//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the AArch64 addressing mode implementation stuff. // //===----------------------------------------------------------------------===// #ifndef CS_AARCH64_ADDRESSINGMODES_H #define CS_AARCH64_ADDRESSINGMODES_H /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2019 */ #include "../../MathExtras.h" /// AArch64_AM - AArch64 Addressing Mode Stuff //===----------------------------------------------------------------------===// // Shifts // typedef enum AArch64_AM_ShiftExtendType { AArch64_AM_InvalidShiftExtend = -1, AArch64_AM_LSL = 0, AArch64_AM_LSR, AArch64_AM_ASR, AArch64_AM_ROR, AArch64_AM_MSL, AArch64_AM_UXTB, AArch64_AM_UXTH, AArch64_AM_UXTW, AArch64_AM_UXTX, AArch64_AM_SXTB, AArch64_AM_SXTH, AArch64_AM_SXTW, AArch64_AM_SXTX, } AArch64_AM_ShiftExtendType; /// getShiftName - Get the string encoding for the shift type. static inline const char *AArch64_AM_getShiftExtendName(AArch64_AM_ShiftExtendType ST) { switch (ST) { default: return NULL; // never reach case AArch64_AM_LSL: return "lsl"; case AArch64_AM_LSR: return "lsr"; case AArch64_AM_ASR: return "asr"; case AArch64_AM_ROR: return "ror"; case AArch64_AM_MSL: return "msl"; case AArch64_AM_UXTB: return "uxtb"; case AArch64_AM_UXTH: return "uxth"; case AArch64_AM_UXTW: return "uxtw"; case AArch64_AM_UXTX: return "uxtx"; case AArch64_AM_SXTB: return "sxtb"; case AArch64_AM_SXTH: return "sxth"; case AArch64_AM_SXTW: return "sxtw"; case AArch64_AM_SXTX: return "sxtx"; } } /// getShiftType - Extract the shift type. static inline AArch64_AM_ShiftExtendType AArch64_AM_getShiftType(unsigned Imm) { switch ((Imm >> 6) & 0x7) { default: return AArch64_AM_InvalidShiftExtend; case 0: return AArch64_AM_LSL; case 1: return AArch64_AM_LSR; case 2: return AArch64_AM_ASR; case 3: return AArch64_AM_ROR; case 4: return AArch64_AM_MSL; } } /// getShiftValue - Extract the shift value. static inline unsigned AArch64_AM_getShiftValue(unsigned Imm) { return Imm & 0x3f; } static inline unsigned AArch64_AM_getShifterImm(AArch64_AM_ShiftExtendType ST, unsigned Imm) { // assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); unsigned STEnc = 0; switch (ST) { default: // llvm_unreachable("Invalid shift requested"); case AArch64_AM_LSL: STEnc = 0; break; case AArch64_AM_LSR: STEnc = 1; break; case AArch64_AM_ASR: STEnc = 2; break; case AArch64_AM_ROR: STEnc = 3; break; case AArch64_AM_MSL: STEnc = 4; break; } return (STEnc << 6) | (Imm & 0x3f); } //===----------------------------------------------------------------------===// // Extends // /// getArithShiftValue - get the arithmetic shift value. static inline unsigned AArch64_AM_getArithShiftValue(unsigned Imm) { return Imm & 0x7; } /// getExtendType - Extract the extend type for operands of arithmetic ops. static inline AArch64_AM_ShiftExtendType AArch64_AM_getExtendType(unsigned Imm) { // assert((Imm & 0x7) == Imm && "invalid immediate!"); switch (Imm) { default: // llvm_unreachable("Compiler bug!"); case 0: return AArch64_AM_UXTB; case 1: return AArch64_AM_UXTH; case 2: return AArch64_AM_UXTW; case 3: return AArch64_AM_UXTX; case 4: return AArch64_AM_SXTB; case 5: return AArch64_AM_SXTH; case 6: return AArch64_AM_SXTW; case 7: return AArch64_AM_SXTX; } } static inline AArch64_AM_ShiftExtendType AArch64_AM_getArithExtendType(unsigned Imm) { return AArch64_AM_getExtendType((Imm >> 3) & 0x7); } /// Mapping from extend bits to required operation: /// shifter: 000 ==> uxtb /// 001 ==> uxth /// 010 ==> uxtw /// 011 ==> uxtx /// 100 ==> sxtb /// 101 ==> sxth /// 110 ==> sxtw /// 111 ==> sxtx static inline unsigned AArch64_AM_getExtendEncoding(AArch64_AM_ShiftExtendType ET) { switch (ET) { default: // llvm_unreachable("Invalid extend type requested"); case AArch64_AM_UXTB: return 0; break; case AArch64_AM_UXTH: return 1; break; case AArch64_AM_UXTW: return 2; break; case