/* * QEMU paravirtual RDMA * * Copyright (C) 2018 Oracle * Copyright (C) 2018 Red Hat Inc * * Authors: * Yuval Shaia * Marcel Apfelbaum * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/module.h" #include "hw/pci/pci.h" #include "hw/pci/pci_ids.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "cpu.h" #include "trace.h" #include "monitor/monitor.h" #include "hw/rdma/rdma.h" #include "../rdma_rm.h" #include "../rdma_backend.h" #include "../rdma_utils.h" #include #include "pvrdma.h" #include "standard-headers/rdma/vmw_pvrdma-abi.h" #include "sysemu/runstate.h" #include "standard-headers/drivers/infiniband/hw/vmw_pvrdma/pvrdma_dev_api.h" #include "pvrdma_qp_ops.h" static Property pvrdma_dev_properties[] = { DEFINE_PROP_STRING("netdev", PVRDMADev, backend_eth_device_name), DEFINE_PROP_STRING("ibdev", PVRDMADev, backend_device_name), DEFINE_PROP_UINT8("ibport", PVRDMADev, backend_port_num, 1), DEFINE_PROP_UINT64("dev-caps-max-mr-size", PVRDMADev, dev_attr.max_mr_size, MAX_MR_SIZE), DEFINE_PROP_INT32("dev-caps-max-qp", PVRDMADev, dev_attr.max_qp, MAX_QP), DEFINE_PROP_INT32("dev-caps-max-cq", PVRDMADev, dev_attr.max_cq, MAX_CQ), DEFINE_PROP_INT32("dev-caps-max-mr", PVRDMADev, dev_attr.max_mr, MAX_MR), DEFINE_PROP_INT32("dev-caps-max-pd", PVRDMADev, dev_attr.max_pd, MAX_PD), DEFINE_PROP_INT32("dev-caps-qp-rd-atom", PVRDMADev, dev_attr.max_qp_rd_atom, MAX_QP_RD_ATOM), DEFINE_PROP_INT32("dev-caps-max-qp-init-rd-atom", PVRDMADev, dev_attr.max_qp_init_rd_atom, MAX_QP_INIT_RD_ATOM), DEFINE_PROP_INT32("dev-caps-max-ah", PVRDMADev, dev_attr.max_ah, MAX_AH), DEFINE_PROP_INT32("dev-caps-max-srq", PVRDMADev, dev_attr.max_srq, MAX_SRQ), DEFINE_PROP_CHR("mad-chardev", PVRDMADev, mad_chr), DEFINE_PROP_END_OF_LIST(), }; static void pvrdma_format_statistics(RdmaProvider *obj, GString *buf) { PVRDMADev *dev = PVRDMA_DEV(obj); PCIDevice *pdev = PCI_DEVICE(dev); g_string_append_printf(buf, "%s, %x.%x\n", pdev->name, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); g_string_append_printf(buf, "\tcommands : %" PRId64 "\n", dev->stats.commands); g_string_append_printf(buf, "\tregs_reads : %" PRId64 "\n", dev->stats.regs_reads); g_string_append_printf(buf, "\tregs_writes : %" PRId64 "\n", dev->stats.regs_writes); g_string_append_printf(buf, "\tuar_writes : %" PRId64 "\n", dev->stats.uar_writes); g_string_append_printf(buf, "\tinterrupts : %" PRId64 "\n", dev->stats.interrupts); rdma_format_device_counters(&dev->rdma_dev_res, buf); } static void free_dev_ring(PCIDevice *pci_dev, PvrdmaRing *ring, void *ring_state) { pvrdma_ring_free(ring); rdma_pci_dma_unmap(pci_dev, ring_state, TARGET_PAGE_SIZE); } static int init_dev_ring(PvrdmaRing *ring, PvrdmaRingState **ring_state, const char *name, PCIDevice *pci_dev, dma_addr_t dir_addr, uint32_t num_pages) { uint64_t *dir, *tbl; int rc = 0; if (!num_pages) { rdma_error_report("Ring