############################################ # Copyright (c) 2012 Microsoft Corporation # # Z3 Python interface for Z3 numerals # # Author: Leonardo de Moura (leonardo) ############################################ from .z3 import * from .z3core import * from .z3printer import * from fractions import Fraction from .z3 import _get_ctx def _to_numeral(num, ctx=None): if isinstance(num, Numeral): return num else: return Numeral(num, ctx) class Numeral: """ A Z3 numeral can be used to perform computations over arbitrary precision integers, rationals and real algebraic numbers. It also automatically converts python numeric values. >>> Numeral(2) 2 >>> Numeral("3/2") + 1 5/2 >>> Numeral(Sqrt(2)) 1.4142135623? >>> Numeral(Sqrt(2)) + 2 3.4142135623? >>> Numeral(Sqrt(2)) + Numeral(Sqrt(3)) 3.1462643699? Z3 numerals can be used to perform computations with values in a Z3 model. >>> s = Solver() >>> x = Real('x') >>> s.add(x*x == 2) >>> s.add(x > 0) >>> s.check() sat >>> m = s.model() >>> m[x] 1.4142135623? >>> m[x] + 1 1.4142135623? + 1 The previous result is a Z3 expression. >>> (m[x] + 1).sexpr() '(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)' >>> Numeral(m[x]) + 1 2.4142135623? >>> Numeral(m[x]).is_pos() True >>> Numeral(m[x])**2 2 We can also isolate the roots of polynomials. >>> x0, x1, x2 = RealVarVector(3) >>> r0 = isolate_roots(x0**5 - x0 - 1) >>> r0 [1.1673039782?] In the following example, we are isolating the roots of a univariate polynomial (on x1) obtained after substituting x0 -> r0[0] >>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ]) >>> r1 [-0.4090280898?, 0.4090280898?] Similarly, in the next example we isolate the roots of a univariate polynomial (on x2) obtained after substituting x0 -> r0[0] and x1 -> r1[0] >>> isolate_roots(x1*x2 + x0, [ r0[0], r1[0] ]) [2.8538479564?] """ def __init__(self, num, ctx=None): if isinstance(num, Ast): self.ast = num self.ctx = _get_ctx(ctx) elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef): self.ast = num.ast self.ctx = num.ctx elif isinstance(num, ArithRef): r = simplify(num) self.ast = r.ast self.ctx = r.ctx else: v = RealVal(num, ctx) self.ast = v.ast self.ctx = v.ctx Z3_inc_ref(self.ctx_ref(), self.as_ast()) assert Z3_algebraic_is_value(self.ctx_ref(), self.ast) def __del__(self): Z3_dec_ref(self.ctx_ref(), self.as_ast()) def is_integer(self): """ Return True if the numeral is integer. >>> Numeral(2).is_integer() True >>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer() True >>> Numeral(Sqrt(2)).is_integer() False >>> Numeral("2/3").is_integer() False """ return self.is_rational() and self.denominator() == 1 def is_rational(self): """ Return True if the numeral is rational. >>> Numeral(2).is_rational() True >>> Numeral("2/3").is_rational() True >>> Numeral(Sqrt(2)).is_rational() False """ return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST def denominator(self): """ Return the denominator if `self` is rational. >>> Numeral("2/3").denominator() 3 """ assert(self.is_rational()) return Numeral(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx) def numerator(self): """ Return the numerator if `self` is rational. >>> Numeral("2/3").numerator() 2 """ assert(self.is_rational()) return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx) def is_irrational(self): """ Return True if the numeral is irrational. >>> Numeral(2).is_irrational() False >>> Numeral("2/3").is_irrational() False >>> Numeral(Sqrt(2)).is_irrational() True """ return not self.is_rational() def as_long(self): """ Return a numeral (that is an integer) as a Python long. """ assert(self.is_integer()) if sys.version_info[0] >= 3: return int(Z3_get_numeral_string(self.ctx_ref(), self.as_ast())) else: return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast())) def as_fraction(self): """ Return a numeral (that is a rational) as a Python Fraction. >>> Numeral("1/5").as_fraction() Fraction(1, 5) """ assert(self.is_rational()) return Fraction(self.numerator().as_long(), self.denominator().as_long()) def approx(self, precision=10): """Return a numeral that approximates the numeral `self`. The result `r` is such