//===-- AArch64BaseInfo.h - Top level definitions for AArch64- --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains small standalone helper functions and enum definitions for // the AArch64 target useful for the compiler back-end and the MC libraries. // As such, it deliberately does not include references to LLVM core // code gen types, passes, etc.. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2019 */ #ifndef CS_LLVM_AARCH64_BASEINFO_H #define CS_LLVM_AARCH64_BASEINFO_H #include #include #include "AArch64Mapping.h" #ifndef __cplusplus #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64) #define inline /* inline */ #endif #endif inline static unsigned getWRegFromXReg(unsigned Reg) { switch (Reg) { default: break; case ARM64_REG_X0: return ARM64_REG_W0; case ARM64_REG_X1: return ARM64_REG_W1; case ARM64_REG_X2: return ARM64_REG_W2; case ARM64_REG_X3: return ARM64_REG_W3; case ARM64_REG_X4: return ARM64_REG_W4; case ARM64_REG_X5: return ARM64_REG_W5; case ARM64_REG_X6: return ARM64_REG_W6; case ARM64_REG_X7: return ARM64_REG_W7; case ARM64_REG_X8: return ARM64_REG_W8; case ARM64_REG_X9: return ARM64_REG_W9; case ARM64_REG_X10: return ARM64_REG_W10; case ARM64_REG_X11: return ARM64_REG_W11; case ARM64_REG_X12: return ARM64_REG_W12; case ARM64_REG_X13: return ARM64_REG_W13; case ARM64_REG_X14: return ARM64_REG_W14; case ARM64_REG_X15: return ARM64_REG_W15; case ARM64_REG_X16: return ARM64_REG_W16; case ARM64_REG_X17: return ARM64_REG_W17; case ARM64_REG_X18: return ARM64_REG_W18; case ARM64_REG_X19: return ARM64_REG_W19; case ARM64_REG_X20: return ARM64_REG_W20; case ARM64_REG_X21: return ARM64_REG_W21; case ARM64_REG_X22: return ARM64_REG_W22; case ARM64_REG_X23: return ARM64_REG_W23; case ARM64_REG_X24: return ARM64_REG_W24; case ARM64_REG_X25: return ARM64_REG_W25; case ARM64_REG_X26: return ARM64_REG_W26; case ARM64_REG_X27: return ARM64_REG_W27; case ARM64_REG_X28: return ARM64_REG_W28; case ARM64_REG_FP: return ARM64_REG_W29; case ARM64_REG_LR: return ARM64_REG_W30; case ARM64_REG_SP: return ARM64_REG_WSP; case ARM64_REG_XZR: return ARM64_REG_WZR; } // For anything else, return it unchanged. return Reg; } inline static unsigned getXRegFromWReg(unsigned Reg) { switch (Reg) { case ARM64_REG_W0: return ARM64_REG_X0; case ARM64_REG_W1: return ARM64_REG_X1; case ARM64_REG_W2: return ARM64_REG_X2; case ARM64_REG_W3: return ARM64_REG_X3; case ARM64_REG_W4: return ARM64_REG_X4; case ARM64_REG_W5: return ARM64_REG_X5; case ARM64_REG_W6: return ARM64_REG_X6; case ARM64_REG_W7: return ARM64_REG_X7; case ARM64_REG_W8: return ARM64_REG_X8; case ARM64_REG_W9: return ARM64_REG_X9; case ARM64_REG_W10: return ARM64_REG_X10; case ARM64_REG_W11: return ARM64_REG_X11; case ARM64_REG_W12: return ARM64_REG_X12; case ARM64_REG_W13: return ARM64_REG_X13; case ARM64_REG_W14: return ARM64_REG_X14; case ARM64_REG_W15: return ARM64_REG_X15; case ARM64_REG_W16: return ARM64_REG_X16; case ARM64_REG_W17: return ARM64_REG_X17; case ARM64_REG_W18: return ARM64_REG_X18; case ARM64_REG_W19: return ARM64_REG_X19; case ARM64_REG_W20: return ARM64_REG_X20; case ARM64_REG_W21: return ARM64_REG_X21; case ARM64_REG_W22: return ARM64_REG_X22; case ARM64_REG_W23: return ARM64_REG_X23; case ARM64_REG_W24: return ARM64_REG_X24; case ARM64_REG_W25: return ARM64_REG_X25; case ARM64_REG_W26: return