pages count must be strictly positive"); return -EINVAL; } dir = rdma_pci_dma_map(pci_dev, dir_addr, TARGET_PAGE_SIZE); if (!dir) { rdma_error_report("Failed to map to page directory (ring %s)", name); rc = -ENOMEM; goto out; } tbl = rdma_pci_dma_map(pci_dev, dir[0], TARGET_PAGE_SIZE); if (!tbl) { rdma_error_report("Failed to map to page table (ring %s)", name); rc = -ENOMEM; goto out_free_dir; } *ring_state = rdma_pci_dma_map(pci_dev, tbl[0], TARGET_PAGE_SIZE); if (!*ring_state) { rdma_error_report("Failed to map to ring state (ring %s)", name); rc = -ENOMEM; goto out_free_tbl; } /* RX ring is the second */ (*ring_state)++; rc = pvrdma_ring_init(ring, name, pci_dev, (PvrdmaRingState *)*ring_state, (num_pages - 1) * TARGET_PAGE_SIZE / sizeof(struct pvrdma_cqne), sizeof(struct pvrdma_cqne), (dma_addr_t *)&tbl[1], (dma_addr_t)num_pages - 1); if (rc) { rc = -ENOMEM; goto out_free_ring_state; } goto out_free_tbl; out_free_ring_state: rdma_pci_dma_unmap(pci_dev, *ring_state, TARGET_PAGE_SIZE); out_free_tbl: rdma_pci_dma_unmap(pci_dev, tbl, TARGET_PAGE_SIZE); out_free_dir: rdma_pci_dma_unmap(pci_dev, dir, TARGET_PAGE_SIZE); out: return rc; } static void free_dsr(PVRDMADev *dev) { PCIDevice *pci_dev = PCI_DEVICE(dev); if (!dev->dsr_info.dsr) { return; } free_dev_ring(pci_dev, &dev->dsr_info.async, dev->dsr_info.async_ring_state); free_dev_ring(pci_dev, &dev->dsr_info.cq, dev->dsr_info.cq_ring_state); rdma_pci_dma_unmap(pci_dev, dev->dsr_info.req, sizeof(union pvrdma_cmd_req)); rdma_pci_dma_unmap(pci_dev, dev->dsr_info.rsp, sizeof(union pvrdma_cmd_resp)); rdma_pci_dma_unmap(pci_dev, dev->dsr_info.dsr, sizeof(struct pvrdma_device_shared_region)); dev->dsr_info.dsr = NULL; } static int load_dsr(PVRDMADev *dev) { int rc = 0; PCIDevice *pci_dev = PCI_DEVICE(dev); DSRInfo *dsr_info; struct pvrdma_device_shared_region *dsr; free_dsr(dev); /* Map to DSR */ dev->dsr_info.dsr = rdma_pci_dma_map(pci_dev, dev->dsr_info.dma, sizeof(struct pvrdma_device_shared_region)); if (!dev->dsr_info.dsr) { rdma_error_report("Failed to map to DSR"); rc = -ENOMEM; goto out; } /* Shortcuts */ dsr_info = &dev->dsr_info; dsr = dsr_info->dsr; /* Map to command slot */ dsr_info->req = rdma_pci_dma_map(pci_dev, dsr->cmd_slot_dma, sizeof(union pvrdma_cmd_req)); if (!dsr_info->req) { rdma_error_report("Failed to map to command slot address"); rc = -ENOMEM; goto out_free_dsr; } /* Map to response slot */ dsr_info->rsp = rdma_pci_dma_map(pci_dev, dsr->resp_slot_dma, sizeof(union pvrdma_cmd_resp)); if (!dsr_info->rsp) { rdma_error_report("Failed to map to response slot address"); rc = -ENOMEM; goto out_free_req; } /* Map to CQ notification ring */ rc = init_dev_ring(&dsr_info->cq, &dsr_info->cq_ring_state, "dev_cq", pci_dev, dsr->cq_ring_pages.pdir_dma, dsr->cq_ring_pages.num_pages); if (rc) { rc = -ENOMEM; goto out_free_rsp; } /* Map to event notification