summaryrefslogtreecommitdiffstats
path: root/CAN-binder/libs/nanopb/tests/regression/issue_118/SConscript
blob: 833d9dec720ad5039d4c604c8c7af5c45c41f2ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
# Regression test for Issue 118: Short enum names in imported proto files are not honoured

Import("env")
env = env.Clone()
env.Append(PROTOCPATH = "#regression/issue_118")

env.NanopbProto("enumdef")
env.Object('enumdef.pb.c')

env.NanopbProto(["enumuse", "enumdef.proto"])
env.Object('enumuse.pb.c')
60' href='#n360'>360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#include <uds/uds.h>
#include <bitfield/bitfield.h>
#include <canutil/read.h>
#include <string.h>
#include <limits.h>
#include <stddef.h>
#include <sys/param.h>
#include <inttypes.h>

#define ARBITRATION_ID_OFFSET 0x8
#define MODE_RESPONSE_OFFSET 0x40
#define NEGATIVE_RESPONSE_MODE 0x7f
#define MAX_DIAGNOSTIC_PAYLOAD_SIZE 6
#define MODE_BYTE_INDEX 0
#define PID_BYTE_INDEX 1
#define NEGATIVE_RESPONSE_MODE_INDEX 1
#define NEGATIVE_RESPONSE_NRC_INDEX 2

#ifndef MAX
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#endif

DiagnosticShims diagnostic_init_shims(LogShim log,
        SendCanMessageShim send_can_message,
        SetTimerShim set_timer) {
    DiagnosticShims shims = {
        log: log,
        send_can_message: send_can_message,
        set_timer: set_timer
    };
    return shims;
}

static void setup_receive_handle(DiagnosticRequestHandle* handle) {
    if(handle->request.arbitration_id == OBD2_FUNCTIONAL_BROADCAST_ID) {
        uint32_t response_id;
        for(response_id = 0;
                response_id < OBD2_FUNCTIONAL_RESPONSE_COUNT; ++response_id) {
            handle->isotp_receive_handles[response_id] = isotp_receive(
                    &handle->isotp_shims,
                    OBD2_FUNCTIONAL_RESPONSE_START + response_id,
                    NULL);
        }
        handle->isotp_receive_handle_count = OBD2_FUNCTIONAL_RESPONSE_COUNT;
    } else {
        handle->isotp_receive_handle_count = 1;
        handle->isotp_receive_handles[0] = isotp_receive(&handle->isotp_shims,
                handle->request.arbitration_id + ARBITRATION_ID_OFFSET,
                NULL);
    }
}

static uint16_t autoset_pid_length(uint8_t mode, uint16_t pid,
        uint8_t pid_length) {
    if(pid_length == 0) {
        if(mode <= 0xa || mode == 0x3e ) {
            pid_length = 1;
        } else if(pid > 0xffff || ((pid & 0xFF00) > 0x0)) {
            pid_length = 2;
        } else {
            pid_length = 1;
        }
    }
    return pid_length;
}

static void send_diagnostic_request(DiagnosticShims* shims,
        DiagnosticRequestHandle* handle) {
    uint8_t payload[MAX_DIAGNOSTIC_PAYLOAD_SIZE] = {0};
    payload[MODE_BYTE_INDEX] = handle->request.mode;
    if(handle->request.has_pid) {
        handle->request.pid_length = autoset_pid_length(handle->request.mode,
                handle->request.pid, handle->request.pid_length);
        set_bitfield(handle->request.pid, PID_BYTE_INDEX * CHAR_BIT,
                handle->request.pid_length * CHAR_BIT, payload,
                sizeof(payload));
    }

    if(handle->request.payload_length > 0) {
        memcpy(&payload[PID_BYTE_INDEX + handle->request.pid_length],
                handle->request.payload, handle->request.payload_length);
    }

    handle->isotp_send_handle = isotp_send(&handle->isotp_shims,
            handle->request.arbitration_id, payload,
            1 + handle->request.payload_length + handle->request.pid_length,
            NULL);
    if(handle->isotp_send_handle.completed &&
            !handle->isotp_send_handle.success) {
        handle->completed = true;
        handle->success = false;
        if(shims->log != NULL) {
            shims->log("%s", "Diagnostic request not sent");
        }
    } else if(shims->log != NULL) {
        char request_string[128] = {0};
        diagnostic_request_to_string(&handle->request, request_string,
                sizeof(request_string));
        shims->log("Sending diagnostic request: %s", request_string);
    }
}

bool diagnostic_request_sent(DiagnosticRequestHandle* handle) {
    return handle->isotp_send_handle.completed;
}

void start_diagnostic_request(DiagnosticShims* shims,
        DiagnosticRequestHandle* handle) {
    handle->success = false;
    handle->completed = false;
    send_diagnostic_request(shims, handle);
    if(!handle->completed) {
        setup_receive_handle(handle);
    }
}