ARM64_REG_X26; case ARM64_REG_W27: return ARM64_REG_X27; case ARM64_REG_W28: return ARM64_REG_X28; case ARM64_REG_W29: return ARM64_REG_FP; case ARM64_REG_W30: return ARM64_REG_LR; case ARM64_REG_WSP: return ARM64_REG_SP; case ARM64_REG_WZR: return ARM64_REG_XZR; } // For anything else, return it unchanged. return Reg; } inline static unsigned getBRegFromDReg(unsigned Reg) { switch (Reg) { case ARM64_REG_D0: return ARM64_REG_B0; case ARM64_REG_D1: return ARM64_REG_B1; case ARM64_REG_D2: return ARM64_REG_B2; case ARM64_REG_D3: return ARM64_REG_B3; case ARM64_REG_D4: return ARM64_REG_B4; case ARM64_REG_D5: return ARM64_REG_B5; case ARM64_REG_D6: return ARM64_REG_B6; case ARM64_REG_D7: return ARM64_REG_B7; case ARM64_REG_D8: return ARM64_REG_B8; case ARM64_REG_D9: return ARM64_REG_B9; case ARM64_REG_D10: return ARM64_REG_B10; case ARM64_REG_D11: return ARM64_REG_B11; case ARM64_REG_D12: return ARM64_REG_B12; case ARM64_REG_D13: return ARM64_REG_B13; case ARM64_REG_D14: return ARM64_REG_B14; case ARM64_REG_D15: return ARM64_REG_B15; case ARM64_REG_D16: return ARM64_REG_B16; case ARM64_REG_D17: return ARM64_REG_B17; case ARM64_REG_D18: return ARM64_REG_B18; case ARM64_REG_D19: return ARM64_REG_B19; case ARM64_REG_D20: return ARM64_REG_B20; case ARM64_REG_D21: return ARM64_REG_B21; case ARM64_REG_D22: return ARM64_REG_B22; case ARM64_REG_D23: return ARM64_REG_B23; case ARM64_REG_D24: return ARM64_REG_B24; case ARM64_REG_D25: return ARM64_REG_B25; case ARM64_REG_D26: return ARM64_REG_B26; case ARM64_REG_D27: return ARM64_REG_B27; case ARM64_REG_D28: return ARM64_REG_B28; case ARM64_REG_D29: return ARM64_REG_B29; case ARM64_REG_D30: return ARM64_REG_B30; case ARM64_REG_D31: return ARM64_REG_B31; } // For anything else, return it unchanged. return Reg; } inline static unsigned getDRegFromBReg(unsigned Reg) { switch (Reg) { case ARM64_REG_B0: return ARM64_REG_D0; case ARM64_REG_B1: return ARM64_REG_D1; case ARM64_REG_B2: return ARM64_REG_D2; case ARM64_REG_B3: return ARM64_REG_D3; case ARM64_REG_B4: return ARM64_REG_D4; case ARM64_REG_B5: return ARM64_REG_D5; case ARM64_REG_B6: return ARM64_REG_D6; case ARM64_REG_B7: return ARM64_REG_D7; case ARM64_REG_B8: return ARM64_REG_D8; case ARM64_REG_B9: return ARM64_REG_D9; case ARM64_REG_B10: return ARM64_REG_D10; case ARM64_REG_B11: return ARM64_REG_D11; case ARM64_REG_B12: return ARM64_REG_D12; case ARM64_REG_B13: return ARM64_REG_D13; case ARM64_REG_B14: return ARM64_REG_D14; case ARM64_REG_B15: return ARM64_REG_D15; case ARM64_REG_B16: return ARM64_REG_D16; case ARM64_REG_B17: return ARM64_REG_D17; case ARM64_REG_B18: return ARM64_REG_D18; case ARM64_REG_B19: return ARM64_REG_D19; case ARM64_REG_B20: return ARM64_REG_D20; case ARM64_REG_B21: return ARM64_REG_D21; case ARM64_REG_B22: return ARM64_REG_D22; case ARM64_REG_B23: return ARM64_REG_D23; case ARM64_REG_B24: return ARM64_REG_D24; case ARM64_REG_B25: return ARM64_REG_D25; case ARM64_REG_B26: return ARM64_REG_D26; case ARM64_REG_B27: return ARM64_REG_D27; case ARM64_REG_B28: return ARM64_REG_D28; case ARM64_REG_B29: return ARM64_REG_D29; case ARM64_REG_B30: return ARM64_REG_D30; case ARM64_REG_B31: return ARM64_REG_D31; } // For anything else, return it unchanged. return Reg; } // // Enums corresponding to AArch64 condition codes // The CondCodes constants map directly to the 4-bit encoding