ring */ rc = init_dev_ring(&dsr_info->async, &dsr_info->async_ring_state, "dev_async", pci_dev, dsr->async_ring_pages.pdir_dma, dsr->async_ring_pages.num_pages); if (rc) { rc = -ENOMEM; goto out_free_rsp; } goto out; out_free_rsp: rdma_pci_dma_unmap(pci_dev, dsr_info->rsp, sizeof(union pvrdma_cmd_resp)); out_free_req: rdma_pci_dma_unmap(pci_dev, dsr_info->req, sizeof(union pvrdma_cmd_req)); out_free_dsr: rdma_pci_dma_unmap(pci_dev, dsr_info->dsr, sizeof(struct pvrdma_device_shared_region)); dsr_info->dsr = NULL; out: return rc; } static void init_dsr_dev_caps(PVRDMADev *dev) { struct pvrdma_device_shared_region *dsr; if (dev->dsr_info.dsr == NULL) { rdma_error_report("Can't initialized DSR"); return; } dsr = dev->dsr_info.dsr; dsr->caps.fw_ver = PVRDMA_FW_VERSION; dsr->caps.mode = PVRDMA_DEVICE_MODE_ROCE; dsr->caps.gid_types |= PVRDMA_GID_TYPE_FLAG_ROCE_V1; dsr->caps.max_uar = RDMA_BAR2_UAR_SIZE; dsr->caps.max_mr_size = dev->dev_attr.max_mr_size; dsr->caps.max_qp = dev->dev_attr.max_qp; dsr->caps.max_qp_wr = dev->dev_attr.max_qp_wr; dsr->caps.max_sge = dev->dev_attr.max_sge; dsr->caps.max_cq = dev->dev_attr.max_cq; dsr->caps.max_cqe = dev->dev_attr.max_cqe; dsr->caps.max_mr = dev->dev_attr.max_mr; dsr->caps.max_pd = dev->dev_attr.max_pd; dsr->caps.max_ah = dev->dev_attr.max_ah; dsr->caps.max_srq = dev->dev_attr.max_srq; dsr->caps.max_srq_wr = dev->dev_attr.max_srq_wr; dsr->caps.max_srq_sge = dev->dev_attr.max_srq_sge; dsr->caps.gid_tbl_len = MAX_GIDS; dsr->caps.sys_image_guid = 0; dsr->caps.node_guid = dev->node_guid; dsr->caps.phys_port_cnt = MAX_PORTS; dsr->caps.max_pkeys = MAX_PKEYS; } static void uninit_msix(PCIDevice *pdev, int used_vectors) { PVRDMADev *dev = PVRDMA_DEV(pdev); int i; for (i = 0; i < used_vectors; i++) { msix_vector_unuse(pdev, i); } msix_uninit(pdev, &dev->msix, &dev->msix); } static int init_msix(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); int i; int rc; rc = msix_init(pdev, RDMA_MAX_INTRS, &dev->msix, RDMA_MSIX_BAR_IDX, RDMA_MSIX_TABLE, &dev->msix, RDMA_MSIX_BAR_IDX, RDMA_MSIX_PBA, 0, NULL); if (rc < 0) { rdma_error_report("Failed to initialize MSI-X"); return rc; } for (i = 0; i < RDMA_MAX_INTRS; i++) { rc = msix_vector_use(PCI_DEVICE(dev), i); if (rc < 0) { rdma_error_report("Fail mark MSI-X vector %d", i); uninit_msix(pdev, i); return rc; } } return 0; } static void pvrdma_fini(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); notifier_remove(&dev->shutdown_notifier); pvrdma_qp_ops_fini(); rdma_backend_stop(&dev->backend_dev); rdma_rm_fini(&dev->rdma_dev_res, &dev->backend_dev, dev->backend_eth_device_name); rdma_backend_fini(&dev->backend_dev); free_dsr(dev); if (msix_enabled(pdev)) { uninit_msix(pdev, RDMA_MAX_INTRS); } rdma_info_report("Device %s %x.