that |r - self| <= 1/10^precision If `self` is rational, then the result is `self`. >>> x = Numeral(2).root(2) >>> x.approx(20) 6838717160008073720548335/4835703278458516698824704 >>> x.approx(5) 2965821/2097152 >>> Numeral(2).approx(10) 2 """ return self.upper(precision) def upper(self, precision=10): """Return a upper bound that approximates the numeral `self`. The result `r` is such that r - self <= 1/10^precision If `self` is rational, then the result is `self`. >>> x = Numeral(2).root(2) >>> x.upper(20) 6838717160008073720548335/4835703278458516698824704 >>> x.upper(5) 2965821/2097152 >>> Numeral(2).upper(10) 2 """ if self.is_rational(): return self else: return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx) def lower(self, precision=10): """Return a lower bound that approximates the numeral `self`. The result `r` is such that self - r <= 1/10^precision If `self` is rational, then the result is `self`. >>> x = Numeral(2).root(2) >>> x.lower(20) 1709679290002018430137083/1208925819614629174706176 >>> Numeral("2/3").lower(10) 2/3 """ if self.is_rational(): return self else: return Numeral(Z3_get_algebraic_number_lower(self.ctx_ref(), self.as_ast(), precision), self.ctx) def sign(self): """ Return the sign of the numeral. >>> Numeral(2).sign() 1 >>> Numeral(-3).sign() -1 >>> Numeral(0).sign() 0 """ return Z3_algebraic_sign(self.ctx_ref(), self.ast) def is_pos(self): """ Return True if the numeral is positive. >>> Numeral(2).is_pos() True >>> Numeral(-3).is_pos() False >>> Numeral(0).is_pos() False """ return Z3_algebraic_is_pos(self.ctx_ref(), self.ast) def is_neg(self): """ Return True if the numeral is negative. >>> Numeral(2).is_neg() False >>> Numeral(-3).is_neg() True >>> Numeral(0).is_neg() False """ return Z3_algebraic_is_neg(self.ctx_ref(), self.ast) def is_zero(self): """ Return True if the numeral is zero. >>> Numeral(2).is_zero() False >>> Numeral(-3).is_zero() False >>> Numeral(0).is_zero() True >>> sqrt2 = Numeral(2).root(2) >>> sqrt2.is_zero() False >>> (sqrt2 - sqrt2).is_zero() True """ return Z3_algebraic_is_zero(self.ctx_ref(), self.ast) def __add__(self, other): """ Return the numeral `self + other`. >>> Numeral(2) + 3 5 >>> Numeral(2) + Numeral(4) 6 >>> Numeral("2/3") + 1 5/3 """ return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx) def __radd__(self, other): """ Return the numeral `other + self`. >>> 3 + Numeral(2) 5 """ return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx) def __sub__(self, other): """ Return the numeral `self - other`. >>> Numeral(2) - 3 -1 """ return Numeral(Z3_algebraic_sub(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx) def __rsub__(self, other): """ Return the numeral `other - self`. >>> 3 - Numeral(2) 1 """ return Numeral(Z3_algebraic_sub(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx) def __mul__(self, other): """ Return the numeral `self * other`. >>> Numeral(2) * 3 6 """ return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx) def __rmul__(self, other): """ Return the numeral `other * mul`. >>> 3 * Numeral(2) 6 """ return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx) def __div__(self, other): """ Return the numeral `self / other`. >>> Numeral(2) / 3 2/3 >>> Numeral(2).root(2) / 3 0.4714045207? >>> Numeral(Sqrt(2)) / Numeral(Sqrt(3)) 0.8164965809? """ return Numeral(Z3_algebraic_div(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx) def __truediv__(self, other): return self.__div__(other) def __rdiv__(self, other): """ Return the numeral `other / self`. >>> 3 / Numeral(2) 3/2 >>> 3 / Numeral(2).root(2) 2.1213203435? """ return Numeral(Z3_algebraic_div(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx) def __rtruediv__(self, other): return self.