DiagnosticRequestHandle generate_diagnostic_request(DiagnosticShims* shims,
        DiagnosticRequest* request, DiagnosticResponseReceived callback) {
    DiagnosticRequestHandle handle = {
        request: *request,
        callback: callback,
        success: false,
        completed: false
    };

    handle.isotp_shims = isotp_init_shims(shims->log,
            shims->send_can_message,
            shims->set_timer);
    handle.isotp_shims.frame_padding = !request->no_frame_padding;

    return handle;
    // TODO notes on multi frame:
    // TODO what are the timers for exactly?
    //
    // when sending multi frame, send 1 frame, wait for a response
    // if it says send all, send all right away
    // if it says flow control, set the time for the next send
    // instead of creating a timer with an async callback, add a process_handle
    // function that's called repeatedly in the main loop - if it's time to
    // send, we do it. so there's a process_handle_send and receive_can_frame
    // that are just called continuously from the main loop. it's a waste of a
    // few cpu cycles but it may be more  natural than callbacks.
    //
    // what would a timer callback look like...it would need to pass the handle
    // and that's all. seems like a context void* would be able to capture all
    // of the information but arg, memory allocation. look at how it's done in
    // the other library again
    //
}

DiagnosticRequestHandle diagnostic_request(DiagnosticShims* shims,
        DiagnosticRequest* request, DiagnosticResponseReceived callback) {
    DiagnosticRequestHandle handle = generate_diagnostic_request(
            shims, request, callback);
    start_diagnostic_request(shims, &handle);
    return handle;
}

DiagnosticRequestHandle diagnostic_request_pid(DiagnosticShims* shims,
        DiagnosticPidRequestType pid_request_type, uint32_t arbitration_id,
        uint16_t pid, DiagnosticResponseReceived callback) {
    DiagnosticRequest request = {
        arbitration_id: arbitration_id,
        mode: pid_request_type == DIAGNOSTIC_STANDARD_PID ? 0x1 : 0x22,
        has_pid: true,
        pid: pid
    };

    return diagnostic_request(shims, &request, callback);
}

static bool handle_negative_response(IsoTpMessage* message,
        DiagnosticResponse* response, DiagnosticShims* shims) {
    bool response_was_negative = false;
    if(response->mode == NEGATIVE_RESPONSE_MODE) {
        response_was_negative = true;
        if(message->size > NEGATIVE_RESPONSE_MODE_INDEX) {
            response->mode = message->payload[NEGATIVE_RESPONSE_MODE_INDEX];
        }

        if(message->size > NEGATIVE_RESPONSE_NRC_INDEX) {
            response->negative_response_code =
                    message->payload[NEGATIVE_RESPONSE_NRC_INDEX];
        }

        response->success = false;
        response->completed = true;
    }
    return response_was_negative;
}

static bool handle_positive_response(DiagnosticRequestHandle* handle,
        IsoTpMessage* message, DiagnosticResponse* response,
        DiagnosticShims* shims) {
    bool response_was_positive = false;
    if(response->mode == handle->request.mode + MODE_RESPONSE_OFFSET) {
        response_was_positive = true;
        // hide the "response" version of the mode from the user
        // if it matched
        response->mode = handle->request.mode;
        response->has_pid = false;
        if(handle->request.has_pid && message->size > 1) {
            response->has_pid = true;
            if(handle->request.pid_length == 2) {
                response->pid = get_bitfield(message->payload, message->size,
                        PID_BYTE_INDEX * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT);
            } else {
                response->pid = message->payload[PID_BYTE_INDEX];
            }

        }

        if((!handle->request.has_pid && !response->has_pid)
                || response->pid == handle->request.pid) {
            response->success = true;
            response->completed = true;

            uint8_t payload_index = 1 + handle->request.pid_length;
            response->payload_length = MAX(0, message->size - payload_index);
            if(response->payload_length > 0) {
                memcpy(response->payload, &message->payload[payload_index],
                        response->payload_length);
            }
        } else {
            response_was_positive = false;
        }
    }
    return response_was_positive;
}

DiagnosticResponse diagnostic_receive_can_frame(DiagnosticShims* shims,
        DiagnosticRequestHandle* handle, const uint32_t arbitration_id,
        const uint8_t data[], const uint8_t size) {