%x is down", pdev->name, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); } static void pvrdma_stop(PVRDMADev *dev) { rdma_backend_stop(&dev->backend_dev); } static void pvrdma_start(PVRDMADev *dev) { rdma_backend_start(&dev->backend_dev); } static void activate_device(PVRDMADev *dev) { pvrdma_start(dev); set_reg_val(dev, PVRDMA_REG_ERR, 0); } static int unquiesce_device(PVRDMADev *dev) { return 0; } static void reset_device(PVRDMADev *dev) { pvrdma_stop(dev); } static uint64_t pvrdma_regs_read(void *opaque, hwaddr addr, unsigned size) { PVRDMADev *dev = opaque; uint32_t val; dev->stats.regs_reads++; if (get_reg_val(dev, addr, &val)) { rdma_error_report("Failed to read REG value from address 0x%x", (uint32_t)addr); return -EINVAL; } trace_pvrdma_regs_read(addr, val); return val; } static void pvrdma_regs_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PVRDMADev *dev = opaque; dev->stats.regs_writes++; if (set_reg_val(dev, addr, val)) { rdma_error_report("Failed to set REG value, addr=0x%"PRIx64 ", val=0x%"PRIx64, addr, val); return; } switch (addr) { case PVRDMA_REG_DSRLOW: trace_pvrdma_regs_write(addr, val, "DSRLOW", ""); dev->dsr_info.dma = val; break; case PVRDMA_REG_DSRHIGH: trace_pvrdma_regs_write(addr, val, "DSRHIGH", ""); dev->dsr_info.dma |= val << 32; load_dsr(dev); init_dsr_dev_caps(dev); break; case PVRDMA_REG_CTL: switch (val) { case PVRDMA_DEVICE_CTL_ACTIVATE: trace_pvrdma_regs_write(addr, val, "CTL", "ACTIVATE"); activate_device(dev); break; case PVRDMA_DEVICE_CTL_UNQUIESCE: trace_pvrdma_regs_write(addr, val, "CTL", "UNQUIESCE"); unquiesce_device(dev); break; case PVRDMA_DEVICE_CTL_RESET: trace_pvrdma_regs_write(addr, val, "CTL", "URESET"); reset_device(dev); break; } break; case PVRDMA_REG_IMR: trace_pvrdma_regs_write(addr, val, "INTR_MASK", ""); dev->interrupt_mask = val; break; case PVRDMA_REG_REQUEST: if (val == 0) { trace_pvrdma_regs_write(addr, val, "REQUEST", ""); pvrdma_exec_cmd(dev); } break; default: break; } } static const MemoryRegionOps regs_ops = { .read = pvrdma_regs_read, .write = pvrdma_regs_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = sizeof(uint32_t), .max_access_size = sizeof(uint32_t), }, }; static uint64_t pvrdma_uar_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffff; } static void pvrdma_uar_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PVRDMADev *dev = opaque; dev->stats.uar_writes++; switch (addr & 0xFFF) { /* Mask with 0xFFF as each UC gets page */ case PVRDMA_UAR_QP_OFFSET: if (val & PVRDMA_UAR_QP_SEND) { trace_pvrdma_uar_write(addr, val, "QP", "SEND", val & PVRDMA_UAR_HANDLE_MASK, 0); pvrdma_qp_send(dev, val & PVRDMA_UAR_HANDLE_MASK); } if (val & PVRDMA_UAR_QP_RECV) { trace_pvrdma_uar_write(addr, val, "QP", "RECV", val & PVRDMA_UAR_HANDLE_MASK, 0); pvrdma_qp_recv(dev, val & PVRDMA_UAR_HANDLE_MASK); } break; case PVRDMA_UAR_CQ_OFFSET: if (val & PVRDMA_UAR_CQ_ARM) { trace_pvrdma_uar_write(addr, val, "CQ", "ARM", val & PVRDMA_UAR_HANDLE_MASK, !!