of the // condition field for predicated instructions. typedef enum AArch64CC_CondCode { // Meaning (integer) Meaning (floating-point) AArch64CC_EQ = 0x0, // Equal Equal AArch64CC_NE = 0x1, // Not equal Not equal, or unordered AArch64CC_HS = 0x2, // Unsigned higher or same >, ==, or unordered AArch64CC_LO = 0x3, // Unsigned lower Less than AArch64CC_MI = 0x4, // Minus, negative Less than AArch64CC_PL = 0x5, // Plus, positive or zero >, ==, or unordered AArch64CC_VS = 0x6, // Overflow Unordered AArch64CC_VC = 0x7, // No overflow Not unordered AArch64CC_HI = 0x8, // Unsigned higher Greater than, or unordered AArch64CC_LS = 0x9, // Unsigned lower or same Less than or equal AArch64CC_GE = 0xa, // Greater than or equal Greater than or equal AArch64CC_LT = 0xb, // Less than Less than, or unordered AArch64CC_GT = 0xc, // Greater than Greater than AArch64CC_LE = 0xd, // Less than or equal <, ==, or unordered AArch64CC_AL = 0xe, // Always (unconditional) Always (unconditional) AArch64CC_NV = 0xf, // Always (unconditional) Always (unconditional) // Note the NV exists purely to disassemble 0b1111. Execution is "always". AArch64CC_Invalid } AArch64CC_CondCode; inline static AArch64CC_CondCode getInvertedCondCode(AArch64CC_CondCode Code) { // To reverse a condition it's necessary to only invert the low bit: return (AArch64CC_CondCode)((unsigned)Code ^ 0x1); } inline static const char *getCondCodeName(AArch64CC_CondCode CC) { switch (CC) { default: return NULL; // never reach case AArch64CC_EQ: return "eq"; case AArch64CC_NE: return "ne"; case AArch64CC_HS: return "hs"; case AArch64CC_LO: return "lo"; case AArch64CC_MI: return "mi"; case AArch64CC_PL: return "pl"; case AArch64CC_VS: return "vs"; case AArch64CC_VC: return "vc"; case AArch64CC_HI: return "hi"; case AArch64CC_LS: return "ls"; case AArch64CC_GE: return "ge"; case AArch64CC_LT: return "lt"; case AArch64CC_GT: return "gt"; case AArch64CC_LE: return "le"; case AArch64CC_AL: return "al"; case AArch64CC_NV: return "nv"; } } /// Given a condition code, return NZCV flags that would satisfy that condition. /// The flag bits are in the format expected by the ccmp instructions. /// Note that many different flag settings can satisfy a given condition code, /// this function just returns one of them. inline static unsigned getNZCVToSatisfyCondCode(AArch64CC_CondCode Code) { // NZCV flags encoded as expected by ccmp instructions, ARMv8 ISA 5.5.7. enum { N = 8, Z = 4, C = 2, V = 1 }; switch (Code) { default: // llvm_unreachable("Unknown condition code"); case AArch64CC_EQ: return Z; // Z == 1 case AArch64CC_NE: return 0; // Z == 0 case AArch64CC_HS: return C; // C == 1 case AArch64CC_LO: return 0; // C == 0 case AArch64CC_MI: return N; // N == 1 case AArch64CC_PL: return 0; // N == 0 case AArch64CC_VS: return V; // V == 1 case AArch64CC_VC: return 0; // V == 0 case AArch64CC_HI: return C; // C == 1 && Z == 0 case AArch64CC_LS: return 0; // C == 0 || Z == 1 case AArch64CC_GE: return 0; // N == V case AArch64CC_LT: return N; // N != V case AArch64CC_GT: return 0; // Z == 0 && N == V case AArch64CC_LE: return Z; // Z == 1 || N != V } } /// Instances of this class can perform bidirectional mapping from random /// identifier strings to operand encodings. For example "MSR" takes a named /// system-register which must be encoded somehow and decoded