AArch64_AM_UXTX: return 3; break; case AArch64_AM_SXTB: return 4; break; case AArch64_AM_SXTH: return 5; break; case AArch64_AM_SXTW: return 6; break; case AArch64_AM_SXTX: return 7; break; } } /// getArithExtendImm - Encode the extend type and shift amount for an /// arithmetic instruction: /// imm: 3-bit extend amount /// {5-3} = shifter /// {2-0} = imm3 static inline unsigned AArch64_AM_getArithExtendImm(AArch64_AM_ShiftExtendType ET, unsigned Imm) { // assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); return (AArch64_AM_getExtendEncoding(ET) << 3) | (Imm & 0x7); } /// getMemDoShift - Extract the "do shift" flag value for load/store /// instructions. static inline bool AArch64_AM_getMemDoShift(unsigned Imm) { return (Imm & 0x1) != 0; } /// getExtendType - Extract the extend type for the offset operand of /// loads/stores. static inline AArch64_AM_ShiftExtendType AArch64_AM_getMemExtendType(unsigned Imm) { return AArch64_AM_getExtendType((Imm >> 1) & 0x7); } static inline uint64_t ror(uint64_t elt, unsigned size) { return ((elt & 1) << (size-1)) | (elt >> 1); } /// processLogicalImmediate - Determine if an immediate value can be encoded /// as the immediate operand of a logical instruction for the given register /// size. If so, return true with "encoding" set to the encoded value in /// the form N:immr:imms. static inline bool AArch64_AM_processLogicalImmediate(uint64_t Imm, unsigned RegSize, uint64_t *Encoding) { unsigned Size, Immr, N; uint32_t CTO, I; uint64_t Mask, NImms; if (Imm == 0ULL || Imm == ~0ULL || (RegSize != 64 && (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize))))) { return false; } // First, determine the element size. Size = RegSize; do { uint64_t Mask; Size /= 2; Mask = (1ULL << Size) - 1; if ((Imm & Mask) != ((Imm >> Size) & Mask)) { Size *= 2; break; } } while (Size > 2); // Second, determine the rotation to make the element be: 0^m 1^n. Mask = ((uint64_t)-1LL) >> (64 - Size); Imm &= Mask; if (isShiftedMask_64(Imm)) { I = CountTrailingZeros_32(Imm); // assert(I < 64 && "undefined behavior"); CTO = CountTrailingOnes_32(Imm >> I); } else { unsigned CLO; Imm |= ~Mask; if (!isShiftedMask_64(~Imm)) return false; CLO = CountLeadingOnes_32(Imm); I = 64 - CLO; CTO = CLO + CountTrailingOnes_32(Imm) - (64 - Size); } // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n // to our target value, where I is the number of RORs to go the opposite // direction. // assert(Size > I && "I should be smaller than element size"); Immr = (Size - I) & (Size - 1); // If size has a 1 in the n'th bit, create a value that has zeroes in // bits [0, n] and ones above that. NImms = ~(Size-1) << 1; // Or the CTO value into the low bits, which must be below the Nth bit // bit mentioned above. NImms |= (CTO-1); // Extract the seventh bit and toggle it to create the N field. N = ((NImms >> 6) & 1) ^ 1; *Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f); return true; } /// isLogicalImmediate - Return true if the immediate is valid for a logical /// immediate instruction of the given register size. Return false otherwise. static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { uint64_t encoding; return AArch64_AM_processLogicalImmediate(imm, regSize, &encoding); } /// encodeLogicalImmediate - Return the encoded immediate value for a logical /// immediate instruction of the given register size. static inline uint64_t AArch64_AM_encodeLogicalImmediate(uint64_t imm, unsigned regSize) { uint64_t encoding = 0; bool res = AArch64_AM_processLogicalImmediate(imm, regSize, &encoding); // assert(res && "invalid logical immediate"); (void)res; return encoding; } /// decodeLogicalImmediate - Decode a logical immediate value in the form /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the /// integer value it represents with regSize bits. static inline uint64_t AArch64_AM_decodeLogicalImmediate(uint64_t val, unsigned regSize) { // Extract the N, imms, and immr fields. unsigned N = (val >> 12) & 1; unsigned immr = (val >> 6) & 0x3f; unsigned imms = val & 0x3f; unsigned i, size, R, S; uint64_t pattern; // assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); int len = 31 - CountLeadingZeros_32((N << 6) | (~imms & 0x3f)); // assert(len >= 0 && "undefined logical immediate encoding"); size = (1 << len); R = immr & (size - 1); S = imms & (size - 1); // assert(S != size - 1 && "undefined logical immediate encoding"); pattern = (1ULL << (S + 1)) - 1; for (i = 0; i < R; ++i) pattern = ror(pattern, size); // Replicate the pattern to fill the regSize. while (size != regSize) { pattern |= (pattern << size); size *= 2; } return pattern; } /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) /// is a valid encoding for an integer value with regSize bits. static inline bool AArch64_AM_isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize) { unsigned size, S; int len; // Extract the N and imms fields needed for checking. unsigned N = (val >> 12) & 1; unsigned imms = val & 0x3f; if (regSize == 32 && N != 0) // undefined logical immediate encoding return false; len = 31 - CountLeadingZeros_32((N << 6) | (~imms & 0x3f)); if (len < 0) // undefined logical immediate encoding return false; size = (1 << len); S = imms & (size - 1); if (S == size - 1) // undefined logical immediate encoding return false; return true; } //===----------------------------------------------------------------------===// // Floating-point Immediates // static inline float AArch64_AM_getFPImmFloat(unsigned Imm) { // We expect an 8-bit binary encoding of a floating-point number here. union { uint32_t I; float F; } FPUnion; uint8_t Sign = (Imm >> 7) & 0x1; uint8_t Exp = (Imm >> 4) & 0x7; uint8_t Mantissa = Imm & 0xf; // 8-bit FP iEEEE Float Encoding // abcd efgh aBbbbbbc defgh000 00000000 00000000 // // where B = NOT(b); FPUnion.I = 0; FPUnion.I |= ((uint32_t)Sign) << 31; FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; FPUnion.I |= (Exp & 0x3) << 23; FPUnion.I |= Mantissa << 19; return FPUnion.F; } //===--------------------------------------------------------------------===// // AdvSIMD Modified Immediates //===--------------------------------------------------------------------===// // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh static inline bool AArch64_AM_isAdvSIMDModImmType1(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffffff00ffffff00ULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType1(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType1(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 32) | EncVal; } // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 static inline bool AArch64_AM_isAdvSIMDModImmType2(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffff00ffffff00ffULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType2(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType2(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 40) | (EncVal << 8); } // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 static inline bool AArch64_AM_isAdvSIMDModImmType3(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xff00ffffff00ffffULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType3(uint64_t Imm) { return (Imm & 0xff0000ULL) >> 16; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType3(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 16); } // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 static inline bool AArch64_AM_isAdvSIMDModImmType4(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0x00ffffff00ffffffULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType4(uint64_t Imm) { return (Imm & 0xff000000ULL) >> 24; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType4(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 