/* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2019 */ #ifdef CAPSTONE_HAS_X86 #if defined(CAPSTONE_HAS_OSXKERNEL) #include #endif #include #ifndef CAPSTONE_HAS_OSXKERNEL #include #endif #include "X86Mapping.h" #include "X86DisassemblerDecoder.h" #include "../../utils.h" const uint64_t arch_masks[9] = { 0, 0xff, 0xffff, // 16bit 0, 0xffffffff, // 32bit 0, 0, 0, 0xffffffffffffffffLL // 64bit }; static const x86_reg sib_base_map[] = { X86_REG_INVALID, #define ENTRY(x) X86_REG_##x, ALL_SIB_BASES #undef ENTRY }; // Fill-ins to make the compiler happy. These constants are never actually // assigned; they are just filler to make an automatically-generated switch // statement work. enum { X86_REG_BX_SI = 500, X86_REG_BX_DI = 501, X86_REG_BP_SI = 502, X86_REG_BP_DI = 503, X86_REG_sib = 504, X86_REG_sib64 = 505 }; static const x86_reg sib_index_map[] = { X86_REG_INVALID, #define ENTRY(x) X86_REG_##x, ALL_EA_BASES REGS_XMM REGS_YMM REGS_ZMM #undef ENTRY }; static const x86_reg segment_map[] = { X86_REG_INVALID, X86_REG_CS, X86_REG_SS, X86_REG_DS, X86_REG_ES, X86_REG_FS, X86_REG_GS, }; x86_reg x86_map_sib_base(int r) { return sib_base_map[r]; } x86_reg x86_map_sib_index(int r) { return sib_index_map[r]; } x86_reg x86_map_segment(int r) { return segment_map[r]; } #ifndef CAPSTONE_DIET static const name_map reg_name_maps[] = { { X86_REG_INVALID, NULL }, { X86_REG_AH, "ah" }, { X86_REG_AL, "al" }, { X86_REG_AX, "ax" }, { X86_REG_BH, "bh" }, { X86_REG_BL, "bl" }, { X86_REG_BP, "bp" }, { X86_REG_BPL, "bpl" }, { X86_REG_BX, "bx" }, { X86_REG_CH, "ch" }, { X86_REG_CL, "cl" }, { X86_REG_CS, "cs" }, { X86_REG_CX, "cx" }, { X86_REG_DH, "dh" }, { X86_REG_DI, "di" }, { X86_REG_DIL, "dil" }, { X86_REG_DL, "dl" }, { X86_REG_DS, "ds" }, { X86_REG_DX, "dx" }, { X86_REG_EAX, "eax" }, { X86_REG_EBP, "ebp" }, { X86_REG_EBX, "ebx" }, { X86_REG_ECX, "ecx" }, { X86_REG_EDI, "edi" }, { X86_REG_EDX, "edx" }, { X86_REG_EFLAGS, "flags" }, { X86_REG_EIP, "eip" }, { X86_REG_EIZ, "eiz" }, { X86_REG_ES, "es" }, { X86_REG_ESI, "esi" }, { X86_REG_ESP, "esp" }, { X86_REG_FPSW, "fpsw" }, { X86_REG_FS, "fs" }, { X86_REG_GS, "gs" }, { X86_REG_IP, "ip" }, { X86_REG_RAX, "rax" }, { X86_REG_RBP, "rbp" }, { X86_REG_RBX, "rbx" }, { X86_REG_RCX, "rcx" }, { X86_REG_RDI, "rdi" }, { X86_REG_RDX, "rdx" }, { X86_REG_RIP, "rip" }, { X86_REG_RIZ, "riz" }, { X86_REG_RSI, "rsi" }, { X86_REG_RSP, "rsp" }, { X86_REG_SI, "si" }, { X86_REG_SIL, "sil" }, { X86_REG_SP, "sp" }, { X86_REG_SPL, "spl" }, { X86_REG_SS, "ss" }, { X86_REG_CR0, "cr0" }, { X86_REG_CR1, "cr1" }, { X86_REG_CR2, "cr2" }, { X86_REG_CR3, "cr3" }, { X86_REG_CR4, "cr4" }, { X86_REG_CR5, "cr5" }, { X86_REG_CR6, "cr6" }, { X86_REG_CR7, "cr7" }, { X86_REG_CR8, "cr8" }, { X86_REG_CR9, "cr9" }, { X86_REG_CR10, "cr10" }, { X86_REG_CR11, "cr11" }, { X86_REG_CR12, "cr12" }, { X86_REG_CR13, "cr13" }, { X86_REG_CR14, "cr14" }, { X86_REG_CR15, "cr15" }, { X86_REG_DR0, "dr0" }, { X86_REG_DR1, "dr1" }, { X86_REG_DR2, "dr2" }, { X86_REG_DR3, "dr3" }, { X86_REG_DR4, "dr4" }, { X86_REG_DR5, "dr5" }, { X86_REG_DR6, "dr6" }, { X86_REG_DR7, "dr7" }, { X86_REG_DR8, "dr8" }, { X86_REG_DR9, "dr9" }, { X86_REG_DR10, "dr10" }, { X86_REG_DR11, "dr11" }, { X86_REG_DR12, "dr12" }, { X86_REG_DR13, "dr13" }, { X86_REG_DR14, "dr14" }, { X86_REG_DR15, "dr15" }, { X86_REG_FP0, "fp0" }, { X86_REG_FP1, "fp1" }, { X86_REG_FP2, "fp2" }, { X86_REG_FP3, "fp3" }, { X86_REG_FP4, "fp4" }, { X86_REG_FP5, "fp5" }, { X86_REG_FP6, "fp6" }, { X86_REG_FP7, "fp7" }, { X86_REG_K0, "k0" }, { X86_REG_K1, "k1" }, { X86_REG_K2, "k2" }, { X86_REG_K3, "k3" }, { X86_REG_K4, "k4" }, { X86_REG_K5, "k5" }, { X86_REG_K6, "k6" }, { X86_REG_K7, "k7" }, { X86_REG_MM0, "mm0" }, { X86_REG_MM1, "mm1" }, { X86_REG_MM2, "mm2" }, { X86_REG_MM3, "mm3" }, { X86_REG_MM4, "mm4" }, { X86_REG_MM5, "mm5" }, { X86_REG_MM6, "mm6" }, { X86_REG_MM7, "mm7" }, { X86_REG_R8, "r8" }, { X86_REG_R9, "r9" }, { X86_REG_R10, "r10" }, { X86_REG_R11, "r11" }, { X86_REG_R12, "r12" }, { X86_REG_R13, "r13" }, { X86_REG_R14, "r14" }, { X86_REG_R15, "r15" }, { X86_REG_ST0, "st(0)" }, { X86_REG_ST1, "st(1)" }, { X86_REG_ST2, "st(2)" }, { X86_REG_ST3, "st(3)" }, { X86_REG_ST4, "st(4)" }, { X86_REG_ST5, "st(5)" }, { X86_REG_ST6, "st(6)" }, { X86_REG_ST7, "st(7)" }, { X86_REG_XMM0, "xmm0" }, { X86_REG_XMM1, "xmm1" }, { X86_REG_XMM2, "xmm2" }, { X86_REG_XMM3, "xmm3" }, { X86_REG_XMM4, "xmm4" }, { X86_REG_XMM5, "xmm5" }, { X86_REG_XMM6, "xmm6" }, { X86_REG_XMM7, "xmm7" }, { X86_REG_XMM8, "xmm8" }, { X86_REG_XMM9, "xmm9" }, { X86_REG_XMM10, "xmm10" }, { X86_REG_XMM11, "xmm11" }, { X86_REG_XMM12, "xmm12" }, { X86_REG_XMM13, "xmm13" }, { X86_REG_XMM14, "xmm14" }, { X86_REG_XMM15, "xmm15" }, { X86_REG_XMM16, "xmm16" }, { X86_REG_XMM17, "xmm17" }, { X86_REG_XMM18, "xmm18" }, { X86_REG_XMM19, "xmm19" }, { X86_REG_XMM20, "xmm20" }, { X86_REG_XMM21, "xmm21" }, { X86_REG_XMM22, "xmm22" }, { X86_REG_XMM23, "xmm23" }, { X86_REG_XMM24, "xmm24" }, { X86_REG_XMM25, "xmm25" }, { X86_REG_XMM26, "xmm26" }, { X86_REG_XMM27, "xmm27" }, { X86_REG_XMM28, "xmm28" }, { X86_REG_XMM29, "xmm29" }, { X86_REG_XMM30, "xmm30" }, { X86_REG_XMM31, "xmm31" }, { X86_REG_YMM0, "ymm0" }, { X86_REG_YMM1, "ymm1" }, { X86_REG_YMM2, "ymm2" }, { X86_REG_YMM3, "ymm3" }, { X86_REG_YMM4, "ymm4" }, { X86_REG_YMM5, "ymm5" }, { X86_REG_YMM6, "ymm6" }, { X86_REG_YMM7, "ymm7" }, { X86_REG_YMM8, "ymm8" }, { X86_REG_YMM9, "ymm9" }, { X86_REG_YMM10, "ymm10" }, { X86_REG_YMM11, "ymm11" }, { X86_REG_YMM12, "ymm12" }, { X86_REG_YMM13, "ymm13" }, { X86_REG_YMM14, "ymm14" }, { X86_REG_YMM15, "ymm15" }, { X86_REG_YMM16, "ymm16" }, { X86_REG_YMM17, "ymm17" }, { X86_REG_YMM18, "ymm18" }, { X86_REG_YMM19, "ymm19" }, { X86_REG_YMM20, "ymm20" }, { X86_REG_YMM21, "ymm21" }, { X86_REG_YMM22, "ymm22" }, { X86_REG_YMM23, "ymm23" }, { X86_REG_YMM24, "ymm24" }, { X86_REG_YMM25, "ymm25" }, { X86_REG_YMM26, "ymm26" }, { X86_REG_YMM27, "ymm27" }, { X86_REG_YMM28, "ymm28" }, { X86_REG_YMM29, "ymm29" }, { X86_REG_YMM30, "ymm30" }, { X86_REG_YMM31, "ymm31" }, { X86_REG_ZMM0, "zmm0" }, { X86_REG_ZMM1, "zmm1" }, { X86_REG_ZMM2, "zmm2" }, { X86_REG_ZMM3, "zmm3" }, { X86_REG_ZMM4, "zmm4" }, { X86_REG_ZMM5, "zmm5" }, { X86_REG_ZMM6, "zmm6" }, { X86_REG_ZMM7, "zmm7" }, { X86_REG_ZMM8, "zmm8" }, { X86_REG_ZMM9, "zmm9" }, { X86_REG_ZMM10, "zmm10" }, { X86_REG_ZMM11, "zmm11" }, { X86_REG_ZMM12, "zmm12" }, { X86_REG_ZMM13, "zmm13" }, { X86_REG_ZMM14, "zmm14" }, { X86_REG_ZMM15, "zmm15" }, { X86_REG_ZMM16, "zmm16" }, { X86_REG_ZMM17, "zmm17" }, { X86_REG_ZMM18, "zmm18" }, { X86_REG_ZMM19, "zmm19" }, { X86_REG_ZMM20, "zmm20" }, { X86_REG_ZMM21, "zmm21" }, { X86_REG_ZMM22, "zmm22" }, { X86_REG_ZMM23, "zmm23" }, { X86_REG_ZMM24, "zmm24" }, { X86_REG_ZMM25, "zmm25" }, { X86_REG_ZMM26, "zmm26" }, { X86_REG_ZMM27, "zmm27" }, { X86_REG_ZMM28, "zmm28" }, { X86_REG_ZMM29, "zmm29" }, { X86_REG_ZMM30, "zmm30" }, { X86_REG_ZMM31, "zmm31" }, { X86_REG_R8B, "r8b" }, { X86_REG_R9B, "r9b" }, { X86_REG_R10B, "r10b" }, { X86_REG_R11B, "r11b" }, { X86_REG_R12B, "r12b" }, { X86_REG_R13B, "r13b" }, { X86_REG_R14B, "r14b" }, { X86_REG_R15B, "r15b" }, { X86_REG_R8D, "r8d" }, { X86_REG_R9D, "r9d" }, { X86_REG_R10D, "r10d" }, { X86_REG_R11D, "r11d" }, { X86_REG_R12D, "r12d" }, { X86_REG_R13D, "r13d" }, { X86_REG_R14D, "r14d" }, { X86_REG_R15D, "r15d" }, { X86_REG_R8W, "r8w" }, { X86_REG_R9W, "r9w" }, { X86_REG_R10W, "r10w" }, { X86_REG_R11W, "r11w" }, { X86_REG_R12W, "r12w" }, { X86_REG_R13W, "r13w" }, { X86_REG_R14W, "r14w" }, { X86_REG_R15W, "r15w" }, { X86_REG_BND0, "bnd0" }, { X86_REG_BND1, "bnd1" }, { X86_REG_BND2, "bnd2" }, { X86_REG_BND3, "bnd3" }, }; #endif // register size in non-64bit mode const uint8_t regsize_map_32 [] = { 0, // { X86_REG_INVALID, NULL }, 1, // { X86_REG_AH, "ah" }, 1, // { X86_REG_AL, "al" }, 2, // { X86_REG_AX, "ax" }, 1, // { X86_REG_BH, "bh" }, 1, // { X86_REG_BL, "bl" }, 2, // { X86_REG_BP, "bp" }, 1, // { X86_REG_BPL, "bpl" }, 2, // { X86_REG_BX, "bx" }, 1, // { X86_REG_CH, "ch" }, 1, // { X86_REG_CL, "cl" }, 2, // { X86_REG_CS, "cs" }, 2, // { X86_REG_CX, "cx" }, 1, // { X86_REG_DH, "dh" }, 2, // { X86_REG_DI, "di" }, 1, // { X86_REG_DIL, "dil" }, 1, // { X86_REG_DL, "dl" }, 2, // { X86_REG_DS, "ds" }, 2, // { X86_REG_DX, "dx" }, 4, // { X86_REG_EAX, "eax" }, 4, // { X86_REG_EBP, "ebp" }, 4, // { X86_REG_EBX, "ebx" }, 4, // { X86_REG_ECX, "ecx" }, 4, // { X86_REG_EDI, "edi" }, 4, // { X86_REG_EDX, "edx" }, 4, // { X86_REG_EFLAGS, "flags" }, 4, // { X86_REG_EIP, "eip" }, 4, // { X86_REG_EIZ, "eiz" }, 2, // { X86_REG_ES, "es" }, 4, // { X86_REG_ESI, "esi" }, 4, // { X86_REG_ESP, "esp" }, 10, // { X86_REG_FPSW, "fpsw" }, 2, // { X86_REG_FS, "fs" }, 2, // { X86_REG_GS, "gs" }, 2, // { X86_REG_IP, "ip" }, 8, // { X86_REG_RAX, "rax" }, 8, // { X86_REG_RBP, "rbp" }, 8, // { X86_REG_RBX, "rbx" }, 8, // { X86_REG_RCX, "rcx" }, 8, // { X86_REG_RDI, "rdi" }, 8, // { X86_REG_RDX, "rdx" }, 8, // { X86_REG_RIP, "rip" }, 8, // { X86_REG_RIZ, "riz" }, 8, // { X86_REG_RSI, "rsi" }, 8, // { X86_REG_RSP, "rsp" }, 2, // { X86_REG_SI, "si" }, 1, // { X86_REG_SIL, "sil" }, 2, // { X86_REG_SP, "sp" }, 1, // { X86_REG_SPL, "spl" }, 2, // { X86_REG_SS, "ss" }, 4, // { X86_REG_CR0, "cr0" }, 4, // { X86_REG_CR1, "cr1" }, 4, // { X86_REG_CR2, "cr2" }, 4, // { X86_REG_CR3, "cr3" }, 4, // { X86_REG_CR4, "cr4" }, 8, // { X86_REG_CR5, "cr5" }, 8, // { X86_REG_CR6, "cr6" }, 8, // { X86_REG_CR7, "cr7" }, 8, // { X86_REG_CR8, "cr8" }, 8, // { X86_REG_CR9, "cr9" }, 8, // { X86_REG_CR10, "cr10" }, 8, // { X86_REG_CR11, "cr11" }, 8, // { X86_REG_CR12, "cr12" }, 8, // { X86_REG_CR13, "cr13" }, 8, // { X86_REG_CR14, "cr14" }, 8, // { X86_REG_CR15, "cr15" }, 4, // { X86_REG_DR0, "dr0" }, 4, // { X86_REG_DR1, "dr1" }, 4, // { X86_REG_DR2, "dr2" }, 4, // { X86_REG_DR3, "dr3" }, 4, // { X86_REG_DR4, "dr4" }, 4, // { X86_REG_DR5, "dr5" }, 4, // { X86_REG_DR6, "dr6" }, 4, // { X86_REG_DR7, "dr7" }, 4, // { X86_REG_DR8, "dr8" }, 4, // { X86_REG_DR9, "dr9" }, 4, // { X86_REG_DR10, "dr10" }, 4, // { X86_REG_DR11, "dr11" }, 4, // { X86_REG_DR12, "dr12" }, 4, // { X86_REG_DR13, "dr13" }, 4, // { X86_REG_DR14, "dr14" }, 4, // { X86_REG_DR15, "dr15" }, 10, // { X86_REG_FP0, "fp0" }, 10, // { X86_REG_FP1, "fp1" }, 10, // { X86_REG_FP2, "fp2" }, 10, // { X86_REG_FP3, "fp3" }, 10, // { X86_REG_FP4, "fp4" }, 10, // { X86_REG_FP5, "fp5" }, 10, // { X86_REG_FP6, "fp6" }, 10, // { X86_REG_FP7, "fp7" }, 2, // { X86_REG_K0, "k0" }, 2, // { X86_REG_K1, "k1" }, 2, // { X86_REG_K2, "k2" }, 2, // { X86_REG_K3, "k3" }, 2, // { X86_REG_K4, "k4" }, 2, // { X86_REG_K5, "k5" }, 2, // { X86_REG_K6, "k6" }, 2, // { X86_REG_K7, "k7" }, 8, // { X86_REG_MM0, "mm0" }, 8, // { X86_REG_MM1, "mm1" }, 8, // { X86_REG_MM2, "mm2" }, 8, // { X86_REG_MM3, "mm3" }, 8, // { X86_REG_MM4, "mm4" }, 8, // { X86_REG_MM5, "mm5" }, 8, // { X86_REG_MM6, "mm6" }, 8, // { X86_REG_MM7, "mm7" }, 8, // { X86_REG_R8, "r8" }, 8, // { X86_REG_R9, "r9" }, 8, // { X86_REG_R10, "r10" }, 8, // { X86_REG_R11, "r11" }, 8, // { X86_REG_R12, "r12" }, 8, // { X86_REG_R13, "r13" }, 8, // { X86_REG_R14, "r14" }, 8, // { X86_REG_R15, "r15" }, 10, // { X86_REG_ST0, "st0" }, 10, // { X86_REG_ST1, "st1" }, 10, // { X86_REG_ST2, "st2" }, 10, // { X86_REG_ST3, "st3" }, 10, // { X86_REG_ST4, "st4" }, 10, // { X86_REG_ST5, "st5" }, 10, // { X86_REG_ST6, "st6" }, 10, // { X86_REG_ST7, "st7" }, 16, // { X86_REG_XMM0, "xmm0" }, 16, // { X86_REG_XMM1, "xmm1" }, 16, // { X86_REG_XMM2, "xmm2" }, 16, // { X86_REG_XMM3, "xmm3" }, 16, // { X86_REG_XMM4, "xmm4" }, 16, // { X86_REG_XMM5, "xmm5" }, 16, // { X86_REG_XMM6, "xmm6" }, 16, // { X86_REG_XMM7, "xmm7" }, 16, // { X86_REG_XMM8, "xmm8" }, 16, // { X86_REG_XMM9, "xmm9" }, 16, // { X86_REG_XMM10, "xmm10" }, 16, // { X86_REG_XMM11, "xmm11" }, 16, // { X86_REG_XMM12, "xmm12" }, 16, // { X86_REG_XMM13, "xmm13" }, 16, // { X86_REG_XMM14, "xmm14" }, 16, // { X86_REG_XMM15, "xmm15" }, 16, // { X86_REG_XMM16, "xmm16" }, 16, // { X86_REG_XMM17, "xmm17" }, 16, // { X86_REG_XMM18, "xmm18" }, 16, // { X86_REG_XMM19, "xmm19" }, 16, // { X86_REG_XMM20, "xmm20" }, 16, // { X86_REG_XMM21, "xmm21" }, 16, // { X86_REG_XMM22, "xmm22" }, 16, // { X86_REG_XMM23, "xmm23" }, 16, // { X86_REG_XMM24, "xmm24" }, 16, // { X86_REG_XMM25, "xmm25" }, 16, // { X86_REG_XMM26, "xmm26" }, 16, // { X86_REG_XMM27, "xmm27" }, 16, // { X86_REG_XMM28, "xmm28" }, 16, // { X86_REG_XMM29, "xmm29" }, 16, // { X86_REG_XMM30, "xmm30" }, 16, // { X86_REG_XMM31, "xmm31" }, 32, // { X86_REG_YMM0, "ymm0" }, 32, // { X86_REG_YMM1, "ymm1" }, 32, // { X86_REG_YMM2, "ymm2" }, 32, // { X86_REG_YMM3, "ymm3" }, 32, // { X86_REG_YMM4, "ymm4" }, 32, // { X86_REG_YMM5, "ymm5" }, 32, // { X86_REG_YMM6, "ymm6" }, 32, // { X86_REG_YMM7, "ymm7" }, 32, // { X86_REG_YMM8, "ymm8" }, 32, // { X86_REG_YMM9, "ymm9" }, 32, // { X86_REG_YMM10, "ymm10" }, 32, // { X86_REG_YMM11, "ymm11" }, 32, // { X86_REG_YMM12, "ymm12" }, 32, // { X86_REG_YMM13, "ymm13" }, 32, // { X86_REG_YMM14, "ymm14" }, 32, // { X86_REG_YMM15, "ymm15" }, 32, // { X86_REG_YMM16, "ymm16" }, 32, // { X86_REG_YMM17, "ymm17" }, 32, // { X86_REG_YMM18, "ymm18" }, 32, // { X86_REG_YMM19, "ymm19" }, 32, // { X86_REG_YMM20, "ymm20" }, 32, // { X86_REG_YMM21, "ymm21" }, 32, // { X86_REG_YMM22, "ymm22" }, 32, // { X86_REG_YMM23, "ymm23" }, 32, // { X86_REG_YMM24, "ymm24" }, 32, // { X86_REG_YMM25, "ymm25" }, 32, // { X86_REG_YMM26, "ymm26" }, 32, // { X86_REG_YMM27, "ymm27" }, 32, // { X86_REG_YMM28, "ymm28" }, 32, // { X86_REG_YMM29, "ymm29" }, 32, // { X86_REG_YMM30, "ymm30" }, 32, // { X86_REG_YMM31, "ymm31" }, 64, // { X86_REG_ZMM0, "zmm0" }, 64, // { X86_REG_ZMM1, "zmm1" }, 64, // { X86_REG_ZMM2, "zmm2" }, 64, // { X86_REG_ZMM3, "zmm3" }, 64, // { X86_REG_ZMM4, "zmm4" }, 64, // { X86_REG_ZMM5, "zmm5" }, 64, // { X86_REG_ZMM6, "zmm6" }, 64, // { X86_REG_ZMM7, "zmm7" }, 64, // { X86_REG_ZMM8, "zmm8" }, 64, // { X86_REG_ZMM9, "zmm9" }, 64, // { X86_REG_ZMM10, "zmm10" }, 64, // { X86_REG_ZMM11, "zmm11" }, 64, // { X86_REG_ZMM12, "zmm12" }, 64, // { X86_REG_ZMM13, "zmm13" }, 64, // { X86_REG_ZMM14, "zmm14" }, 64, // { X86_REG_ZMM15, "zmm15" }, 64, // { X86_REG_ZMM16, "zmm16" }, 64, // { X86_REG_ZMM17, "zmm17" }, 64, // { X86_REG_ZMM18, "zmm18" }, 64, // { X86_REG_ZMM19, "zmm19" }, 64, // { X86_REG_ZMM20, "zmm20" }, 64, // { X86_REG_ZMM21, "zmm21" }, 64, // { X86_REG_ZMM22, "zmm22" }, 64, // { X86_REG_ZMM23, "zmm23" }, 64, // { X86_REG_ZMM24, "zmm24" }, 64, // { X86_REG_ZMM25, "zmm25" }, 64, // { X86_REG_ZMM26, "zmm26" }, 64, // { X86_REG_ZMM27, "zmm27" }, 64, // { X86_REG_ZMM28, "zmm28" }, 64, // { X86_REG_ZMM29, "zmm29" }, 64, // { X86_REG_ZMM30, "zmm30" }, 64, // { X86_REG_ZMM31, "zmm31" }, 1, // { X86_REG_R8B, "r8b" }, 