summaryrefslogtreecommitdiffstats
path: root/recipes-qt/qt/qtmultimedia_agldemo.inc
AgeCommit message (Collapse)AuthorFilesLines
2021-11-17Convert to new override syntaxlamprey_12.1.2lamprey_12.1.1lamprey_12.1.0lamprey/12.1.2lamprey/12.1.1lamprey/12.1.012.1.212.1.112.1.0Scott Murray1-3/+3
This is effectively a manual cherry-pick and squash of commits: 4249268041b879b3d2bae338d5de88f4f2d54b26 07f4ab8c2833ae5377b97cc9e3820bed67e539d0 from the master branch with additional review and fixups. The intent of these changes is to minimize the effort to backport fixes from the master branch, which has been updated in preparation for the switch to the next Yocto LTS release in early 2022. Bug-AGL: SPEC-4144 Signed-off-by: Scott Murray <scott.murray@konsulko.com> Change-Id: I3b47f1b7d62038b314a17763d24a64f6d4e15e72
2020-12-17SPEC-3723: restructure meta-agl-demoJan-Simon Moeller1-0/+7
All demo related components should be in here now. We keep the packagegroups on purpose for now to stay backward-compatible. v2: layer does pass yocto-check-layer, dependencies adapted v3: remove the dynamic-layer setup, use all-in-one approach v4: Fixed comments from Paul Barker. Tnx! v5: Removed wayland/weston/agl-compositor additions, except for demo specific weston-init bbappend Follow-up changes required later: - massaging packagegroups - scrub of recipes Bug-AGL: SPEC-3723 Signed-off-by: Jan-Simon Moeller <jsmoeller@linuxfoundation.org> Signed-off-by: Scott Murray <scott.murray@konsulko.com> Change-Id: I47cefd8c23d46b2cdd063470e3f7d97d5ad952d8
id='n110' href='#n110'>110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Copyright (C) 2015, 2018 "IoT.bzh"
 * Author "Romain Forlot" <romain.forlot@iot.bzh>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *	 http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <net/if.h>
#include <sys/socket.h>
#include <json-c/json.h>
#include <linux/can/raw.h>
#include <map>
#include <cerrno>
#include <vector>
#include <string>
#include <algorithm>

#include "can-bus.hpp"

#include "signals.hpp"
#include "can-decoder.hpp"
#include "../binding/application.hpp"
#include "../utils/signals.hpp"
#include "../utils/openxc-utils.hpp"

/// @brief Class destructor
///
/// @param[in] conf_file - Stop threads and unlock them to correctly finish them
/// even without any activity on the CAN bus.
can_bus_t::~can_bus_t()
{
	stop_threads();
	new_can_message_cv_.notify_one();
}

/// @brief Class constructor
///
/// @param[in] conf_file - handle to the json configuration file.
can_bus_t::can_bus_t(utils::config_parser_t conf_file)
	: conf_file_{conf_file}
{}

/// @brief Take a decoded message to determine if its value complies with the desired
/// filters.
///
/// @param[in] vehicle_message - The decoded message to be analyzed.
/// @param[in] can_subscription - the subscription which will be notified depending
///  on its filtering values. Filtering values are stored in the event_filtermember.
///
/// @return True if the value is compliant with event filter values, false if not...
bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription)
{
	bool send = false;
	if(is_valid(vehicle_message))
	{
		float min = can_subscription->get_min();
		float max = can_subscription->get_max();
		double value = get_numerical_from_DynamicField(vehicle_message);
		send = (value < min || value > max) ? false : true;
	}
	return send;
}

/// @brief Will make the decoding operation on a classic CAN message. It will not
/// handle CAN commands nor diagnostic messages that have their own method to get
/// this happens.
///
/// It will add to the vehicle_message queue the decoded message and tell the event push
/// thread to process it.
///
/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
///
/// @return How many signals has been decoded.
void can_bus_t::process_signals(std::shared_ptr<message_t> message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s)
{
	int subscription_id = message->get_sub_id();
	openxc_DynamicField decoded_message;
	openxc_VehicleMessage vehicle_message;

	if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
	{
		bool send = true;
		// First we have to found which signal_t it is
		std::shared_ptr<low_can_subscription_t> sig = s[subscription_id];

		decoded_message = decoder_t::translate_signal(*sig->get_signal(), message, &send);
		openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
		vehicle_message = build_VehicleMessage(s_message, message->get_timestamp());

		if(send && apply_filter(vehicle_message, sig))
		{
			std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
			push_new_vehicle_message(subscription_id, vehicle_message);
			AFB_DEBUG("%s CAN signals processed.", sig->get_name().c_str());
		}
	}
}

/// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
/// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
/// the event push thread to process it.
///
/// @param[in] manager - the diagnostic manager object that handle diagnostic communication
/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
///
/// @return How many signals has been decoded.
void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, std::shared_ptr<message_t> message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s)
{
	int subscription_id = message->get_sub_id();

	openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(message);
	if (message->get_timestamp())
		{vehicle_message.timestamp = message->get_timestamp();}
	if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
		s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event()))
	{
		if (apply_filter(vehicle_message, s[subscription_id]))
		{
			std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
			push_new_vehicle_message(subscription_id, vehicle_message);
			AFB_DEBUG("%s CAN signals processed.",  s[subscription_id]->get_name().c_str());
		}
	}
}

