summaryrefslogtreecommitdiffstats
path: root/.gitreview
diff options
context:
space:
mode:
authorAnton Gerasimov <anton@advancedtelematic.com>2017-04-25 12:10:29 +0200
committerAnton Gerasimov <anton@advancedtelematic.com>2017-04-25 12:10:29 +0200
commitb63b194b00bcceb815349115467707cb6096234a (patch)
tree60c77a0a0a23d55bb003bb0be7b9f401a85bb13f /.gitreview
parent3a9683269800ff63e287c8cb2147801ccb882ab0 (diff)
Pull new meta-updater that doesn't build rvi-sota-client by default
Bug-AGL: SPEC-561 Bug-AGL: SPEC-558 Change-Id: I4c32b3d99e0ec89f44217a24b8f75f89538a4d38 Signed-off-by: Anton Gerasimov <anton@advancedtelematic.com>
Diffstat (limited to '.gitreview')
0 files changed, 0 insertions, 0 deletions
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * Copyright (C) 2015, 2016 "IoT.bzh"
 * Author "Romain Forlot" <romain.forlot@iot.bzh>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *	 http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <map>
#include <cerrno>
#include <vector>
#include <string>
#include <fcntl.h>
#include <unistd.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <json-c/json.h>
#include <linux/can/raw.h>

#include "can-bus.hpp"

#include "can-decoder.hpp"
#include "../configuration.hpp"
#include "../utils/signals.hpp"
#include "../utils/openxc-utils.hpp"

extern "C"
{
	#include <afb/afb-binding.h>
}

/**
* @brief Class constructor
*
* @param struct afb_binding_interface *interface between daemon and binding
* @param int file handle to the json configuration file.
*/
can_bus_t::can_bus_t(int conf_file)
	: conf_file_{conf_file}
{
}

std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;

/**
 * @brief Will make the decoding operation on a classic CAN message. It will not
 * handle CAN commands nor diagnostic messages that have their own method to get
 * this happens.
 *
 * It will add to the vehicle_message queue the decoded message and tell the event push
 * thread to process it.
 *
 * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
 *
 * @return How many signals has been decoded.
 */
int can_bus_t::process_can_signals(can_message_t& can_message)
{
	int processed_signals = 0;
	std::vector <can_signal_t*> signals;
	openxc_DynamicField search_key, decoded_message;
	openxc_VehicleMessage vehicle_message;

	/* First we have to found which can_signal_t it is */
	search_key = build_DynamicField((double)can_message.get_id());
	configuration_t::instance().find_can_signals(search_key, signals);

	/* Decoding the message ! Don't kill the messenger ! */
	for(auto& sig : signals)
	{
		std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
		std::map<std::string, struct afb_event>& s = get_subscribed_signals();

		/* DEBUG message to make easier debugger STL containers...
		DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
		DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
		DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
		DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
		if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
		{
			decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());

			openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_generic_name(), decoded_message);
			vehicle_message = build_VehicleMessage(s_message);

			std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
			push_new_vehicle_message(vehicle_message);
			new_decoded_can_message_.notify_one();
			processed_signals++;
		}
	}

	DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
	return processed_signals;
}

/**
 * @brief Will make the decoding operation on a diagnostic CAN message.It will add to
 * the vehicle_message queue the decoded message and tell the event push thread to process it.
 *
 * @param[in] manager - the diagnostic manager object that handle diagnostic communication
 * @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
 *
 * @return How many signals has been decoded.
 */
int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
{
	int processed_signals = 0;

	std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
	std::map<std::string, struct afb_event>& s = get_subscribed_signals();

	openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
	if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
		(s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
	{
		std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
		push_new_vehicle_message(vehicle_message);
		new_decoded_can_message_.notify_one();
		processed_signals++;
	}

	return processed_signals;
}

/**
* @brief thread to decoding raw CAN messages.
*
* @desc It will take from the can_message_q_ queue the next can message to process then it will search
*  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
*  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
*  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
*  noopDecoder function that will operate on it.
*
*  Depending on the nature of message, if id match a diagnostic request corresponding id for a response
*  then decoding a diagnostic message else use classic CAN signals decoding functions.
*
*  TODO: make diagnostic messages parsing optionnal.
*/
void can_bus_t::can_decode_message()
{
	can_message_t can_message;

	while(is_decoding_)
	{
		std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
		new_can_message_cv_.wait(can_message_lock);
		can_message = next_can_message();

		if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
			process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
		else
			process_can_signals(can_message);
	}
}

/**
* @brief thread to push events to suscribers. It will read subscribed_signals map to look
* which are events that has to be pushed.
*/
void can_bus_t::can_event_push()
{
	openxc_VehicleMessage v_message;
	openxc_SimpleMessage s_message;
	json_object* jo;

	while(is_pushing_)
	{
		std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
		new_decoded_can_message_.wait(decoded_can_message_lock);
		v_message = next_vehicle_message();

		s_message = get_simple_message(v_message);
		{
			std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
			std::map<std::string, struct afb_event>& s = get_subscribed_signals();
			if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
			{
				jo = json_object_new_object();
				jsonify_simple(s_message, jo);
				afb_event_push(s[std::string(s_message.name)], jo);
			}
		}
	}
}