1, // { X86_REG_R9B, "r9b" }, 1, // { X86_REG_R10B, "r10b" }, 1, // { X86_REG_R11B, "r11b" }, 1, // { X86_REG_R12B, "r12b" }, 1, // { X86_REG_R13B, "r13b" }, 1, // { X86_REG_R14B, "r14b" }, 1, // { X86_REG_R15B, "r15b" }, 4, // { X86_REG_R8D, "r8d" }, 4, // { X86_REG_R9D, "r9d" }, 4, // { X86_REG_R10D, "r10d" }, 4, // { X86_REG_R11D, "r11d" }, 4, // { X86_REG_R12D, "r12d" }, 4, // { X86_REG_R13D, "r13d" }, 4, // { X86_REG_R14D, "r14d" }, 4, // { X86_REG_R15D, "r15d" }, 2, // { X86_REG_R8W, "r8w" }, 2, // { X86_REG_R9W, "r9w" }, 2, // { X86_REG_R10W, "r10w" }, 2, // { X86_REG_R11W, "r11w" }, 2, // { X86_REG_R12W, "r12w" }, 2, // { X86_REG_R13W, "r13w" }, 2, // { X86_REG_R14W, "r14w" }, 2, // { X86_REG_R15W, "r15w" }, 16, // { X86_REG_BND0, "bnd0" }, 16, // { X86_REG_BND1, "bnd0" }, 16, // { X86_REG_BND2, "bnd0" }, 16, // { X86_REG_BND3, "bnd0" }, }; // register size in 64bit mode const uint8_t regsize_map_64 [] = { 0, // { X86_REG_INVALID, NULL }, 1, // { X86_REG_AH, "ah" }, 1, // { X86_REG_AL, "al" }, 2, // { X86_REG_AX, "ax" }, 1, // { X86_REG_BH, "bh" }, 1, // { X86_REG_BL, "bl" }, 2, // { X86_REG_BP, "bp" }, 1, // { X86_REG_BPL, "bpl" }, 2, // { X86_REG_BX, "bx" }, 1, // { X86_REG_CH, "ch" }, 1, // { X86_REG_CL, "cl" }, 2, // { X86_REG_CS, "cs" }, 2, // { X86_REG_CX, "cx" }, 1, // { X86_REG_DH, "dh" }, 2, // { X86_REG_DI, "di" }, 1, // { X86_REG_DIL, "dil" }, 1, // { X86_REG_DL, "dl" }, 2, // { X86_REG_DS, "ds" }, 2, // { X86_REG_DX, "dx" }, 4, // { X86_REG_EAX, "eax" }, 4, // { X86_REG_EBP, "ebp" }, 4, // { X86_REG_EBX, "ebx" }, 4, // { X86_REG_ECX, "ecx" }, 4, // { X86_REG_EDI, "edi" }, 4, // { X86_REG_EDX, "edx" }, 8, // { X86_REG_EFLAGS, "flags" }, 4, // { X86_REG_EIP, "eip" }, 4, // { X86_REG_EIZ, "eiz" }, 2, // { X86_REG_ES, "es" }, 4, // { X86_REG_ESI, "esi" }, 4, // { X86_REG_ESP, "esp" }, 10, // { X86_REG_FPSW, "fpsw" }, 2, // { X86_REG_FS, "fs" }, 2, // { X86_REG_GS, "gs" }, 2, // { X86_REG_IP, "ip" }, 8, // { X86_REG_RAX, "rax" }, 8, // { X86_REG_RBP, "rbp" }, 8, // { X86_REG_RBX, "rbx" }, 8, // { X86_REG_RCX, "rcx" }, 8, // { X86_REG_RDI, "rdi" }, 8, // { X86_REG_RDX, "rdx" }, 8, // { X86_REG_RIP, "rip" }, 8, // { X86_REG_RIZ, "riz" }, 8, // { X86_REG_RSI, "rsi" }, 8, // { X86_REG_RSP, "rsp" }, 2, // { X86_REG_SI, "si" }, 1, // { X86_REG_SIL, "sil" }, 2, // { X86_REG_SP, "sp" }, 1, // { X86_REG_SPL, "spl" }, 2, // { X86_REG_SS, "ss" }, 8, // { X86_REG_CR0, "cr0" }, 8, // { X86_REG_CR1, "cr1" }, 8, // { X86_REG_CR2, "cr2" }, 8, // { X86_REG_CR3, "cr3" }, 8, // { X86_REG_CR4, "cr4" }, 8, // { X86_REG_CR5, "cr5" }, 8, // { X86_REG_CR6, "cr6" }, 8, // { X86_REG_CR7, "cr7" }, 8, // { X86_REG_CR8, "cr8" }, 8, // { X86_REG_CR9, "cr9" }, 8, // { X86_REG_CR10, "cr10" }, 8, // { X86_REG_CR11, "cr11" }, 8, // { X86_REG_CR12, "cr12" }, 8, // { X86_REG_CR13, "cr13" }, 8, // { X86_REG_CR14, "cr14" }, 8, // { X86_REG_CR15, "cr15" }, 8, // { X86_REG_DR0, "dr0" }, 8, // { X86_REG_DR1, "dr1" }, 8, // { X86_REG_DR2, "dr2" }, 8, // { X86_REG_DR3, "dr3" }, 8, // { X86_REG_DR4, "dr4" }, 8, // { X86_REG_DR5, "dr5" }, 8, // { X86_REG_DR6, "dr6" }, 8, // { X86_REG_DR7, "dr7" }, 8, // { X86_REG_DR8, "dr8" }, 8, // { X86_REG_DR9, "dr9" }, 8, // { X86_REG_DR10, "dr10" }, 8, // { X86_REG_DR11, "dr11" }, 8, // { X86_REG_DR12, "dr12" }, 8, // { X86_REG_DR13, "dr13" }, 8, // { X86_REG_DR14, "dr14" }, 8, // { X86_REG_DR15, "dr15" }, 10, // { X86_REG_FP0, "fp0" }, 10, // { X86_REG_FP1, "fp1" }, 10, // { X86_REG_FP2, "fp2" }, 10, // { X86_REG_FP3, "fp3" }, 10, // { X86_REG_FP4, "fp4" }, 10, // { X86_REG_FP5, "fp5" }, 10, // { X86_REG_FP6, "fp6" }, 10, // { X86_REG_FP7, "fp7" }, 2, // { X86_REG_K0, "k0" }, 2, // { X86_REG_K1, "k1" }, 2, // { X86_REG_K2, "k2" }, 2, // { X86_REG_K3, "k3" }, 2, // { X86_REG_K4, "k4" }, 2, // { X86_REG_K5, "k5" }, 2, // { X86_REG_K6, "k6" }, 2, // { X86_REG_K7, "k7" }, 8, // { X86_REG_MM0, "mm0" }, 8, // { X86_REG_MM1, "mm1" }, 8, // { X86_REG_MM2, "mm2" }, 8, // { X86_REG_MM3, "mm3" }, 8, // { X86_REG_MM4, "mm4" }, 8, // { X86_REG_MM5, "mm5" }, 8, // { X86_REG_MM6, "mm6" }, 8, // { X86_REG_MM7, "mm7" }, 8, // { X86_REG_R8, "r8" }, 8, // { X86_REG_R9, "r9" }, 8, // { X86_REG_R10, "r10" }, 8, // { X86_REG_R11, "r11" }, 8, // { X86_REG_R12, "r12" }, 8, // { X86_REG_R13, "r13" }, 8, // { X86_REG_R14, "r14" }, 8, // { X86_REG_R15, "r15" }, 10, // { X86_REG_ST0, "st0" }, 10, // { X86_REG_ST1, "st1" }, 10, // { X86_REG_ST2, "st2" }, 10, // { X86_REG_ST3, "st3" }, 10, // { X86_REG_ST4, "st4" }, 10, // { X86_REG_ST5, "st5" }, 10, // { X86_REG_ST6, "st6" }, 10, // { X86_REG_ST7, "st7" }, 16, // { X86_REG_XMM0, "xmm0" }, 16, // { X86_REG_XMM1, "xmm1" }, 16, // { X86_REG_XMM2, "xmm2" }, 16, // { X86_REG_XMM3, "xmm3" }, 16, // { X86_REG_XMM4, "xmm4" }, 16, // { X86_REG_XMM5, "xmm5" }, 16, // { X86_REG_XMM6, "xmm6" }, 16, // { X86_REG_XMM7, "xmm7" }, 16, // { X86_REG_XMM8, "xmm8" }, 16, // { X86_REG_XMM9, "xmm9" }, 16, // { X86_REG_XMM10, "xmm10" }, 16, // { X86_REG_XMM11, "xmm11" }, 16, // { X86_REG_XMM12, "xmm12" }, 16, // { X86_REG_XMM13, "xmm13" }, 16, // { X86_REG_XMM14, "xmm14" }, 16, // { X86_REG_XMM15, "xmm15" }, 16, // { X86_REG_XMM16, "xmm16" }, 16, // { X86_REG_XMM17, "xmm17" }, 16, // { X86_REG_XMM18, "xmm18" }, 16, // { X86_REG_XMM19, "xmm19" }, 16, // { X86_REG_XMM20, "xmm20" }, 16, // { X86_REG_XMM21, "xmm21" }, 16, // { X86_REG_XMM22, "xmm22" }, 16, // { X86_REG_XMM23, "xmm23" }, 16, // { X86_REG_XMM24, "xmm24" }, 16, // { X86_REG_XMM25, "xmm25" }, 16, // { X86_REG_XMM26, "xmm26" }, 16, // { X86_REG_XMM27, "xmm27" }, 16, // { X86_REG_XMM28, "xmm28" }, 16, // { X86_REG_XMM29, "xmm29" }, 16, // { X86_REG_XMM30, "xmm30" }, 16, // { X86_REG_XMM31, "xmm31" }, 32, // { X86_REG_YMM0, "ymm0" }, 32, // { X86_REG_YMM1, "ymm1" }, 32, // { X86_REG_YMM2, "ymm2" }, 32, // { X86_REG_YMM3, "ymm3" }, 32, // { X86_REG_YMM4, "ymm4" }, 32, // { X86_REG_YMM5, "ymm5" }, 32, // { X86_REG_YMM6, "ymm6" }, 32, // { X86_REG_YMM7, "ymm7" }, 32, // { X86_REG_YMM8, "ymm8" }, 32, // { X86_REG_YMM9, "ymm9" }, 32, // { X86_REG_YMM10, "ymm10" }, 32, // { X86_REG_YMM11, "ymm11" }, 32, // { X86_REG_YMM12, "ymm12" }, 32, // { X86_REG_YMM13, "ymm13" }, 32, // { X86_REG_YMM14, "ymm14" }, 32, // { X86_REG_YMM15, "ymm15" }, 32, // { X86_REG_YMM16, "ymm16" }, 32, // { X86_REG_YMM17, "ymm17" }, 32, // { X86_REG_YMM18, "ymm18" }, 32, // { X86_REG_YMM19, "ymm19" }, 32, // { X86_REG_YMM20, "ymm20" }, 32, // { X86_REG_YMM21, "ymm21" }, 32, // { X86_REG_YMM22, "ymm22" }, 32, // { X86_REG_YMM23, "ymm23" }, 32, // { X86_REG_YMM24, "ymm24" }, 32, // { X86_REG_YMM25, "ymm25" }, 32, // { X86_REG_YMM26, "ymm26" }, 32, // { X86_REG_YMM27, "ymm27" }, 32, // { X86_REG_YMM28, "ymm28" }, 32, // { X86_REG_YMM29, "ymm29" }, 32, // { X86_REG_YMM30, "ymm30" }, 32, // { X86_REG_YMM31, "ymm31" }, 64, // { X86_REG_ZMM0, "zmm0" }, 64, // { X86_REG_ZMM1, "zmm1" }, 64, // { X86_REG_ZMM2, "zmm2" }, 64, // { X86_REG_ZMM3, "zmm3" }, 64, // { X86_REG_ZMM4, "zmm4" }, 64, // { X86_REG_ZMM5, "zmm5" }, 64, // { X86_REG_ZMM6, "zmm6" }, 64, // { X86_REG_ZMM7, "zmm7" }, 64, // { X86_REG_ZMM8, "zmm8" }, 64, // { X86_REG_ZMM9, "zmm9" }, 64, // { X86_REG_ZMM10, "zmm10" }, 64, // { X86_REG_ZMM11, "zmm11" }, 64, // { X86_REG_ZMM12, "zmm12" }, 64, // { X86_REG_ZMM13, "zmm13" }, 64, // { X86_REG_ZMM14, "zmm14" }, 64, // { X86_REG_ZMM15, "zmm15" }, 