for printing. This /// central location means that the information for those transformations is not /// duplicated and remains in sync. /// /// FIXME: currently the algorithm is a completely unoptimised linear /// search. Obviously this could be improved, but we would probably want to work /// out just how often these instructions are emitted before working on it. It /// might even be optimal to just reorder the tables for the common instructions /// rather than changing the algorithm. typedef struct A64NamedImmMapper_Mapping { const char *Name; uint32_t Value; } A64NamedImmMapper_Mapping; typedef struct A64NamedImmMapper { const A64NamedImmMapper_Mapping *Pairs; size_t NumPairs; uint32_t TooBigImm; } A64NamedImmMapper; typedef struct A64SysRegMapper { const A64NamedImmMapper_Mapping *SysRegPairs; const A64NamedImmMapper_Mapping *InstPairs; size_t NumInstPairs; } A64SysRegMapper; typedef enum A64SE_ShiftExtSpecifiers { A64SE_Invalid = -1, A64SE_LSL, A64SE_MSL, A64SE_LSR, A64SE_ASR, A64SE_ROR, A64SE_UXTB, A64SE_UXTH, A64SE_UXTW, A64SE_UXTX, A64SE_SXTB, A64SE_SXTH, A64SE_SXTW, A64SE_SXTX } A64SE_ShiftExtSpecifiers; typedef enum A64Layout_VectorLayout { A64Layout_Invalid = -1, A64Layout_VL_8B, A64Layout_VL_4H, A64Layout_VL_2S, A64Layout_VL_1D, A64Layout_VL_16B, A64Layout_VL_8H, A64Layout_VL_4S, A64Layout_VL_2D, // Bare layout for the 128-bit vector // (only show ".b", ".h", ".s", ".d" without vector number) A64Layout_VL_B, A64Layout_VL_H, A64Layout_VL_S, A64Layout_VL_D } A64Layout_VectorLayout; inline static const char *AArch64VectorLayoutToString(A64Layout_VectorLayout Layout) { switch (Layout) { default: return NULL; // never reach case A64Layout_VL_8B: return ".8b"; case A64Layout_VL_4H: return ".4h"; case A64Layout_VL_2S: return ".2s"; case A64Layout_VL_1D: return ".1d"; case A64Layout_VL_16B: return ".16b"; case A64Layout_VL_8H: return ".8h"; case A64Layout_VL_4S: return ".4s"; case A64Layout_VL_2D: return ".2d"; case A64Layout_VL_B: return ".b"; case A64Layout_VL_H: return ".h"; case A64Layout_VL_S: return ".s"; case A64Layout_VL_D: return ".d"; } } inline static A64Layout_VectorLayout AArch64StringToVectorLayout(char *LayoutStr) { if (!strcmp(LayoutStr, ".8b")) return A64Layout_VL_8B; if (!strcmp(LayoutStr, ".4h")) return A64Layout_VL_4H; if (!strcmp(LayoutStr, ".2s")) return A64Layout_VL_2S; if (!strcmp(LayoutStr, ".1d")) return A64Layout_VL_1D; if (!strcmp(LayoutStr, ".16b")) return A64Layout_VL_16B; if (!strcmp(LayoutStr, ".8h")) return A64Layout_VL_8H; if (!strcmp(LayoutStr, ".4s")) return A64Layout_VL_4S; if (!strcmp(LayoutStr, ".2d")) return A64Layout_VL_2D; if (!strcmp(LayoutStr, ".b")) return A64Layout_VL_B; if (!strcmp(LayoutStr, ".s")) return A64Layout_VL_S; if (!strcmp(LayoutStr, ".d")) return A64Layout_VL_D; return A64Layout_Invalid; } /// Target Operand Flag enum. enum TOF { //===------------------------------------------------------------------===// // AArch64 Specific MachineOperand flags. MO_NO_FLAG, MO_FRAGMENT = 0xf, /// MO_PAGE - A symbol operand with this flag represents the pc-relative /// offset of the 4K page containing the symbol. This is used with the /// ADRP instruction. MO_PAGE = 1, /// MO_PAGEOFF - A symbol operand with this flag represents the offset of /// that symbol within a 4K page. This offset is added to the page address /// to produce the