/**
* @brief Will initialize threads that will decode
*  and push subscribed events.
*/
void can_bus_t::start_threads()
{
	is_decoding_ = true;
	th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
	if(!th_decoding_.joinable())
		is_decoding_ = false;

	is_pushing_ = true;
	th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
	if(!th_pushing_.joinable())
		is_pushing_ = false;
}

/**
* @brief Will stop all threads holded by can_bus_t object
*  which are decoding and pushing then will wait that's
* they'll finish their job.
*/
void can_bus_t::stop_threads()
{
	is_decoding_ = false;
	is_pushing_ = false;
}

/**
* @brief Will initialize can_bus_dev_t objects after reading
* the configuration file passed in the constructor. All CAN buses
* Initialized here will be added to a vector holding them for
* inventory and later access.
*
* That will initialize CAN socket reading too using a new thread.
*/
int can_bus_t::init_can_dev()
{
	std::vector<std::string> devices_name;
	int i = 0;
	size_t t;

	devices_name = read_conf();

	if (! devices_name.empty())
	{
		t = devices_name.size();

		for(const auto& device : devices_name)
		{
			can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
			if (can_bus_t::can_devices_[device]->open() == 0)
			{
				DEBUG(binder_interface, "Start reading thread");
				NOTICE(binder_interface, "%s device opened and reading", device.c_str());
				can_bus_t::can_devices_[device]->start_reading(*this);
				i++;
			}
			else
				ERROR(binder_interface, "Can't open device %s", device.c_str());
		}

		NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
		return 0;
	}
	ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
	return 1;
}

/**
* @brief read the conf_file_ and will parse json objects
* in it searching for canbus objects devices name.
*
* @return Vector of can bus device name string.
*/
std::vector<std::string> can_bus_t::read_conf()
{
	std::vector<std::string> ret;
	json_object *jo, *canbus;
	int n, i;
	const char* taxi;

	FILE *fd = fdopen(conf_file_, "r");
	if (fd)
	{
		std::string fd_conf_content;
		std::fseek(fd, 0, SEEK_END);
		fd_conf_content.resize(std::ftell(fd));
		std::rewind(fd);
		std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
		std::fclose(fd);

		DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
		jo = json_tokener_parse(fd_conf_content.c_str());

		if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
		{
			ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
			ret.clear();
		}
		else if (json_object_get_type(canbus) != json_type_array)
		{
			taxi = json_object_get_string(canbus);
			DEBUG(binder_interface, "Can bus found: %s", taxi);
			ret.push_back(std::string(taxi));
		}
		else
		{
			n = json_object_array_length(canbus);
			for (i = 0 ; i < n ; i++)
				ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
		}
		return ret;
	}
	ERROR(binder_interface, "Problem at reading the conf file");
	ret.clear();
	return ret;
}

/**
* @brief return new_can_message_cv_ member
*
* @return  return new_can_message_cv_ member
*/
std::condition_variable& can_bus_t::get_new_can_message_cv()
{
	return new_can_message_cv_;
}

/**
* @brief return can_message_mutex_ member
*
* @return  return can_message_mutex_ member
*/
std::mutex& can_bus_t::get_can_message_mutex()
{
	return can_message_mutex_;
}

/**
* @brief Return first can_message_t on the queue
*
* @return a can_message_t
*/
can_message_t can_bus_t::next_can_message()
{
	can_message_t can_msg;

	if(!can_message_q_.empty())
	{
		can_msg = can_message_q_.front();
		can_message_q_.pop();
		DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
			can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
		return can_msg;
	}

	return can_msg;
}

/**
* @brief Push a can_message_t into the queue
*
* @param the const reference can_message_t object to push into the queue
*/
void can_bus_t::push_new_can_message(const can_message_t& can_msg)
{
	can_message_q_.push(can_msg);
}

/**
* @brief Return first openxc_VehicleMessage on the queue
*
* @return a openxc_VehicleMessage containing a decoded can message
*/
openxc_VehicleMessage can_bus_t::next_vehicle_message()
{
	openxc_VehicleMessage v_msg;

	if(! vehicle_message_q_.empty())
	{
		v_msg = vehicle_message_q_.front();
		vehicle_message_q_.pop();
		DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
		return v_msg;
	}

	return v_msg;
}

/**
* @brief Push a openxc_VehicleMessage into the queue
*
* @param the const reference openxc_VehicleMessage object to push into the queue
*/
void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
{
	vehicle_message_q_.push(v_msg);
}

/**
* @brief Return a map with the can_bus_dev_t initialized
*
* @return map can_bus_dev_m_ map
*/
const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
{
	return can_bus_t::can_devices_;
}

/**
* @brief Return the shared pointer on the can_bus_dev_t initialized 
* with device_name "bus"
*
* @param[in] bus - CAN bus device name to retrieve.
*
* @return A shared pointer on an object can_bus_dev_t
*/
std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
{
	return can_bus_t::can_devices_[bus];
}