56) | (EncVal << 24); } // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh static inline bool AArch64_AM_isAdvSIMDModImmType5(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && ((Imm & 0xff00ff00ff00ff00ULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType5(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType5(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; } // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 static inline bool AArch64_AM_isAdvSIMDModImmType6(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && ((Imm & 0x00ff00ff00ff00ffULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType6(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType6(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); } // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF static inline bool AArch64_AM_isAdvSIMDModImmType7(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType7(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType7(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; } // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF static inline bool AArch64_AM_isAdvSIMDModImmType8(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType8(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType8(uint64_t Imm) { return (Imm & 0x00ff0000ULL) >> 16; } // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh static inline bool AArch64_AM_isAdvSIMDModImmType9(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm >> 48) == (Imm & 0x0000ffffULL)) && ((Imm >> 56) == (Imm & 0x000000ffULL)); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType9(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType9(uint8_t Imm) { uint64_t EncVal = Imm; EncVal |= (EncVal << 8); EncVal |= (EncVal << 16); EncVal |= (EncVal << 32); return EncVal; } // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // cmode: 1110, op: 1 static inline bool AArch64_AM_isAdvSIMDModImmType10(uint64_t Imm) { uint64_t ByteA = Imm & 0xff00000000000000ULL; uint64_t ByteB = Imm & 0x00ff000000000000ULL; uint64_t ByteC = Imm & 0x0000ff0000000000ULL; uint64_t ByteD = Imm & 0x000000ff00000000ULL; uint64_t ByteE = Imm & 0x00000000ff000000ULL; uint64_t ByteF = Imm & 0x0000000000ff0000ULL; uint64_t ByteG = Imm & 0x000000000000ff00ULL; uint64_t ByteH = Imm & 0x00000000000000ffULL; return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType10(uint64_t Imm) { uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType10(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; return EncVal; } // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 static inline bool AArch64_AM_isAdvSIMDModImmType11(uint64_t Imm) { uint64_t BString = (Imm & 0x7E000000ULL) >> 25; return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (BString == 0x1f || BString == 0x20) && ((Imm & 0x0007ffff0007ffffULL) == 0); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType11(uint64_t Imm) { uint8_t BitA = (Imm & 0x80000000ULL) != 0; uint8_t BitB = (Imm & 0x20000000ULL) != 0; uint8_t BitC = (Imm & 0x01000000ULL) != 0; uint8_t BitD = (Imm & 0x00800000ULL) != 0; uint8_t BitE = (Imm & 0x00400000ULL) != 0; uint8_t BitF = (Imm & 0x00200000ULL) != 0; uint8_t BitG = (Imm & 0x00100000ULL) != 0; uint8_t BitH = (Imm & 0x00080000ULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType11(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0x80000000ULL; if (Imm & 0x40) EncVal |= 0x3e000000ULL; else EncVal |= 0x40000000ULL; if (Imm & 0x20) EncVal |= 0x01000000ULL; if (Imm & 0x10) EncVal |= 0x00800000ULL; if (Imm & 0x08) EncVal |= 0x00400000ULL; if (Imm & 0x04) EncVal |= 0x00200000ULL; if (Imm & 0x02) EncVal |= 0x00100000ULL; if (Imm & 0x01) EncVal |= 0x00080000ULL; return (EncVal << 32) | EncVal; } // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 static inline bool AArch64_AM_isAdvSIMDModImmType12(uint64_t