__rdiv__(other) def root(self, k): """ Return the numeral `self^(1/k)`. >>> sqrt2 = Numeral(2).root(2) >>> sqrt2 1.4142135623? >>> sqrt2 * sqrt2 2 >>> sqrt2 * 2 + 1 3.8284271247? >>> (sqrt2 * 2 + 1).sexpr() '(root-obj (+ (^ x 2) (* (- 2) x) (- 7)) 2)' """ return Numeral(Z3_algebraic_root(self.ctx_ref(), self.ast, k), self.ctx) def power(self, k): """ Return the numeral `self^k`. >>> sqrt3 = Numeral(3).root(2) >>> sqrt3 1.7320508075? >>> sqrt3.power(2) 3 """ return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx) def __pow__(self, k): """ Return the numeral `self^k`. >>> sqrt3 = Numeral(3).root(2) >>> sqrt3 1.7320508075? >>> sqrt3**2 3 """ return self.power(k) def __lt__(self, other): """ Return True if `self < other`. >>> Numeral(Sqrt(2)) < 2 True >>> Numeral(Sqrt(3)) < Numeral(Sqrt(2)) False >>> Numeral(Sqrt(2)) < Numeral(Sqrt(2)) False """ return Z3_algebraic_lt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast) def __rlt__(self, other): """ Return True if `other < self`. >>> 2 < Numeral(Sqrt(2)) False """ return self > other def __gt__(self, other): """ Return True if `self > other`. >>> Numeral(Sqrt(2)) > 2 False >>> Numeral(Sqrt(3)) > Numeral(Sqrt(2)) True >>> Numeral(Sqrt(2)) > Numeral(Sqrt(2)) False """ return Z3_algebraic_gt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast) def __rgt__(self, other): """ Return True if `other > self`. >>> 2 > Numeral(Sqrt(2)) True """ return self < other def __le__(self, other): """ Return True if `self <= other`. >>> Numeral(Sqrt(2)) <= 2 True >>> Numeral(Sqrt(3)) <= Numeral(Sqrt(2)) False >>> Numeral(Sqrt(2)) <= Numeral(Sqrt(2)) True """ return Z3_algebraic_le(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast) def __rle__(self, other): """ Return True if `other <= self`. >>> 2 <= Numeral(Sqrt(2)) False """ return self >= other def __ge__(self, other): """ Return True if `self >= other`. >>> Numeral(Sqrt(2)) >= 2 False >>> Numeral(Sqrt(3)) >= Numeral(Sqrt(2)) True >>> Numeral(Sqrt(2)) >= Numeral(Sqrt(2)) True """ return Z3_algebraic_ge(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast) def __rge__(self, other): """ Return True if `other >= self`. >>> 2 >= Numeral(Sqrt(2)) True """ return self <= other def __eq__(self, other): """ Return True if `self == other`. >>> Numeral(Sqrt(2)) == 2 False >>> Numeral(Sqrt(3)) == Numeral(Sqrt(2)) False >>> Numeral(Sqrt(2)) == Numeral(Sqrt(2)) True """ return Z3_algebraic_eq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast) def __ne__(self, other): """ Return True if `self != other`. >>> Numeral(Sqrt(2)) != 2 True >>> Numeral(Sqrt(3)) != Numeral(Sqrt(2)) True >>> Numeral(Sqrt(2)) != Numeral(Sqrt(2)) False """ return Z3_algebraic_neq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast) def __str__(self): if Z3_is_numeral_ast(self.ctx_ref(), self.ast): return str(RatNumRef(self.ast, self.ctx)) else: return str(AlgebraicNumRef(self.ast, self.ctx)) def __repr__(self): return self.__str__() def sexpr(self): return Z3_ast_to_string(self.ctx_ref(), self.as_ast()) def as_ast(self): return self.ast def ctx_ref(self): return self.ctx.ref() def eval_sign_at(p, vs): """ Evaluate the sign of the polynomial `p` at `vs`. `p` is a Z3 Expression containing arithmetic operators: +, -, *, ^k where k is an integer; and free variables x that is_var(x) is True. Moreover, all variables must be real. The result is 1 if the polynomial is positive at the given point, -1 if negative, and 0 if zero. >>> x0, x1, x2 = RealVarVector(3) >>> eval_sign_at(x0**2 + x1*x2 + 1, (Numeral(0), Numeral(1), Numeral(2))) 1 >>> eval_sign_at(x0**2 - 2, [ Numeral(Sqrt(2)) ]) 0 >>> eval_sign_at((x0 + x1)*(x0 + x2), (Numeral(0), Numeral(Sqrt(2)), Numeral(Sqrt(3)))) 1 """ num = len(vs) _vs = (Ast * num)() for i in range(num): _vs[i] = vs[i].ast return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs) def isolate_roots(p, vs=[]): """ Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n). Remarks: * p is a Z3 expression that contains only arithmetic terms and free variables. * forall i in [0, n) vs is a numeral. The result is a list of numerals >>> x0 = RealVar(0) >>> isolate_roots(x0**5 - x0 - 1) [1.1673039782?] >>> x1 = RealVar(1) >>> isolate_roots(x0**2 - x1**4 - 1, [ Numeral(Sqrt(3)) ]) [-1.1892071150?, 1.1892071150?] >>> x2 = RealVar(2) >>> isolate_roots(x2**2 + x0 - x1, [ Numeral(Sqrt(3)), Numeral(Sqrt(2)) ]) [] """ num = len(vs) _vs = (Ast * num)() for i in range(num): _vs[i] = vs[i].ast _roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx) return [ Numeral(r) for r in _roots ]