/// @brief thread to decoding raw CAN messages.
///
///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
///  then decoding a diagnostic message else use classic CAN signals decoding functions.
///
/// It will take from the can_message_q_ queue the next can message to process then it search
///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
///  subscription has been made. Can message will be decoded using translate_signal that will pass it to the
///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
///  noopDecoder function that will operate on it.
///
///  TODO: make diagnostic messages parsing optionnal.
void can_bus_t::can_decode_message()
{
	utils::signals_manager_t& sm = utils::signals_manager_t::instance();

	while(is_decoding_)
	{
		std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
		new_can_message_cv_.wait(can_message_lock);
		while(!can_message_q_.empty())
		{
			std::shared_ptr<message_t>  message = next_can_message();
			can_message_lock.unlock();

			{
				std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
				std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
				if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(message))
				{
					process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), message, s);
				}
				else
					{process_signals(message, s);}
			}
			can_message_lock.lock();
		}
		new_decoded_can_message_.notify_one();
		can_message_lock.unlock();
	}
}

/// @brief thread to push events to suscribers. It will read subscribed_signals map to look
/// which are events that has to be pushed.
void can_bus_t::can_event_push()
{
	json_object* jo;
	utils::signals_manager_t& sm = utils::signals_manager_t::instance();

	while(is_pushing_)
	{
		std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
		new_decoded_can_message_.wait(decoded_can_message_lock);
		while(!vehicle_message_q_.empty())
		{
			std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message();
			decoded_can_message_lock.unlock();
			{
				std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
				std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals();
				if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event()))
				{
					jo = json_object_new_object();
					jsonify_vehicle(v_message.second, jo);
					if(afb_event_push(s[v_message.first]->get_event(), jo) == 0)
					{
						if(v_message.second.has_diagnostic_response)
							{on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);}
						else
							{on_no_clients(s[v_message.first], s);}
					}
				}
			}
			decoded_can_message_lock.lock();
		}
		decoded_can_message_lock.unlock();
	}
}

/// @brief Will initialize threads that will decode
///  and push subscribed events.
void can_bus_t::start_threads()
{
	is_decoding_ = true;
	th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
	th_decoding_.detach();

	is_pushing_ = true;
	th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
	th_pushing_.detach();
}

/// @brief Will stop all threads holded by can_bus_t object
///  which are decoding and pushing then will wait that's
/// they'll finish their job.
void can_bus_t::stop_threads()
{
	is_decoding_ = false;
	is_pushing_ = false;
}

/// @brief return new_can_message_cv_ member
///
/// @return  return new_can_message_cv_ member
std::condition_variable& can_bus_t::get_new_can_message_cv()
{
	return new_can_message_cv_;
}

/// @brief return can_message_mutex_ member
///
/// @return  return can_message_mutex_ member
std::mutex& can_bus_t::get_can_message_mutex()
{
	return can_message_mutex_;
}

/// @brief Return first can_message_t on the queue
///
/// @return a can_message_t
std::shared_ptr<message_t> can_bus_t::next_can_message()
{
	std::shared_ptr<message_t> msg;

	if(!can_message_q_.empty())
	{
		msg = can_message_q_.front();
		can_message_q_.pop();
		std::string debug = msg->get_debug_message();
		AFB_DEBUG(debug.c_str());
		return msg;
	}

	return msg;
}

/// @brief Push a message_t into the queue
///
/// @param[in] msg - the const reference message_t object to push into the queue
void can_bus_t::push_new_can_message(std::shared_ptr<message_t> msg)
{
	can_message_q_.push(msg);
}

/// @brief Return first openxc_VehicleMessage on the queue
///
/// @return a openxc_VehicleMessage containing a decoded can message
std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message()
{
	std::pair<int, openxc_VehicleMessage> v_msg;

	if(! vehicle_message_q_.empty())
	{
		v_msg = vehicle_message_q_.front();
		vehicle_message_q_.pop();
		AFB_DEBUG("next vehicle message poped");
		return v_msg;
	}

	return v_msg;
}

/// @brief Push a openxc_VehicleMessage into the queue
///
/// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg)
{
	vehicle_message_q_.push(std::make_pair(subscription_id, v_msg));
}

/// @brief Fills the CAN device map member with value from device
/// mapping configuration file read at initialization.
void can_bus_t::set_can_devices()
{
	if(conf_file_.check_conf())
	{
		can_devices_mapping_ = conf_file_.get_devices_name();

		if(can_devices_mapping_.empty())
		{
			AFB_ERROR("No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.",
				conf_file_.filepath().c_str());
		}
	}
}


/// @brief Return the CAN device index from the map
/// map are sorted so index depend upon alphabetical sorting.
int can_bus_t::get_can_device_index(const std::string& bus_name) const
{
	int i = 0;
	for(const auto& d: can_devices_mapping_)
	{
		if(d.first == bus_name)
			break;
		i++;
	}
	return i;
}

/// @brief Return CAN device name from a logical CAN device name gotten from
/// the signals.json description file which comes from a CAN databases file in
/// general.
const std::string can_bus_t::get_can_device_name(const std::string& id_name) const
{
	std::string ret = "";
	for(const auto& d: can_devices_mapping_)
	{
		if(d.first == id_name)
		{
			ret = d.second;
			break;
		}
	}
	return ret;
}