complete address. MO_PAGEOFF = 2, /// MO_G3 - A symbol operand with this flag (granule 3) represents the high /// 16-bits of a 64-bit address, used in a MOVZ or MOVK instruction MO_G3 = 3, /// MO_G2 - A symbol operand with this flag (granule 2) represents the bits /// 32-47 of a 64-bit address, used in a MOVZ or MOVK instruction MO_G2 = 4, /// MO_G1 - A symbol operand with this flag (granule 1) represents the bits /// 16-31 of a 64-bit address, used in a MOVZ or MOVK instruction MO_G1 = 5, /// MO_G0 - A symbol operand with this flag (granule 0) represents the bits /// 0-15 of a 64-bit address, used in a MOVZ or MOVK instruction MO_G0 = 6, /// MO_HI12 - This flag indicates that a symbol operand represents the bits /// 13-24 of a 64-bit address, used in a arithmetic immediate-shifted-left- /// by-12-bits instruction. MO_HI12 = 7, /// MO_GOT - This flag indicates that a symbol operand represents the /// address of the GOT entry for the symbol, rather than the address of /// the symbol itself. MO_GOT = 0x10, /// MO_NC - Indicates whether the linker is expected to check the symbol /// reference for overflow. For example in an ADRP/ADD pair of relocations /// the ADRP usually does check, but not the ADD. MO_NC = 0x20, /// MO_TLS - Indicates that the operand being accessed is some kind of /// thread-local symbol. On Darwin, only one type of thread-local access /// exists (pre linker-relaxation), but on ELF the TLSModel used for the /// referee will affect interpretation. MO_TLS = 0x40, /// MO_DLLIMPORT - On a symbol operand, this represents that the reference /// to the symbol is for an import stub. This is used for DLL import /// storage class indication on Windows. MO_DLLIMPORT = 0x80, }; typedef struct SysAlias { const char *Name; uint16_t Encoding; } SysAlias; #define AT SysAlias #define DB SysAlias #define DC SysAlias #define SVEPRFM SysAlias #define PRFM SysAlias #define PSB SysAlias #define ISB SysAlias #define TSB SysAlias #define PState SysAlias #define SVEPREDPAT SysAlias typedef struct SysAliasReg { const char *Name; uint16_t Encoding; bool NeedsReg; } SysAliasReg; #define IC SysAliasReg #define TLBI SysAliasReg typedef struct SysAliasSysReg { const char *Name; uint16_t Encoding; bool Readable; bool Writeable; } SysAliasSysReg; #define SysReg SysAliasSysReg typedef struct ExactFPImm { const char *Name; int Enum; const char *Repr; } ExactFPImm; const AT *lookupATByEncoding(uint16_t Encoding); const DB *lookupDBByEncoding(uint16_t Encoding); const DC *lookupDCByEncoding(uint16_t Encoding); const IC *lookupICByEncoding(uint16_t Encoding); const TLBI *lookupTLBIByEncoding(uint16_t Encoding); const SVEPRFM *lookupSVEPRFMByEncoding(uint16_t Encoding); const PRFM *lookupPRFMByEncoding(uint16_t Encoding); const PSB *AArch64PSBHint_lookupPSBByEncoding(uint16_t Encoding); const ISB *lookupISBByEncoding(uint16_t Encoding); const TSB *lookupTSBByEncoding(uint16_t Encoding); const SysReg *lookupSysRegByEncoding(uint16_t Encoding); const PState *lookupPStateByEncoding(uint16_t Encoding); const SVEPREDPAT *lookupSVEPREDPATByEncoding(uint16_t Encoding); const ExactFPImm *lookupExactFPImmByEnum(uint16_t Encoding); // NOTE: result must be 128 bytes to contain the result void AArch64SysReg_genericRegisterString(uint32_t Bits, char *result); #include "AArch64GenSystemOperands_enum.inc" #endif