    DiagnosticResponse response = {
        arbitration_id: arbitration_id,
        multi_frame: false,
        success: false,
        completed: false
    };

    if(!handle->isotp_send_handle.completed) {
        isotp_continue_send(&handle->isotp_shims,
                &handle->isotp_send_handle, arbitration_id, data, size);
    } else {
        uint8_t i;
        for(i = 0; i < handle->isotp_receive_handle_count; ++i) {
            IsoTpMessage message = isotp_continue_receive(&handle->isotp_shims,
                    &handle->isotp_receive_handles[i], arbitration_id, data,
                    size);
            response.multi_frame = message.multi_frame;

            if(message.completed) {
                if(message.size > 0) {
                    response.mode = message.payload[0];
                    if(handle_negative_response(&message, &response, shims) ||
                            handle_positive_response(handle, &message,
                                &response, shims)) {
                        if(shims->log != NULL) {
                            char response_string[128] = {0};
                            diagnostic_response_to_string(&response,
                                    response_string, sizeof(response_string));
                            shims->log("Diagnostic response received: %s",
                                    response_string);
                        }

                        handle->success = true;
                        handle->completed = true;
                    }
                } else {
                    if(shims->log != NULL) {
                        shims->log("Received an empty response on arb ID 0x%x",
                                response.arbitration_id);
                    }
                }

                if(handle->completed && handle->callback != NULL) {
                    handle->callback(&response);
                }

                break;
            }
        }
    }
    return response;
}

int diagnostic_payload_to_integer(const DiagnosticResponse* response) {
    return get_bitfield(response->payload, response->payload_length, 0,
            response->payload_length * CHAR_BIT);
}

float diagnostic_decode_obd2_pid(const DiagnosticResponse* response) {
    // handles on the single number values, not the bit encoded ones
    switch(response->pid) {
        case 0xa:
            return response->payload[0] * 3;
        case 0xc:
            return (response->payload[0] * 256 + response->payload[1]) / 4.0;
        case 0xd:
        case 0x33:
        case 0xb:
            return response->payload[0];
        case 0x10:
            return (response->payload[0] * 256 + response->payload[1]) / 100.0;
        case 0x11:
        case 0x2f:
        case 0x45:
        case 0x4c:
        case 0x52:
        case 0x5a:
        case 0x4:
            return response->payload[0] * 100.0 / 255.0;
        case 0x46:
        case 0x5c:
        case 0xf:
        case 0x5:
            return response->payload[0] - 40;
        case 0x62:
            return response->payload[0] - 125;
        default:
            return diagnostic_payload_to_integer(response);
    }
}

void diagnostic_response_to_string(const DiagnosticResponse* response,
        char* destination, size_t destination_length) {
    int bytes_used = snprintf(destination, destination_length,
            "arb_id: 0x%lx, mode: 0x%x, ",
            (unsigned long) response->arbitration_id,
            response->mode);

    if(response->has_pid) {
        bytes_used += snprintf(destination + bytes_used,
                destination_length - bytes_used,
                "pid: 0x%x, ",
                response->pid);
    }

    if(!response->success) {
        bytes_used += snprintf(destination + bytes_used,
                destination_length - bytes_used,
                "nrc: 0x%x, ",
                response->negative_response_code);
    }

    if(response->payload_length > 0) {
        snprintf(destination + bytes_used, destination_length - bytes_used,
                "payload: 0x%02x%02x%02x%02x%02x%02x%02x",
                response->payload[0],
                response->payload[1],
                response->payload[2],
                response->payload[3],
                response->payload[4],
                response->payload[5],
                response->payload[6]);
    } else {
        snprintf(destination + bytes_used, destination_length - bytes_used,
                "no payload");
    }
}

void diagnostic_request_to_string(const DiagnosticRequest* request,
        char* destination, size_t destination_length) {
    int bytes_used = snprintf(destination, destination_length,
            "arb_id: 0x%lx, mode: 0x%x, ",
            (unsigned long) request->arbitration_id,
            request->mode);

    if(request->has_pid) {
        bytes_used += snprintf(destination + bytes_used,
                destination_length - bytes_used,
                "pid: 0x%x, ",
                request->pid);
    }

    int remaining_space = destination_length - bytes_used;
    if(request->payload_length > 0) {
        snprintf(destination + bytes_used, remaining_space,
                "payload: 0x%02x%02x%02x%02x%02x%02x%02x",
                request->payload[0],
                request->payload[1],
                request->payload[2],
                request->payload[3],
                request->payload[4],
                request->payload[5],
                request->payload[6]);
    } else {
        snprintf(destination + bytes_used, remaining_space, "no payload");
    }
}

bool diagnostic_request_equals(const DiagnosticRequest* ours,
        const DiagnosticRequest* theirs) {
    bool equals = ours->arbitration_id == theirs->arbitration_id &&
        ours->mode == theirs->mode;
    equals &= ours->has_pid == theirs->has_pid;
    equals &= ours->pid == theirs->pid;
    return equals;
}