64, // { X86_REG_ZMM16, "zmm16" }, 64, // { X86_REG_ZMM17, "zmm17" }, 64, // { X86_REG_ZMM18, "zmm18" }, 64, // { X86_REG_ZMM19, "zmm19" }, 64, // { X86_REG_ZMM20, "zmm20" }, 64, // { X86_REG_ZMM21, "zmm21" }, 64, // { X86_REG_ZMM22, "zmm22" }, 64, // { X86_REG_ZMM23, "zmm23" }, 64, // { X86_REG_ZMM24, "zmm24" }, 64, // { X86_REG_ZMM25, "zmm25" }, 64, // { X86_REG_ZMM26, "zmm26" }, 64, // { X86_REG_ZMM27, "zmm27" }, 64, // { X86_REG_ZMM28, "zmm28" }, 64, // { X86_REG_ZMM29, "zmm29" }, 64, // { X86_REG_ZMM30, "zmm30" }, 64, // { X86_REG_ZMM31, "zmm31" }, 1, // { X86_REG_R8B, "r8b" }, 1, // { X86_REG_R9B, "r9b" }, 1, // { X86_REG_R10B, "r10b" }, 1, // { X86_REG_R11B, "r11b" }, 1, // { X86_REG_R12B, "r12b" }, 1, // { X86_REG_R13B, "r13b" }, 1, // { X86_REG_R14B, "r14b" }, 1, // { X86_REG_R15B, "r15b" }, 4, // { X86_REG_R8D, "r8d" }, 4, // { X86_REG_R9D, "r9d" }, 4, // { X86_REG_R10D, "r10d" }, 4, // { X86_REG_R11D, "r11d" }, 4, // { X86_REG_R12D, "r12d" }, 4, // { X86_REG_R13D, "r13d" }, 4, // { X86_REG_R14D, "r14d" }, 4, // { X86_REG_R15D, "r15d" }, 2, // { X86_REG_R8W, "r8w" }, 2, // { X86_REG_R9W, "r9w" }, 2, // { X86_REG_R10W, "r10w" }, 2, // { X86_REG_R11W, "r11w" }, 2, // { X86_REG_R12W, "r12w" }, 2, // { X86_REG_R13W, "r13w" }, 2, // { X86_REG_R14W, "r14w" }, 2, // { X86_REG_R15W, "r15w" }, 16, // { X86_REG_BND0, "bnd0" }, 16, // { X86_REG_BND1, "bnd0" }, 16, // { X86_REG_BND2, "bnd0" }, 16, // { X86_REG_BND3, "bnd0" }, }; const char *X86_reg_name(csh handle, unsigned int reg) { #ifndef CAPSTONE_DIET cs_struct *ud = (cs_struct *)handle; if (reg >= ARR_SIZE(reg_name_maps)) return NULL; if (reg == X86_REG_EFLAGS) { if (ud->mode & CS_MODE_32) return "eflags"; if (ud->mode & CS_MODE_64) return "rflags"; } return reg_name_maps[reg].name; #else return NULL; #endif } #ifndef CAPSTONE_DIET static const char * const insn_name_maps[] = { NULL, // X86_INS_INVALID #ifndef CAPSTONE_X86_REDUCE #include "X86MappingInsnName.inc" #else #include "X86MappingInsnName_reduce.inc" #endif }; #endif // NOTE: insn_name_maps[] is sorted in order const char *X86_insn_name(csh handle, unsigned int id) { #ifndef CAPSTONE_DIET if (id >= ARR_SIZE(insn_name_maps)) return NULL; return insn_name_maps[id]; #else return NULL; #endif } #ifndef CAPSTONE_DIET static const name_map group_name_maps[] = { // generic groups { X86_GRP_INVALID, NULL }, { X86_GRP_JUMP, "jump" }, { X86_GRP_CALL, "call" }, { X86_GRP_RET, "ret" }, { X86_GRP_INT, "int" }, { X86_GRP_IRET, "iret" }, { X86_GRP_PRIVILEGE, "privilege" }, { X86_GRP_BRANCH_RELATIVE, "branch_relative" }, // architecture-specific groups { X86_GRP_VM, "vm" }, { X86_GRP_3DNOW, "3dnow" }, { X86_GRP_AES, "aes" }, { X86_GRP_ADX, "adx" }, { X86_GRP_AVX, "avx" }, { X86_GRP_AVX2, "avx2" }, { X86_GRP_AVX512, "avx512" }, { X86_GRP_BMI, "bmi" }, { X86_GRP_BMI2, "bmi2" }, { X86_GRP_CMOV, "cmov" }, { X86_GRP_F16C, "fc16" }, { X86_GRP_FMA, "fma" }, { X86_GRP_FMA4, "fma4" }, { X86_GRP_FSGSBASE, "fsgsbase" }, { X86_GRP_HLE, "hle" }, { X86_GRP_MMX, "mmx" }, { X86_GRP_MODE32, "mode32" }, { X86_GRP_MODE64, "mode64" }, { X86_GRP_RTM, "rtm" }, { X86_GRP_SHA, "sha" }, { X86_GRP_SSE1, "sse1" }, { X86_GRP_SSE2, "sse2" }, { X86_GRP_SSE3, "sse3" }, { X86_GRP_SSE41, "sse41" }, { X86_GRP_SSE42, "sse42" }, { X86_GRP_SSE4A, "sse4a" }, { X86_GRP_SSSE3, "ssse3" }, { X86_GRP_PCLMUL, "pclmul" }, { X86_GRP_XOP, "xop" }, { X86_GRP_CDI, "cdi" }, { X86_GRP_ERI, "eri" }, { X86_GRP_TBM, "tbm" }, { X86_GRP_16BITMODE, "16bitmode" }, { X86_GRP_NOT64BITMODE, "not64bitmode" }, { X86_GRP_SGX, "sgx" }, { X86_GRP_DQI, "dqi" }, { X86_GRP_BWI, "bwi" }, { X86_GRP_PFI, "pfi" }, { X86_GRP_VLX, "vlx" }, { X86_GRP_SMAP, "smap" }, { X86_GRP_NOVLX, "novlx" }, { X86_GRP_FPU, "fpu" }, }; #endif const char *X86_group_name(csh handle, unsigned int id) { #ifndef CAPSTONE_DIET return id2name(group_name_maps, ARR_SIZE(group_name_maps), id); #else return NULL; #endif } #define GET_INSTRINFO_ENUM #ifdef CAPSTONE_X86_REDUCE #include "X86GenInstrInfo_reduce.inc" const insn_map_x86 insns[] = { // reduce x86 instructions #include "X86MappingInsn_reduce.inc" }; #else #include "X86GenInstrInfo.inc" const insn_map_x86 insns[] = { // full x86 instructions #include "X86MappingInsn.inc" }; #endif #ifndef CAPSTONE_DIET // in arr, replace r1 = r2 static void arr_replace(uint16_t *arr, uint8_t max, x86_reg r1, x86_reg r2) { uint8_t i; for(i = 0; i < max; i++) { if (arr[i] == r1) { arr[i] = r2; break; } } } #endif // look for @id in @insns // return -1 if not found unsigned int find_insn(unsigned int id) { // binary searching since the IDs are sorted in order unsigned int left, right, m; unsigned int max = ARR_SIZE(insns); right = max - 1; if (id < insns[0].id || id > insns[right].id) // not found return -1; left = 0; while(left <= right) { m = (left + right) / 2; if (id == insns[m].id) { return m; } if (id < insns[m].id) right = m - 1; else left = m + 1; } // not found // printf("NOT FOUNDDDDDDDDDDDDDDD id = %u\n", id); return -1; } // given internal insn id, return public instruction info void X86_get_insn_id(cs_struct *h, cs_insn *insn, unsigned int id) { unsigned int i = find_insn(id); if (i != -1) { insn->id = insns[i].mapid; if (h->detail) { #ifndef CAPSTONE_DIET memcpy(insn->detail->regs_read, insns[i].regs_use, sizeof(insns[i].regs_use)); insn->detail->regs_read_count = (uint8_t)count_positive(insns[i].regs_use); // special cases when regs_write[] depends on arch switch(id) { default: memcpy(insn->detail->regs_write, insns[i].regs_mod, sizeof(insns[i].regs_mod)); insn->detail->regs_write_count = (uint8_t)count_positive(insns[i].regs_mod); break; case X86_RDTSC: if (h->mode == CS_MODE_64) { memcpy(insn->detail->regs_write, insns[i].regs_mod, sizeof(insns[i].regs_mod)); insn->detail->regs_write_count = (uint8_t)count_positive(insns[i].regs_mod); } else { insn->detail->regs_write[0] = X86_REG_EAX; insn->detail->regs_write[1] = X86_REG_EDX; insn->detail->regs_write_count = 2; } break; case X86_RDTSCP: if (h->mode == CS_MODE_64) { memcpy(insn->detail->regs_write, insns[i].regs_mod, sizeof(insns[i].regs_mod)); insn->detail->regs_write_count = (uint8_t)count_positive(insns[i].regs_mod); } else { insn->detail->regs_write[0] = X86_REG_EAX; insn->detail->regs_write[1] = X86_REG_ECX; insn->detail->regs_write[2] = X86_REG_EDX; insn->detail->regs_write_count = 3; } break; } switch(insn->id) { default: break; case X86_INS_LOOP: case X86_INS_LOOPE: case X86_INS_LOOPNE: switch(h->mode) { default: break; case CS_MODE_16: insn->detail->regs_read[0] = X86_REG_CX; insn->detail->regs_read_count = 1; insn->detail->regs_write[0] = X86_REG_CX; insn->detail->regs_write_count = 1; break; case CS_MODE_32: insn->detail->regs_read[0] = X86_REG_ECX; insn->detail->regs_read_count = 1; insn->detail->regs_write[0] = X86_REG_ECX; insn->detail->regs_write_count = 1; break; case CS_MODE_64: insn->detail->regs_read[0] = X86_REG_RCX; insn->detail->regs_read_count = 1; insn->detail->regs_write[0] = X86_REG_RCX; insn->detail->regs_write_count = 1; break; } // LOOPE & LOOPNE also read EFLAGS if (insn->id != X86_INS_LOOP) { insn->detail->regs_read[1] = X86_REG_EFLAGS; insn->detail->regs_read_count = 2; } break; case X86_INS_LODSB: case X86_INS_LODSD: case X86_INS_LODSQ: case X86_INS_LODSW: switch(h->mode) { default: break; case CS_MODE_16: arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_ESI, X86_REG_SI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_ESI, X86_REG_SI); break; case CS_MODE_64: arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_ESI, X86_REG_RSI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_ESI, X86_REG_RSI); break; } break; case X86_INS_SCASB: case X86_INS_SCASW: case X86_INS_SCASQ: case X86_INS_STOSB: case X86_INS_STOSD: case X86_INS_STOSQ: case X86_INS_STOSW: switch(h->mode) { default: break; case CS_MODE_16: arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_EDI, X86_REG_DI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_EDI, X86_REG_DI); break; case CS_MODE_64: arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_EDI, X86_REG_RDI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_EDI, X86_REG_RDI); break; } break; case X86_INS_CMPSB: case X86_INS_CMPSD: case X86_INS_CMPSQ: case X86_INS_CMPSW: case X86_INS_MOVSB: case X86_INS_MOVSW: case X86_INS_MOVSD: case X86_INS_MOVSQ: switch(h->mode) { default: break; case CS_MODE_16: arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_EDI, X86_REG_DI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_EDI, X86_REG_DI); arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_ESI, X86_REG_SI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_ESI, X86_REG_SI); break; case CS_MODE_64: arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_EDI, X86_REG_RDI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_EDI, X86_REG_RDI); arr_replace(insn->detail->regs_read, insn->detail->regs_read_count, X86_REG_ESI, X86_REG_RSI); arr_replace(insn->detail->regs_write, insn->detail->regs_write_count, X86_REG_ESI, X86_REG_RSI); break; } break; case X86_INS_RET: switch(h->mode) { case CS_MODE_16: insn->detail->regs_write[0] = X86_REG_SP; insn->detail->regs_read[0] = X86_REG_SP; break; case CS_MODE_32: insn->detail->regs_write[0] = X86_REG_ESP; insn->detail->regs_read[0] = X86_REG_ESP; break; default: // 64-bit insn->detail->regs_write[0] = X86_REG_RSP; insn->detail->regs_read[0] = X86_REG_RSP; break; } insn->detail->regs_write_count = 1; insn->detail->regs_read_count = 1; break; } memcpy(insn->detail->groups, insns[i].groups, sizeof(insns[i].groups)); insn->detail->groups_count = (uint8_t)count_positive8(insns[i].groups); if (insns[i].branch || insns[i].indirect_branch) { // this insn also belongs to JUMP group. add JUMP group insn->detail->groups[insn->detail->groups_count] = X86_GRP_JUMP; insn->detail->groups_count++; } switch (insns[i].id) { case X86_OUT8ir: case X86_OUT16ir: case X86_OUT32ir: if (insn->detail->x86.operands[0].imm == -78) { // Writing to port 0xb2 causes an SMI on most platforms // See: http://cs.gmu.edu/~tr-admin/papers/GMU-CS-TR-2011-8.pdf insn->detail->groups[insn->detail->groups_count] = X86_GRP_INT; insn->detail->groups_count++; } break; default: break; } #endif } } } // map special instructions with accumulate registers. // this is needed because LLVM embeds these register names into AsmStrs[], // but not separately in operands struct insn_reg { uint16_t insn; x86_reg reg; enum cs_ac_type access; }; struct insn_reg2 { uint16_t insn; x86_reg reg1, reg2; enum cs_ac_type access1, access2; }; static const struct insn_reg insn_regs_att[] = { { X86_INSB, X86_REG_DX, CS_AC_READ }, { X86_INSL, X86_REG_DX, CS_AC_READ }, { X86_INSW, X86_REG_DX, CS_AC_READ }, { X86_MOV16o16a, X86_REG_AX, CS_AC_READ }, { X86_MOV16o32a, X86_REG_AX, CS_AC_READ }, { X86_MOV16o64a, X86_REG_AX, CS_AC_READ }, { X86_MOV32o16a, X86_REG_EAX, CS_AC_READ }, { X86_MOV32o32a, X86_REG_EAX, CS_AC_READ }, { X86_MOV32o64a, X86_REG_EAX, CS_AC_READ }, { X86_MOV64o32a, X86_REG_RAX, CS_AC_READ }, { X86_MOV64o64a, X86_REG_RAX, CS_AC_READ }, { X86_MOV8o16a, X86_REG_AL, CS_AC_READ }, { X86_MOV8o32a, X86_REG_AL, CS_AC_READ }, { X86_MOV8o64a, X86_REG_AL, CS_AC_READ }, { X86_OUT16ir, X86_REG_AX, CS_AC_READ }, { X86_OUT32ir, X86_REG_EAX, CS_AC_READ }, { X86_OUT8ir, X86_REG_AL, CS_AC_READ }, { X86_POPDS16, X86_REG_DS, CS_AC_WRITE }, { X86_POPDS32, X86_REG_DS, CS_AC_WRITE }, { X86_POPES16, X86_REG_ES, CS_AC_WRITE }, { X86_POPES32, X86_REG_ES, CS_AC_WRITE }, { X86_POPFS16, X86_REG_FS, CS_AC_WRITE }, { X86_POPFS32, X86_REG_FS, CS_AC_WRITE }, { X86_POPFS64, X86_REG_FS, CS_AC_WRITE }, { X86_POPGS16, X86_REG_GS, CS_AC_WRITE }, { X86_POPGS32, X86_REG_GS, CS_AC_WRITE }, { X86_POPGS64, X86_REG_GS, CS_AC_WRITE }, { X86_POPSS16, X86_REG_SS, CS_AC_WRITE }, { X86_POPSS32, X86_REG_SS, CS_AC_WRITE }, { X86_PUSHCS16, X86_REG_CS, CS_AC_READ }, { X86_PUSHCS32, X86_REG_CS, CS_AC_READ }, { X86_PUSHDS16, X86_REG_DS, CS_AC_READ }, { X86_PUSHDS32, X86_REG_DS, CS_AC_READ }, { X86_PUSHES16, X86_REG_ES, CS_AC_READ }, { X86_PUSHES32, X86_REG_ES, CS_AC_READ }, { X86_PUSHFS16, X86_REG_FS, CS_AC_READ }, { X86_PUSHFS32, X86_REG_FS, CS_AC_READ }, { X86_PUSHFS64, X86_REG_FS, CS_AC_READ }, { X86_PUSHGS16, X86_REG_GS, CS_AC_READ }, { X86_PUSHGS32, X86_REG_GS, CS_AC_READ }, { X86_PUSHGS64, X86_REG_GS, CS_AC_READ }, { X86_PUSHSS16, X86_REG_SS, CS_AC_READ }, { X86_PUSHSS32, X86_REG_SS, CS_AC_READ }, { X86_RCL16rCL, X86_REG_CL, CS_AC_READ }, { X86_RCL32rCL, X86_REG_CL, CS_AC_READ }, { X86_RCL64rCL, X86_REG_CL, CS_AC_READ }, { X86_RCL8rCL, X86_REG_CL, CS_AC_READ }, { X86_RCR16rCL, X86_REG_CL, CS_AC_READ }, { X86_RCR32rCL, X86_REG_CL, CS_AC_READ }, { X86_RCR64rCL, X86_REG_CL, CS_AC_READ }, { X86_RCR8rCL, X86_REG_CL, CS_AC_READ }, { X86_ROL16rCL, X86_REG_CL, CS_AC_READ }, { X86_ROL32rCL, X86_REG_CL, CS_AC_READ }, { X86_ROL64rCL, X86_REG_CL, CS_AC_READ }, { X86_ROL8rCL, X86_REG_CL, CS_AC_READ }, { X86_ROR16rCL, X86_REG_CL, CS_AC_READ }, { X86_ROR32rCL, X86_REG_CL, CS_AC_READ }, { X86_ROR64rCL, X86_REG_CL, CS_AC_READ }, { X86_ROR8rCL, X86_REG_CL, CS_AC_READ }, { X86_SAL16rCL, X86_REG_CL, CS_AC_READ }, { X86_SAL32rCL, X86_REG_CL, CS_AC_READ }, { X86_SAL64rCL, X86_REG_CL, CS_AC_READ }, { X86_SAL8rCL, X86_REG_CL, CS_AC_READ }, { X86_SAR16rCL, X86_REG_CL, CS_AC_READ }, { X86_SAR32rCL, X86_REG_CL, CS_AC_READ }, { X86_SAR64rCL, X86_REG_CL, CS_AC_READ }, { X86_SAR8rCL, X86_REG_CL, CS_AC_READ }, { X86_SHL16rCL, X86_REG_CL, CS_AC_READ }, { X86_SHL32rCL, X86_REG_CL, CS_AC_READ }, { X86_SHL64rCL, X86_REG_CL, CS_AC_READ }, { X86_SHL8rCL, X86_REG_CL, CS_AC_READ }, { X86_SHLD16mrCL, X86_REG_CL, CS_AC_READ }, { X86_SHLD16rrCL, X86_REG_CL, CS_AC_READ }, { X86_SHLD32mrCL, X86_REG_CL, CS_AC_READ }, { X86_SHLD32rrCL, X86_REG_CL, CS_AC_READ }, { X86_SHLD64mrCL, X86_REG_CL, CS_AC_READ }, { X86_SHLD64rrCL, X86_REG_CL, CS_AC_READ }, { X86_SHR16rCL, X86_REG_CL, CS_AC_READ }, { X86_SHR32rCL, X86_REG_CL, CS_AC_READ }, { X86_SHR64rCL, X86_REG_CL, CS_AC_READ }, { X86_SHR8rCL, X86_REG_CL, CS_AC_READ }, { X86_SHRD16mrCL, X86_REG_CL, CS_AC_READ }, { X86_SHRD16rrCL, X86_REG_CL, CS_AC_READ }, { X86_SHRD32mrCL, X86_REG_CL, CS_AC_READ }, { X86_SHRD32rrCL, X86_REG_CL, CS_AC_READ }, { X86_SHRD64mrCL, X86_REG_CL, CS_AC_READ }, { X86_SHRD64rrCL, X86_REG_CL, CS_AC_READ }, { X86_XCHG16ar, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_XCHG32ar, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_XCHG64ar, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, }; static const struct insn_reg insn_regs_att_extra[] = { // dummy entry, to avoid empty array { 0, 0 }, #ifndef CAPSTONE_X86_REDUCE { X86_ADD_FrST0, X86_REG_ST0, CS_AC_READ }, { X86_DIVR_FrST0, X86_REG_ST0, CS_AC_READ }, { X86_DIV_FrST0, X86_REG_ST0, CS_AC_READ }, { X86_FNSTSW16r, X86_REG_AX, CS_AC_READ }, { X86_MUL_FrST0, X86_REG_ST0, CS_AC_READ }, { X86_SKINIT, X86_REG_EAX, CS_AC_READ }, { X86_SUBR_FrST0, X86_REG_ST0, CS_AC_READ }, { X86_SUB_FrST0, X86_REG_ST0, CS_AC_READ }, { X86_VMLOAD32, X86_REG_EAX, CS_AC_READ }, { X86_VMLOAD64, X86_REG_RAX, CS_AC_READ }, { X86_VMRUN32, X86_REG_EAX, CS_AC_READ }, { X86_VMRUN64, X86_REG_RAX, CS_AC_READ }, { X86_VMSAVE32, X86_REG_EAX, CS_AC_READ }, { X86_VMSAVE64, X86_REG_RAX, CS_AC_READ }, #endif }; static const struct insn_reg insn_regs_intel[] = { { X86_ADC16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_ADC32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_ADC64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_ADC8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_ADD16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_ADD32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_ADD64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_ADD8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_AND16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_AND32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_AND64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_AND8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_CMP16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_CMP32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_CMP64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_CMP8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_IN16ri, X86_REG_AX, CS_AC_WRITE }, { X86_IN32ri, X86_REG_EAX, CS_AC_WRITE }, { X86_IN8ri, X86_REG_AL, CS_AC_WRITE }, { X86_LODSB, X86_REG_AL, CS_AC_WRITE }, { X86_LODSL, X86_REG_EAX, CS_AC_WRITE }, { X86_LODSQ, X86_REG_RAX, CS_AC_WRITE }, { X86_LODSW, X86_REG_AX, CS_AC_WRITE }, { X86_MOV16ao16, X86_REG_AX, CS_AC_WRITE }, // 16-bit A1 1020 // mov ax, word ptr [0x2010] { X86_MOV16ao32, X86_REG_AX, CS_AC_WRITE }, // 32-bit A1 10203040 // mov ax, word ptr [0x40302010] { X86_MOV16ao64, X86_REG_AX, CS_AC_WRITE }, // 64-bit 66 A1 1020304050607080 // movabs ax, word ptr [0x8070605040302010] { X86_MOV32ao16, X86_REG_EAX, CS_AC_WRITE }, // 32-bit 67 A1 1020 // mov eax, dword ptr [0x2010] { X86_MOV32ao32, X86_REG_EAX, CS_AC_WRITE }, // 32-bit A1 10203040 // mov eax, dword ptr [0x40302010] { X86_MOV32ao64, X86_REG_EAX, CS_AC_WRITE }, // 64-bit A1 1020304050607080 // movabs eax, dword ptr [0x8070605040302010] { X86_MOV64ao32, X86_REG_RAX, CS_AC_WRITE }, // 64-bit 48 8B04 10203040 // mov rax, qword ptr [0x40302010] { X86_MOV64ao64, X86_REG_RAX, CS_AC_WRITE }, // 64-bit 48 A1 1020304050607080 // movabs rax, qword ptr [0x8070605040302010] { X86_MOV8ao16, X86_REG_AL, CS_AC_WRITE }, // 16-bit A0 1020 // mov al, byte ptr [0x2010] { X86_MOV8ao32, X86_REG_AL, CS_AC_WRITE }, // 32-bit A0 10203040 // mov al, byte ptr [0x40302010] { X86_MOV8ao64, X86_REG_AL, CS_AC_WRITE }, // 64-bit 66 A0 1020304050607080 // movabs al, byte ptr [0x8070605040302010] { X86_OR16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_OR32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_OR64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_OR8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_OUTSB, X86_REG_DX, CS_AC_WRITE }, { X86_OUTSL, X86_REG_DX, CS_AC_WRITE }, { X86_OUTSW, X86_REG_DX, CS_AC_WRITE }, { X86_POPDS16, X86_REG_DS, CS_AC_WRITE }, { X86_POPDS32, X86_REG_DS, CS_AC_WRITE }, { X86_POPES16, X86_REG_ES, CS_AC_WRITE }, { X86_POPES32, X86_REG_ES, CS_AC_WRITE }, { X86_POPFS16, X86_REG_FS, CS_AC_WRITE }, { X86_POPFS32, X86_REG_FS, CS_AC_WRITE }, { X86_POPFS64, X86_REG_FS, CS_AC_WRITE }, { X86_POPGS16, X86_REG_GS, CS_AC_WRITE }, { X86_POPGS32, X86_REG_GS, CS_AC_WRITE }, { X86_POPGS64, X86_REG_GS, CS_AC_WRITE }, { X86_POPSS16, X86_REG_SS, CS_AC_WRITE }, { X86_POPSS32, X86_REG_SS, CS_AC_WRITE }, { X86_PUSHCS16, X86_REG_CS, CS_AC_READ }, { X86_PUSHCS32, X86_REG_CS, CS_AC_READ }, { X86_PUSHDS16, X86_REG_DS, CS_AC_READ }, { X86_PUSHDS32, X86_REG_DS, CS_AC_READ }, { X86_PUSHES16, X86_REG_ES, CS_AC_READ }, { X86_PUSHES32, X86_REG_ES, CS_AC_READ }, { X86_PUSHFS16, X86_REG_FS, CS_AC_READ }, { X86_PUSHFS32, X86_REG_FS, CS_AC_READ }, { X86_PUSHFS64, X86_REG_FS, CS_AC_READ }, { X86_PUSHGS16, X86_REG_GS, CS_AC_READ }, { X86_PUSHGS32, X86_REG_GS, CS_AC_READ }, { X86_PUSHGS64, X86_REG_GS, CS_AC_READ }, { X86_PUSHSS16, X86_REG_SS, CS_AC_READ }, { X86_PUSHSS32, X86_REG_SS, CS_AC_READ }, { X86_SBB16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_SBB32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_SBB64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_SBB8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_SCASB, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_SCASL, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_SCASQ, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_SCASW, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_SUB16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_SUB32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_SUB64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_SUB8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_TEST16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_TEST32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_TEST64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_TEST8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, { X86_XOR16i16, X86_REG_AX, CS_AC_WRITE | CS_AC_READ }, { X86_XOR32i32, X86_REG_EAX, CS_AC_WRITE | CS_AC_READ }, { X86_XOR64i32, X86_REG_RAX, CS_AC_WRITE | CS_AC_READ }, { X86_XOR8i8, X86_REG_AL, CS_AC_WRITE | CS_AC_READ }, }; static const struct insn_reg insn_regs_intel_extra[] = { // dummy entry, to avoid empty array { 0, 0, 0 }, #ifndef CAPSTONE_X86_REDUCE { X86_CMOVBE_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVB_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVE_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVNBE_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVNB_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVNE_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVNP_F, X86_REG_ST0, CS_AC_WRITE }, { X86_CMOVP_F, X86_REG_ST0, CS_AC_WRITE }, // { X86_COMP_FST0r, X86_REG_ST0, CS_AC_WRITE }, // { X86_COM_FST0r, X86_REG_ST0, CS_AC_WRITE }, { X86_FNSTSW16r, X86_REG_AX, CS_AC_WRITE }, { X86_SKINIT, X86_REG_EAX, CS_AC_WRITE }, { X86_VMLOAD32, X86_REG_EAX, CS_AC_WRITE }, { X86_VMLOAD64, X86_REG_RAX, CS_AC_WRITE }, { X86_VMRUN32, X86_REG_EAX, CS_AC_WRITE }, { X86_VMRUN64, X86_REG_RAX, CS_AC_WRITE }, { X86_VMSAVE32, X86_REG_EAX, CS_AC_READ }, { X86_VMSAVE64, X86_REG_RAX, CS_AC_READ }, { X86_XCH_F, X86_REG_ST0, CS_AC_WRITE }, #endif }; static const struct insn_reg2 insn_regs_intel2[] = { { X86_IN16rr, X86_REG_AX, X86_REG_DX, CS_AC_WRITE, CS_AC_READ }, { X86_IN32rr, X86_REG_EAX, X86_REG_DX, CS_AC_WRITE, CS_AC_READ }, { X86_IN8rr, X86_REG_AL, X86_REG_DX, CS_AC_WRITE, CS_AC_READ }, { X86_INVLPGA32, X86_REG_EAX, X86_REG_ECX, CS_AC_READ, CS_AC_READ }, { X86_INVLPGA64, X86_REG_RAX, X86_REG_ECX, CS_AC_READ, CS_AC_READ }, { X86_OUT16rr, X86_REG_DX, X86_REG_AX, CS_AC_READ, CS_AC_READ }, { X86_OUT32rr, X86_REG_DX, X86_REG_EAX, CS_AC_READ, CS_AC_READ }, { X86_OUT8rr, X86_REG_DX, X86_REG_AL, CS_AC_READ, CS_AC_READ }, }; static int binary_search1(const struct insn_reg *insns, unsigned int max, unsigned