<?xml version="1.0" encoding="UTF-8"?>
<manifest>
<remote fetch="https://gerrit.automotivelinux.org/gerrit/" name="agl" pushurl="ssh://gerrit.automotivelinux.org:29418" review="https://gerrit.automotivelinux.org/gerrit/"/>
<remote fetch="https://github.com/" name="github"/>
<remote fetch="git://git.openembedded.org/" name="openembedded"/>
<remote fetch="git://code.qt.io/" name="qt.io"/>
<remote fetch="git://git.yoctoproject.org/" name="yocto"/>
<default remote="agl" revision="refs/tags/eel/5.0.1" sync-j="4"/>
<project name="01org/meta-intel-iot-security" path="meta-intel-iot-security" remote="github" revision="20bbb97f6d5400b126ae96ef446c3e60c7e16285"/>
<project name="01org/meta-security-isafw" path="meta-security-isafw" remote="github" revision="0fa0aff75ee21edd758a1baddc4522371a746f99" upstream="morty"/>
<project name="AGL/meta-agl" path="meta-agl" />
<project name="AGL/meta-agl-demo" path="meta-agl-demo" />
<project name="AGL/meta-agl-devel" path="meta-agl-devel" />
<project name="AGL/meta-agl-extra" path="meta-agl-extra" />
<project name="AGL/meta-renesas" path="meta-renesas" />
<project name="AGL/meta-renesas-rcar-gen3" path="meta-renesas-rcar-gen3" />
<project name="Freescale/meta-freescale" path="meta-freescale" remote="github" revision="06178400afbd641a6709473fd21d893dcd3cfbfa" upstream="pyro"/>
<project name="Freescale/meta-freescale-3rdparty" path="meta-freescale-3rdparty" remote="github" revision="35badbde05d4f10d4faeefc30bc126b5bd228e2e" upstream="pyro"/>
<project name="Freescale/meta-freescale-distro" path="meta-freescale-distro" remote="github" /*
* Copyright (C) 2015, 2016 "IoT.bzh"
* Author "Romain Forlot" <romain.forlot@iot.bzh>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <net/if.h>
#include <sys/socket.h>
#include <json-c/json.h>
#include <linux/can/raw.h>
#include <map>
#include <cerrno>
#include <vector>
#include <string>
#include <algorithm>
#include "can-bus.hpp"
#include "can-signals.hpp"
#include "can-decoder.hpp"
#include "../configuration.hpp"
#include "../utils/signals.hpp"
#include "../utils/openxc-utils.hpp"
extern "C"
{
#include <afb/afb-binding.h>
}
/// @brief Class constructor
///
/// @param[in] conf_file - handle to the json configuration file.
can_bus_t::can_bus_t(utils::config_parser_t conf_file)
: conf_file_{conf_file}
{}
std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;
/// @brief Listen for all device sockets and fill can_messages_queue with them.
/// Reading blocks until message arrive on listened sockets.
///
/// @return 0 if ok -1 if not
int can_bus_t::can_reader()
{
fd_set rfds;
int sock_max = INVALID_SOCKET;
FD_ZERO(&rfds);
for(auto& can_dev : can_devices_)
{
FD_SET(can_dev.second->get_socket().socket(), &rfds);
if (sock_max < can_dev.second->get_socket().socket())
sock_max = can_dev.second->get_socket().socket();
}
int ret;
while(is_reading_)
{
ret = select(sock_max + 1, &rfds, nullptr, nullptr, nullptr);
if(ret == -1)
perror("select()");
else if(ret > 0)
{
for(const auto& s: can_devices_)
{
if(FD_ISSET(s.second->get_socket().socket(), &rfds))
{
can_message_t msg;
s.second->get_socket() >> msg;
std::lock_guard<std::mutex> can_message_lock(get_can_message_mutex());
{ push_new_can_message(msg); }
get_new_can_message_cv().notify_one();
}
}
}
else
printf("Timeout\n");
}
return 0;
}
/// @brief Will make the decoding operation on a classic CAN message. It will not
/// handle CAN commands nor diagnostic messages that have their own method to get
/// this happens.
///
/// It will add to the vehicle_message queue the decoded message and tell the event push
/// thread to process it.
///
/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
///
/// @return How many signals has been decoded.
int can_bus_t::process_can_signals(can_message_t& can_message)
{
int processed_signals = 0;
struct utils::signals_found signals;
openxc_DynamicField search_key, decoded_message;
openxc_VehicleMessage vehicle_message;
configuration_t& conf = configuration_t::instance();
utils::signals_manager_t& sm = utils::signals_manager_t::instance();
// First we have to found which can_signal_t it is
search_key = build_DynamicField((double)can_message.get_id());
signals = sm.find_signals(search_key);
// Decoding the message ! Don't kill the messenger !
for(auto& sig : signals.can_signals)
{
std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
// DEBUG message to make easier debugger STL containers...
//DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
//DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
//DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
//DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
{
bool send = true;
decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals(), &send);
if(send)
{
openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
vehicle_message = build_VehicleMessage(s_message);
std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
push_new_vehicle_message(vehicle_message);
}
processed_signals++;
}
}
DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
return processed_signals;
}
/// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
/// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
/// the event push thread to process it.
///
/// @param[in] manager - the diagnostic manager object that handle diagnostic communication
/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
///
/// @return How many signals has been decoded.
int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
{
int processed_signals = 0;
utils::signals_manager_t& sm = utils::signals_manager_t::instance();
std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
(s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
{
std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
push_new_vehicle_message(vehicle_message);
processed_signals++;
}
return processed_signals;
}
/// @brief thread to decoding raw CAN messages.