(val & PVRDMA_UAR_CQ_ARM_SOL)); rdma_rm_req_notify_cq(&dev->rdma_dev_res, val & PVRDMA_UAR_HANDLE_MASK, !!(val & PVRDMA_UAR_CQ_ARM_SOL)); } if (val & PVRDMA_UAR_CQ_ARM_SOL) { trace_pvrdma_uar_write(addr, val, "CQ", "ARMSOL - not supported", 0, 0); } if (val & PVRDMA_UAR_CQ_POLL) { trace_pvrdma_uar_write(addr, val, "CQ", "POLL", val & PVRDMA_UAR_HANDLE_MASK, 0); pvrdma_cq_poll(&dev->rdma_dev_res, val & PVRDMA_UAR_HANDLE_MASK); } break; case PVRDMA_UAR_SRQ_OFFSET: if (val & PVRDMA_UAR_SRQ_RECV) { trace_pvrdma_uar_write(addr, val, "QP", "SRQ", val & PVRDMA_UAR_HANDLE_MASK, 0); pvrdma_srq_recv(dev, val & PVRDMA_UAR_HANDLE_MASK); } break; default: rdma_error_report("Unsupported command, addr=0x%"PRIx64", val=0x%"PRIx64, addr, val); break; } } static const MemoryRegionOps uar_ops = { .read = pvrdma_uar_read, .write = pvrdma_uar_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = sizeof(uint32_t), .max_access_size = sizeof(uint32_t), }, }; static void init_pci_config(PCIDevice *pdev) { pdev->config[PCI_INTERRUPT_PIN] = 1; } static void init_bars(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); /* BAR 0 - MSI-X */ memory_region_init(&dev->msix, OBJECT(dev), "pvrdma-msix", RDMA_BAR0_MSIX_SIZE); pci_register_bar(pdev, RDMA_MSIX_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &dev->msix); /* BAR 1 - Registers */ memset(&dev->regs_data, 0, sizeof(dev->regs_data)); memory_region_init_io(&dev->regs, OBJECT(dev), ®s_ops, dev, "pvrdma-regs", sizeof(dev->regs_data)); pci_register_bar(pdev, RDMA_REG_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &dev->regs); /* BAR 2 - UAR */ memset(&dev->uar_data, 0, sizeof(dev->uar_data)); memory_region_init_io(&dev->uar, OBJECT(dev), &uar_ops, dev, "rdma-uar", sizeof(dev->uar_data)); pci_register_bar(pdev, RDMA_UAR_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &dev->uar); } static void init_regs(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); set_reg_val(dev, PVRDMA_REG_VERSION, PVRDMA_HW_VERSION); set_reg_val(dev, PVRDMA_REG_ERR, 0xFFFF); } static void init_dev_caps(PVRDMADev *dev) { size_t pg_tbl_bytes = TARGET_PAGE_SIZE * (TARGET_PAGE_SIZE / sizeof(uint64_t)); size_t wr_sz = MAX(sizeof(struct pvrdma_sq_wqe_hdr), sizeof(struct pvrdma_rq_wqe_hdr)); dev->dev_attr.max_qp_wr = pg_tbl_bytes / (wr_sz + sizeof(struct pvrdma_sge) * dev->dev_attr.max_sge) - TARGET_PAGE_SIZE; /* First page is ring state ^^^^ */ dev->dev_attr.max_cqe = pg_tbl_bytes / sizeof(struct pvrdma_cqe) - TARGET_PAGE_SIZE; /* First page is ring state */ dev->dev_attr.max_srq_wr = pg_tbl_bytes / ((sizeof(struct pvrdma_rq_wqe_hdr) + sizeof(struct pvrdma_sge)) * dev->dev_attr.max_sge) - TARGET_PAGE_SIZE; } static int pvrdma_check_ram_shared(Object *obj, void *opaque) { bool *shared = opaque; if (object_dynamic_cast(obj, "memory-backend-ram")) { *shared = object_property_get_bool(obj, "share", NULL); } return 0; } static void pvrdma_shutdown_notifier(Notifier *n, void *opaque) { PVRDMADev *dev = container_of(n, PVRDMADev, shutdown_notifier); PCIDevice *pci_dev = PCI_DEVICE(dev); pvrdma_fini(pci_dev); } static void pvrdma_realize(PCIDevice *pdev, Error **errp) { int rc = 0; PVRDMADev *dev = PVRDMA_DEV(pdev); Object *memdev_root; bool ram_shared = false; PCIDevice *func0; rdma_info_report("Initializing device %s %x.