Imm) { uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; return ((BString == 0xff || BString == 0x100) && ((Imm & 0x0000ffffffffffffULL) == 0)); } static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType12(uint64_t Imm) { uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType12(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; else EncVal |= 0x4000000000000000ULL; if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; return (EncVal << 32) | EncVal; } /// Returns true if Imm is the concatenation of a repeating pattern of type T. static inline bool AArch64_AM_isSVEMaskOfIdenticalElements8(int64_t Imm) { #define _VECSIZE (sizeof(int64_t)/sizeof(int8_t)) unsigned int i; union { int64_t Whole; int8_t Parts[_VECSIZE]; } Vec; Vec.Whole = Imm; for(i = 1; i < _VECSIZE; i++) { if (Vec.Parts[i] != Vec.Parts[0]) return false; } #undef _VECSIZE return true; } static inline bool AArch64_AM_isSVEMaskOfIdenticalElements16(int64_t Imm) { #define _VECSIZE (sizeof(int64_t)/sizeof(int16_t)) unsigned int i; union { int64_t Whole; int16_t Parts[_VECSIZE]; } Vec; Vec.Whole = Imm; for(i = 1; i < _VECSIZE; i++) { if (Vec.Parts[i] != Vec.Parts[0]) return false; } #undef _VECSIZE return true; } static inline bool AArch64_AM_isSVEMaskOfIdenticalElements32(int64_t Imm) { #define _VECSIZE (sizeof(int64_t)/sizeof(int32_t)) unsigned int i; union { int64_t Whole; int32_t Parts[_VECSIZE]; } Vec; Vec.Whole = Imm; for(i = 1; i < _VECSIZE; i++) { if (Vec.Parts[i] != Vec.Parts[0]) return false; } #undef _VECSIZE return true; } static inline bool AArch64_AM_isSVEMaskOfIdenticalElements64(int64_t Imm) { return true; } static inline bool isSVECpyImm8(int64_t Imm) { bool IsImm8 = (int8_t)Imm == Imm; return IsImm8 || (uint8_t)Imm == Imm; } static inline bool isSVECpyImm16(int64_t Imm) { bool IsImm8 = (int8_t)Imm == Imm; bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm; return IsImm8 || IsImm16 || (uint16_t)(Imm & ~0xff) == Imm; } static inline bool isSVECpyImm32(int64_t Imm) { bool IsImm8 = (int8_t)Imm == Imm; bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm; return IsImm8 || IsImm16; } static inline bool isSVECpyImm64(int64_t Imm) { bool IsImm8 = (int8_t)Imm == Imm; bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm; return IsImm8 || IsImm16; } /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent. static inline bool AArch64_AM_isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) { union { int64_t D; int32_t S[2]; int16_t H[4]; int8_t B[8]; } Vec = {Imm}; if (isSVECpyImm64(Vec.D)) return false; if (AArch64_AM_isSVEMaskOfIdenticalElements32(Imm) && isSVECpyImm32(Vec.S[0])) return false; if (AArch64_AM_isSVEMaskOfIdenticalElements16(Imm) && isSVECpyImm16(Vec.H[0])) return false; if (AArch64_AM_isSVEMaskOfIdenticalElements8(Imm) && isSVECpyImm8(Vec.B[0])) return false; return isLogicalImmediate(Vec.D, 64); } inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) { int Shift; for (Shift = 0; Shift <= RegWidth - 16; Shift += 16) if ((Value & ~(0xffffULL << Shift)) == 0) return true; return false; } inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) { if (RegWidth == 32) Value &= 0xffffffffULL; // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0". if (Value == 0 && Shift != 0) return false; return (Value & ~(0xffffULL << Shift)) == 0; } inline static bool AArch64_AM_isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) { // MOVZ takes precedence over MOVN. if (isAnyMOVZMovAlias(Value, RegWidth)) return false; Value = ~Value; if (RegWidth == 32) Value &= 0xffffffffULL; return isMOVZMovAlias(Value, Shift, RegWidth); } inline static bool AArch64_AM_isAnyMOVWMovAlias(uint64_t Value, int RegWidth) { if (isAnyMOVZMovAlias(Value, RegWidth)) return true; // It's not a MOVZ, but it might be a MOVN. Value = ~Value; if (RegWidth == 32) Value &= 0xffffffffULL; return isAnyMOVZMovAlias(Value, RegWidth); } #endif