///
/// Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
/// then decoding a diagnostic message else use classic CAN signals decoding functions.
///
/// It will take from the can_message_q_ queue the next can message to process then it search
/// about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
/// subscription has been made. Can message will be decoded using translateSignal that will pass it to the
/// corresponding decoding function if there is one assigned for that signal. If not, it will be the default
/// noopDecoder function that will operate on it.
///
/// TODO: make diagnostic messages parsing optionnal.
void can_bus_t::can_decode_message()
{
can_message_t can_message;
while(is_decoding_)
{
{
std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
new_can_message_cv_.wait(can_message_lock);
while(!can_message_q_.empty())
{
can_message = next_can_message();
if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
else
process_can_signals(can_message);
}
}
new_decoded_can_message_.notify_one();
}
}
/// @brief thread to push events to suscribers. It will read subscribed_signals map to look
/// which are events that has to be pushed.
void can_bus_t::can_event_push()
{
openxc_VehicleMessage v_message;
openxc_SimpleMessage s_message;
json_object* jo;
utils::signals_manager_t& sm = utils::signals_manager_t::instance();
while(is_pushing_)
{
std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
new_decoded_can_message_.wait(decoded_can_message_lock);
while(!vehicle_message_q_.empty())
{
v_message = next_vehicle_message();
s_message = get_simple_message(v_message);
{
std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
{
jo = json_object_new_object();
jsonify_simple(s_message, jo);
if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
on_no_clients(std::string(s_message.name));
}
}
}
}
}
/// @brief Will initialize threads that will decode
/// and push subscribed events.
void can_bus_t::start_threads()
{
is_reading_ = true;
th_reading_ = std::thread(&can_bus_t::can_reader, this);
if(!th_reading_.joinable())
is_reading_ = false;
is_decoding_ = true;
th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
if(!th_decoding_.joinable())
is_decoding_ = false;
is_pushing_ = true;
th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
if(!th_pushing_.joinable())
is_pushing_ = false;
}
/// @brief Will stop all threads holded by can_bus_t object
/// which are decoding and pushing then will wait that's
/// they'll finish their job.
void can_bus_t::stop_threads()
{
is_reading_ = false;
is_decoding_ = false;
is_pushing_ = false;
}
/// @brief Will initialize can_bus_dev_t objects after reading
/// the configuration file passed in the constructor. All CAN buses
/// Initialized here will be added to a vector holding them for
/// inventory and later access.
///
/// That will initialize CAN socket reading too using a new thread.
///
/// @return 0 if ok, other if not.
int can_bus_t::init_can_dev()
{
std::vector<std::string> devices_name;
int i = 0;
size_t t;
if(conf_file_.check_conf())
{
devices_name = conf_file_.get_devices_name();
if (! devices_name.empty())
{
t = devices_name.size();
for(const auto& device : devices_name)
{
can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
if (can_bus_t::can_devices_[device]->open() >= 0)
{
can_bus_t::can_devices_[device]->configure();
DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
//can_bus_t::can_devices_[device]->start_reading(*this);
i++;
}
else
{
ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
return 1;
}
}
NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
return 0;
}
ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
return 1;
}
ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
return 2;
}
/// @brief return new_can_message_cv_ member
///
/// @return return new_can_message_cv_ member
std::condition_variable& can_bus_t::get_new_can_message_cv()
{
return new_can_message_cv_;
}
/// @brief return can_message_mutex_ member
///
/// @return return can_message_mutex_ member
std::mutex& can_bus_t::get_can_message_mutex()
{
return can_message_mutex_;
}
/// @brief Return first can_message_t on the queue
///
/// @return a can_message_t
can_message_t can_bus_t::next_can_message()
{
can_message_t can_msg;
if(!can_message_q_.empty())
{
can_msg = can_message_q_.front();
can_message_q_.pop();
DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
return can_msg;
}
return can_msg;
}
/// @brief Push a can_message_t into the queue
///
/// @param[in] can_msg - the const reference can_message_t object to push into the queue
void can_bus_t::push_new_can_message(const can_message_t& can_msg)
{
can_message_q_.push(can_msg);
}
/// @brief Return first openxc_VehicleMessage on the queue
///
/// @return a openxc_VehicleMessage containing a decoded can message
openxc_VehicleMessage can_bus_t::next_vehicle_message()
{
openxc_VehicleMessage v_msg;
if(! vehicle_message_q_.empty())
{
v_msg = vehicle_message_q_.front();
vehicle_message_q_.pop();
DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
return v_msg;
}
return v_msg;
}
/// @brief Push a openxc_VehicleMessage into the queue
///
/// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
{
vehicle_message_q_.push(v_msg);
}
/// @brief Create a RX_SETUP receive job for the BCM socket of a CAN signal.
///
/// @return 0 if ok -1 if not.
int can_bus_t::create_rx_filter(const can_signal_t& s)
{
const std::string& bus = s.get_message().get_bus_name();
return can_bus_t::can_devices_[bus]->create_rx_filter(s);
}
/// @brief Return a map with the can_bus_dev_t initialized
///
/// @return map can_bus_dev_m_ map
const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
{
return can_bus_t::can_devices_;
}
/// @brief Return the shared pointer on the can_bus_dev_t initialized
/// with device_name "bus"
///
/// @param[in] bus - CAN bus device name to retrieve.
///
/// @return A shared pointer on an object can_bus_dev_t
std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
{
return can_bus_t::can_devices_[bus];
}