%x", pdev->name, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); if (TARGET_PAGE_SIZE != qemu_real_host_page_size) { error_setg(errp, "Target page size must be the same as host page size"); return; } func0 = pci_get_function_0(pdev); /* Break if not vmxnet3 device in slot 0 */ if (strcmp(object_get_typename(OBJECT(func0)), TYPE_VMXNET3)) { error_setg(errp, "Device on %x.0 must be %s", PCI_SLOT(pdev->devfn), TYPE_VMXNET3); return; } dev->func0 = VMXNET3(func0); addrconf_addr_eui48((unsigned char *)&dev->node_guid, (const char *)&dev->func0->conf.macaddr.a); memdev_root = object_resolve_path("/objects", NULL); if (memdev_root) { object_child_foreach(memdev_root, pvrdma_check_ram_shared, &ram_shared); } if (!ram_shared) { error_setg(errp, "Only shared memory backed ram is supported"); return; } dev->dsr_info.dsr = NULL; init_pci_config(pdev); init_bars(pdev); init_regs(pdev); rc = init_msix(pdev); if (rc) { goto out; } rc = rdma_backend_init(&dev->backend_dev, pdev, &dev->rdma_dev_res, dev->backend_device_name, dev->backend_port_num, &dev->dev_attr, &dev->mad_chr); if (rc) { goto out; } init_dev_caps(dev); rc = rdma_rm_init(&dev->rdma_dev_res, &dev->dev_attr); if (rc) { goto out; } rc = pvrdma_qp_ops_init(); if (rc) { goto out; } memset(&dev->stats, 0, sizeof(dev->stats)); dev->shutdown_notifier.notify = pvrdma_shutdown_notifier; qemu_register_shutdown_notifier(&dev->shutdown_notifier); #ifdef LEGACY_RDMA_REG_MR rdma_info_report("Using legacy reg_mr"); #else rdma_info_report("Using iova reg_mr"); #endif out: if (rc) { pvrdma_fini(pdev); error_append_hint(errp, "Device failed to load\n"); } } static void pvrdma_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); RdmaProviderClass *ir = RDMA_PROVIDER_CLASS(klass); k->realize = pvrdma_realize; k->vendor_id = PCI_VENDOR_ID_VMWARE; k->device_id = PCI_DEVICE_ID_VMWARE_PVRDMA; k->revision = 0x00; k->class_id = PCI_CLASS_NETWORK_OTHER; dc->desc = "RDMA Device"; device_class_set_props(dc, pvrdma_dev_properties); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); ir->format_statistics = pvrdma_format_statistics; } static const TypeInfo pvrdma_info = { .name = PVRDMA_HW_NAME, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(PVRDMADev), .class_init = pvrdma_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { INTERFACE_RDMA_PROVIDER }, { } } }; static void register_types(void) { type_register_static(&pvrdma_info); } type_init(register_types)