointer to the context to pass into the EntryPoint + function as the second parameter after paging is enabled. + @param NewStack A pointer to the new stack to use for the EntryPoint + function after paging is enabled. + +**/ +VOID +EFIAPI +InternalX86EnablePaging32 ( + IN SWITCH_STACK_ENTRY_POINT EntryPoint, + IN VOID *Context1, OPTIONAL + IN VOID *Context2, OPTIONAL + IN VOID *NewStack + ); + +/** + Disables the 32-bit paging mode on the CPU. + + Disables the 32-bit paging mode on the CPU and returns to 32-bit protected + mode. This function assumes the current execution mode is 32-paged protected + mode. This function is only available on IA-32. After the 32-bit paging mode + is disabled, control is transferred to the function specified by EntryPoint + using the new stack specified by NewStack and passing in the parameters + specified by Context1 and Context2. Context1 and Context2 are optional and + may be NULL. The function EntryPoint must never return. + + There are a number of constraints that must be followed before calling this + function: + 1) Interrupts must be disabled. + 2) The caller must be in 32-bit paged mode. + 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode. + 4) CR3 must point to valid page tables that guarantee that the pages for + this function and the stack are identity mapped. + + @param EntryPoint A pointer to function to call with the new stack after + paging is disabled. + @param Context1 A pointer to the context to pass into the EntryPoint + function as the first parameter after paging is disabled. + @param Context2 A pointer to the context to pass into the EntryPoint + function as the second parameter after paging is + disabled. + @param NewStack A pointer to the new stack to use for the EntryPoint + function after paging is disabled. + +**/ +VOID +EFIAPI +InternalX86DisablePaging32 ( + IN SWITCH_STACK_ENTRY_POINT EntryPoint, + IN VOID *Context1, OPTIONAL + IN VOID *Context2, OPTIONAL + IN VOID *NewStack + ); + +/** + Enables the 64-bit paging mode on the CPU. + + Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables + must be properly initialized prior to calling this service. This function + assumes the current execution mode is 32-bit protected mode with flat + descriptors. This function is only available on IA-32. After the 64-bit + paging mode is enabled, control is transferred to the function specified by + EntryPoint using the new stack specified by NewStack and passing in the + parameters specified by Context1 and Context2. Context1 and Context2 are + optional and may be 0. The function EntryPoint must never return. + + @param Cs The 16-bit selector to load in the CS before EntryPoint + is called. The descriptor in the GDT that this selector + references must be setup for long mode. + @param EntryPoint The 64-bit virtual address of the function to call with + the new stack after paging is enabled. + @param Context1 The 64-bit virtual address of the context to pass into + the EntryPoint function as the first parameter after + paging is enabled. + @param Context2 The 64-bit virtual address of the context to pass into + the EntryPoint function as the second parameter after + paging is enabled. + @param NewStack The 64-bit virtual address of the new stack to use for + the EntryPoint function after paging is enabled. + +**/ +VOID +EFIAPI +InternalX86EnablePaging64 ( + IN UINT16 Cs, + IN UINT64 EntryPoint, + IN UINT64 Context1, OPTIONAL + IN UINT64 Context2, OPTIONAL + IN UINT64 NewStack + ); + +/** + Disables the 64-bit paging mode on the CPU. + + Disables the 64-bit paging mode on the CPU and returns to 32-bit protected + mode. This function assumes the current execution mode is 64-paging mode. + This function is only available on x64. After the 64-bit paging mode is + disabled, control is transferred to the function specified by EntryPoint + using the new stack specified by NewStack and passing in the parameters + specified by Context1 and Context2. Context1 and Context2 are optional and + may be 0. The function EntryPoint must never return. + + @param Cs The 16-bit selector to load in the CS before EntryPoint + is called. The descriptor in the GDT that this selector + references must be setup for 32-bit protected mode. + @param EntryPoint The 64-bit virtual address of the function to call with + the new stack after paging is disabled. + @param Context1 The 64-bit virtual address of the context to pass into + the EntryPoint function as the first parameter after + paging is disabled. + @param Context2 The 64-bit virtual address of the context to pass into + the EntryPoint function as the second parameter after + paging is disabled. + @param NewStack The 64-bit virtual address of the new stack to use for + the EntryPoint function after paging is disabled. + +**/ +VOID +EFIAPI +InternalX86DisablePaging64 ( + IN UINT16 Cs, + IN UINT32 EntryPoint, + IN UINT32 Context1, OPTIONAL + IN UINT32 Context2, OPTIONAL + IN UINT32 NewStack + ); + +/** + Generates a 16-bit random number through RDRAND instruction. + + @param[out] Rand Buffer pointer to store the random result. + + @retval TRUE RDRAND call was successful. + @retval FALSE Failed attempts to call RDRAND. + + **/ +BOOLEAN +EFIAPI +InternalX86RdRand16 ( + OUT UINT16 *Rand + ); + +/** + Generates a 32-bit random number through RDRAND instruction. + + @param[out] Rand Buffer pointer to store the random result. + + @retval TRUE RDRAND call was successful. + @retval FALSE Failed attempts to call RDRAND. + +**/ +BOOLEAN +EFIAPI +InternalX86RdRand32 ( + OUT UINT32 *Rand + ); + +/** + Generates a 64-bit random number through RDRAND instruction. + + + @param[out] Rand Buffer pointer to store the random result. + + @retval TRUE RDRAND call was successful. + @retval FALSE Failed attempts to call RDRAND. + +**/ +BOOLEAN +EFIAPI +InternalX86RdRand64 ( + OUT UINT64 *Rand + ); + +#else + +#endif + +#endif -- cgit 1.2.3-korg