int id) { unsigned int first, last, mid; first = 0; last = max -1; if (insns[0].insn > id || insns[last].insn < id) { // not found return -1; } while (first <= last) { mid = (first + last) / 2; if (insns[mid].insn < id) { first = mid + 1; } else if (insns[mid].insn == id) { return mid; } else { if (mid == 0) break; last = mid - 1; } } // not found return -1; } static int binary_search2(const struct insn_reg2 *insns, unsigned int max, unsigned int id) { unsigned int first, last, mid; first = 0; last = max -1; if (insns[0].insn > id || insns[last].insn < id) { // not found return -1; } while (first <= last) { mid = (first + last) / 2; if (insns[mid].insn < id) { first = mid + 1; } else if (insns[mid].insn == id) { return mid; } else { if (mid == 0) break; last = mid - 1; } } // not found return -1; } // return register of given instruction id // return 0 if not found // this is to handle instructions embedding accumulate registers into AsmStrs[] x86_reg X86_insn_reg_intel(unsigned int id, enum cs_ac_type *access) { int i; i = binary_search1(insn_regs_intel, ARR_SIZE(insn_regs_intel), id); if (i != -1) { if (access) { *access = insn_regs_intel[i].access; } return insn_regs_intel[i].reg; } i = binary_search1(insn_regs_intel_extra, ARR_SIZE(insn_regs_intel_extra), id); if (i != -1) { if (access) { *access = insn_regs_intel_extra[i].access; } return insn_regs_intel_extra[i].reg; } // not found return 0; } bool X86_insn_reg_intel2(unsigned int id, x86_reg *reg1, enum cs_ac_type *access1, x86_reg *reg2, enum cs_ac_type *access2) { int i = binary_search2(insn_regs_intel2, ARR_SIZE(insn_regs_intel2), id); if (i != -1) { *reg1 = insn_regs_intel2[i].reg1; *reg2 = insn_regs_intel2[i].reg2; if (access1) *access1 = insn_regs_intel2[i].access1; if (access2) *access2 = insn_regs_intel2[i].access2; return true; } // not found return false; } x86_reg X86_insn_reg_att(unsigned int id, enum cs_ac_type *access) { int i; i = binary_search1(insn_regs_att, ARR_SIZE(insn_regs_att), id); if (i != -1) { if (access) *access = insn_regs_att[i].access; return insn_regs_att[i].reg; } i = binary_search1(insn_regs_att_extra, ARR_SIZE(insn_regs_att_extra), id); if (i != -1) { if (access) *access = insn_regs_att_extra[i].access; return insn_regs_att_extra[i].reg; } // not found return 0; } // ATT just reuses Intel data, but with the order of registers reversed bool X86_insn_reg_att2(unsigned int id, x86_reg *reg1, enum cs_ac_type *access1, x86_reg *reg2, enum cs_ac_type *access2) { int i = binary_search2(insn_regs_intel2, ARR_SIZE(insn_regs_intel2), id); if (i != -1) { *reg1 = insn_regs_intel2[i].reg2; *reg2 = insn_regs_intel2[i].reg1; if (access1) *access1 = insn_regs_intel2[i].access2; if (access2) *access2 = insn_regs_intel2[i].access1; return true; } // not found return false; } // given MCInst's id, find out if this insn is valid for REPNE prefix static bool valid_repne(cs_struct *h, unsigned int opcode) { unsigned int id; unsigned int i = find_insn(opcode); if (i != -1) { id = insns[i].mapid; switch(id) { default: return false; case X86_INS_CMPSB: case X86_INS_CMPSS: case X86_INS_CMPSW: case X86_INS_CMPSQ: case X86_INS_SCASB: case X86_INS_SCASW: case X86_INS_SCASQ: case X86_INS_MOVSB: case X86_INS_MOVSS: case X86_INS_MOVSW: case X86_INS_MOVSQ: case X86_INS_LODSB: case X86_INS_LODSW: case X86_INS_LODSD: case X86_INS_LODSQ: case X86_INS_STOSB: case X86_INS_STOSW: case X86_INS_STOSD: case X86_INS_STOSQ: case X86_INS_INSB: case X86_INS_INSW: case X86_INS_INSD: case X86_INS_OUTSB: case X86_INS_OUTSW: case X86_INS_OUTSD: return true; case X86_INS_MOVSD: if (opcode == X86_MOVSW) // REP MOVSB return true; return false; case X86_INS_CMPSD: if (opcode == X86_CMPSL) // REP CMPSD return true; return false; case X86_INS_SCASD: if (opcode == X86_SCASL) // REP SCASD return true; return false; } } // not found return false; } // given MCInst's id, find out if this insn is valid for BND prefix // BND prefix is valid for CALL/JMP/RET #ifndef CAPSTONE_DIET static bool valid_bnd(cs_struct *h, unsigned int opcode) { unsigned int id; unsigned int i = find_insn(opcode); if (i != -1) { id = insns[i].mapid; switch(id) { default: return false; case X86_INS_JAE: case X86_INS_JA: case X86_INS_JBE: case X86_INS_JB: case X86_INS_JCXZ: case X86_INS_JECXZ: case X86_INS_JE: case X86_INS_JGE: case X86_INS_JG: case X86_INS_JLE: case X86_INS_JL: case X86_INS_JMP: case X86_INS_JNE: case X86_INS_JNO: case X86_INS_JNP: case X86_INS_JNS: case X86_INS_JO: case X86_INS_JP: case X86_INS_JRCXZ: case X86_INS_JS: case X86_INS_CALL: case X86_INS_RET: case X86_INS_RETF: case X86_INS_RETFQ: return true; } } // not found return false; } #endif // return true if the opcode is XCHG [mem] static bool xchg_mem(unsigned int opcode) { switch(opcode) { default: return false; case X86_XCHG8rm: case X86_XCHG16rm: case X86_XCHG32rm: case X86_XCHG64rm: return true; } } // given MCInst's id, find out if this insn is valid for REP prefix static bool valid_rep(cs_struct *h, unsigned int opcode) { unsigned int id; unsigned int i = find_insn(opcode); if (i != -1) { id = insns[i].mapid; switch(id) { default: return false; case X86_INS_MOVSB: case X86_INS_MOVSW: case X86_INS_MOVSQ: case X86_INS_LODSB: case X86_INS_LODSW: case X86_INS_LODSQ: case X86_INS_STOSB: case X86_INS_STOSW: case X86_INS_STOSQ: case X86_INS_INSB: case X86_INS_INSW: case X86_INS_INSD: case X86_INS_OUTSB: case X86_INS_OUTSW: case X86_INS_OUTSD: return true; // following are some confused instructions, which have the same // mnemonics in 128bit media instructions. Intel is horribly crazy! case X86_INS_MOVSD: if (opcode == X86_MOVSL) // REP MOVSD return true; return false; case X86_INS_LODSD: if (opcode == X86_LODSL) // REP LODSD return true; return false; case X86_INS_STOSD: if (opcode == X86_STOSL) // REP STOSD return true; return false; } } // not found return false; } // given MCInst's id, find out if this insn is valid for REPE prefix static bool valid_repe(cs_struct *h, unsigned int opcode) { unsigned int id; unsigned int i = find_insn(opcode); if (i != -1) { id = insns[i].mapid; switch(id) { default: return false; case X86_INS_CMPSB: case X86_INS_CMPSW: case X86_INS_CMPSQ: case X86_INS_SCASB: case X86_INS_SCASW: case X86_INS_SCASQ: return true; // following are some confused instructions, which have the same // mnemonics in 128bit media instructions. Intel is horribly crazy! case X86_INS_CMPSD: if (opcode == X86_CMPSL) // REP CMPSD return true; return false; case X86_INS_SCASD: if (opcode == X86_SCASL) // REP SCASD return true; return false; } } // not found return false; } #ifndef CAPSTONE_DIET // add *CX register to regs_read[] & regs_write[] static void add_cx(MCInst *MI) { if (MI->csh->detail) { x86_reg cx; if (MI->csh->mode & CS_MODE_16) cx = X86_REG_CX; else if (MI->csh->mode & CS_MODE_32) cx = X86_REG_ECX; else // 64-bit cx = X86_REG_RCX; MI->flat_insn->detail->regs_read[MI->flat_insn->detail->regs_read_count] = cx; MI->flat_insn->detail->regs_read_count++; MI->flat_insn->detail->regs_write[MI->flat_insn->detail->regs_write_count] = cx; MI->flat_insn->detail->regs_write_count++; } } #endif // return true if we patch the mnemonic bool X86_lockrep(MCInst *MI, SStream *O) { unsigned int opcode; bool res = false; switch(MI->x86_prefix[0]) { default: break; case 0xf0: #ifndef CAPSTONE_DIET if (MI->xAcquireRelease == 0xf2) SStream_concat(O, "xacquire|lock|"); else if (MI->xAcquireRelease == 0xf3) SStream_concat(O, "xrelease|lock|"); else SStream_concat(O, "lock|"); #endif break; case 0xf2: // repne opcode = MCInst_getOpcode(MI); #ifndef CAPSTONE_DIET // only care about memonic in standard (non-diet) mode if (xchg_mem(opcode) && MI->xAcquireRelease) { SStream_concat(O, "xacquire|"); } else if (valid_repne(MI->csh, opcode)) { SStream_concat(O, "repne|"); add_cx(MI); } else if (valid_bnd(MI->csh, opcode)) { SStream_concat(O, "bnd|"); } else { // invalid prefix MI->x86_prefix[0] = 0; // handle special cases #ifndef CAPSTONE_X86_REDUCE #if 0 if (opcode == X86_MULPDrr) { MCInst_setOpcode(MI, X86_MULSDrr); SStream_concat(O, "mulsd\t"); res = true; } #endif #endif } #else // diet mode -> only patch opcode in special cases if (!valid_repne(MI->csh, opcode)) { MI->x86_prefix[0] = 0; } #ifndef CAPSTONE_X86_REDUCE #if 0 // handle special cases if (opcode == X86_MULPDrr) { MCInst_setOpcode(MI, X86_MULSDrr); } #endif #endif #endif break; case 0xf3: opcode = MCInst_getOpcode(MI); #ifndef CAPSTONE_DIET // only care about memonic in standard (non-diet) mode if (xchg_mem(opcode) && MI->xAcquireRelease) { SStream_concat(O, "xrelease|"); } else if (valid_rep(MI->csh, opcode)) { SStream_concat(O, "rep|"); add_cx(MI); } else if (valid_repe(MI->csh, opcode)) { SStream_concat(O, "repe|"); add_cx(MI); } else { // invalid prefix MI->x86_prefix[0] = 0; // handle special cases #ifndef CAPSTONE_X86_REDUCE #if 0 // FIXME: remove this special case? if (opcode == X86_MULPDrr) { MCInst_setOpcode(MI, X86_MULSSrr); SStream_concat(O, "mulss\t"); res = true; } #endif #endif } #else // diet mode -> only patch opcode in special cases if (!valid_rep(MI->csh, opcode) && !valid_repe(MI->csh, opcode)) { MI->x86_prefix[0] = 0; } #ifndef CAPSTONE_X86_REDUCE #if 0 // handle special cases // FIXME: remove this special case? if (opcode == X86_MULPDrr) { MCInst_setOpcode(MI, X86_MULSSrr); } #endif #endif #endif break; } // copy normalized prefix[] back to x86.prefix[] if (MI->csh->detail) memcpy(MI->flat_insn->detail->x86.prefix, MI->x86_prefix, ARR_SIZE(MI->x86_prefix)); return res; } void op_addReg(MCInst *MI, int reg) { if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.op_count++; } if (MI->op1_size == 0) MI->op1_size = MI->csh->regsize_map[reg]; } void op_addImm(MCInst *MI, int v) { if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = v; // if op_count > 0, then this operand's size is taken from the destination op if (MI->csh->syntax != CS_OPT_SYNTAX_ATT) { if (MI->flat_insn->detail->x86.op_count > 0) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size; else MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size; } else MI->has_imm = true; MI->flat_insn->detail->x86.op_count++; } if (MI->op1_size == 0) MI->op1_size = MI->imm_size; } void op_addXopCC(MCInst *MI, int v) { if (MI->csh->detail) { MI->flat_insn->detail->x86.xop_cc = v; } } void op_addSseCC(MCInst *MI, int v) { if (MI->csh->detail) { MI->flat_insn->detail->x86.sse_cc = v; } } void op_addAvxCC(MCInst *MI, int v) { if (MI->csh->detail) { MI->flat_insn->detail->x86.avx_cc = v; } } void op_addAvxRoundingMode(MCInst *MI, int v) { if (MI->csh->detail) { MI->flat_insn->detail->x86.avx_rm = v; } } // below functions supply details to X86GenAsmWriter*.inc void op_addAvxZeroOpmask(MCInst *MI) { if (MI->csh->detail) { // link with the previous operand MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count - 1].avx_zero_opmask = true; } } void op_addAvxSae(MCInst *MI) { if (MI->csh->detail) { MI->flat_insn->detail->x86.avx_sae = true; } } void op_addAvxBroadcast(MCInst *MI, x86_avx_bcast v) { if (MI->csh->detail) { // link with the previous operand MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count - 1].avx_bcast = v; } } #ifndef CAPSTONE_DIET // map instruction to its characteristics typedef struct insn_op { uint64_t flags; // how this instruction update EFLAGS(arithmetic instrcutions) of FPU FLAGS(for FPU instructions) uint8_t access[6]; } insn_op; static const insn_op insn_ops[] = { #ifdef CAPSTONE_X86_REDUCE #include "X86MappingInsnOp_reduce.inc" #else #include "X86MappingInsnOp.inc" #endif }; // given internal insn id, return operand access info const uint8_t *X86_get_op_access(cs_struct *h, unsigned int id, uint64_t *eflags) { unsigned int i = find_insn(id); if (i != -1) { *eflags = insn_ops[i].flags; return insn_ops[i].access; } return NULL; } void X86_reg_access(const cs_insn *insn, cs_regs regs_read, uint8_t *regs_read_count, cs_regs regs_write, uint8_t *regs_write_count) { uint8_t i; uint8_t read_count, write_count; cs_x86 *x86 = &(insn->detail->x86); read_count = insn->detail->regs_read_count; write_count = insn->detail->regs_write_count; // implicit registers memcpy(regs_read, insn->detail->regs_read, read_count * sizeof(insn->detail->regs_read[0])); memcpy(regs_write, insn->detail->regs_write, write_count * sizeof(insn->detail->regs_write[0])); // explicit registers for (i = 0; i < x86->op_count; i++) { cs_x86_op *op = &(x86->operands[i]); switch((int)op->type) { case X86_OP_REG: if ((op->access & CS_AC_READ) && !arr_exist(regs_read, read_count, op->reg)) { regs_read[read_count] = op->reg; read_count++; } if ((op->access & CS_AC_WRITE) && !arr_exist(regs_write, write_count, op->reg)) { regs_write[write_count] = op->reg; write_count++; } break; case X86_OP_MEM: // registers appeared in memory references always being read if ((op->mem.segment != X86_REG_INVALID)) { regs_read[read_count] = op->mem.segment; read_count++; } if ((op->mem.base != X86_REG_INVALID) && !arr_exist(regs_read, read_count, op->mem.base)) { regs_read[read_count] = op->mem.base; read_count++; } if ((op->mem.index != X86_REG_INVALID) && !arr_exist(regs_read, read_count, op->mem.index)) { regs_read[read_count] = op->mem.index; read_count++; } default: break; } } *regs_read_count = read_count; *regs_write_count = write_count; } #endif // map immediate size to instruction id // this array is sorted for binary searching static const struct size_id { uint8_t enc_size; uint8_t size; uint16_t id; } x86_imm_size[] = { #include "X86ImmSize.inc" }; // given the instruction name, return the size of its immediate operand (or 0) uint8_t X86_immediate_size(unsigned int id, uint8_t *enc_size) { // binary searching since the IDs are sorted in order unsigned int left, right, m; right = ARR_SIZE(x86_imm_size) - 1; if (id < x86_imm_size[0].id || id > x86_imm_size[right].id) // not found return 0; left = 0; while (left <= right) { m = (left + right) / 2; if (id == x86_imm_size[m].id) { if (enc_size != NULL) *enc_size = x86_imm_size[m].enc_size; return x86_imm_size[m].size; } if (id > x86_imm_size[m].id) left = m + 1; else { if (m == 0) break; right = m - 1; } } // not found return 0; } #define GET_REGINFO_ENUM #include "X86GenRegisterInfo.inc" // map internal register id to public register id static const struct register_map { unsigned short id; unsigned short pub_id; } reg_map [] = { // first dummy map { 0, 0 }, #include "X86MappingReg.inc" }; // return 0 on invalid input, or public register ID otherwise // NOTE: reg_map is sorted in order of internal register unsigned short X86_register_map(unsigned short id) { if (id < ARR_SIZE(reg_map)) return reg_map[id].pub_id; return 0; } #endif