aboutsummaryrefslogtreecommitdiffstats
path: root/CAN-binder/low-can-binding/diagnostic/diagnostic-manager.cpp
blob: 36413d953dffa19ad53763ad968c11b1fb5f380b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
 * Copyright (C) 2015, 2016 "IoT.bzh"
 * Author "Romain Forlot" <romain.forlot@iot.bzh>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *	 http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <systemd/sd-event.h>
#include <algorithm>
#include <string.h>

#include "diagnostic-manager.hpp"

#include "../utils/openxc-utils.hpp"
#include "../utils/signals.hpp"
#include "../binding/configuration.hpp"

#define MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ 10
#define MAX_SIMULTANEOUS_DIAG_REQUESTS 50
// There are only 8 slots of in flight diagnostic requests
#define MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS 8
#define TIMERFD_ACCURACY 0
#define MICRO 1000000

diagnostic_manager_t::diagnostic_manager_t()
	: initialized_{false}
{}

/// @brief Diagnostic manager isn't initialized at launch but after
///  CAN bus devices initialization. For the moment, it is only possible
///  to have 1 diagnostic bus which are the first bus declared in the JSON
///  description file. Configuration instance will return it.
///
/// this will initialize DiagnosticShims and cancel all active requests 
///  if there are any.
bool diagnostic_manager_t::initialize()
{
	// Mandatory to set the bus before intialize shims.
	bus_ = configuration_t::instance().get_diagnostic_bus();

	init_diagnostic_shims();
	event_source_ = nullptr;
	reset();

	initialized_ = true;
	DEBUG(binder_interface, "%s: Diagnostic Manager initialized", __FUNCTION__);
	return initialized_;
}

void diagnostic_manager_t::read_socket()
{
	can_message_t msg;
	can_bus_t& cbm = configuration_t::instance().get_can_bus_manager();
	socket_ >> msg;
	std::lock_guard<std::mutex> can_message_lock(cbm.get_can_message_mutex());
	{ cbm.push_new_can_message(msg); }
	cbm.get_new_can_message_cv().notify_one();
}

utils::socketcan_bcm_t& diagnostic_manager_t::get_socket()
{
	return socket_;
}

/// @brief initialize shims used by UDS lib and set initialized_ to true.
///  It is needed before used the diagnostic manager fully because shims are
///  required by most member functions.
void diagnostic_manager_t::init_diagnostic_shims()
{
	shims_ = diagnostic_init_shims(shims_logger, shims_send, NULL);
	DEBUG(binder_interface, "%s: Shims initialized", __FUNCTION__);
}

/// @brief Force cleanup all active requests.
void diagnostic_manager_t::reset()
{
	DEBUG(binder_interface, "%s: Clearing existing diagnostic requests", __FUNCTION__);
	cleanup_active_requests(true);
}

/// @brief Adds 8 RX_SETUP jobs to the BCM rx_socket_ then diagnotic manager
///  listens on CAN ID range 7E8 - 7EF affected to the OBD2 communications.
///
/// @return -1 or negative value on error, 0 if ok.
int diagnostic_manager_t::add_rx_filter(uint32_t can_id)
{
	// Make sure that socket has been opened.
	if(! socket_)
		socket_.open(bus_);

	struct utils::simple_bcm_msg bcm_msg;
	memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));

	const struct timeval freq =  recurring_requests_.back()->get_timeout_clock().get_timeval_from_period();

	bcm_msg.msg_head.opcode  = RX_SETUP;
	bcm_msg.msg_head.flags = SETTIMER|RX_FILTER_ID;
	bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
	bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;

	// If it isn't an OBD2 CAN ID then just add a simple RX_SETUP job
	if(can_id != OBD2_FUNCTIONAL_BROADCAST_ID) 
	{
		bcm_msg.msg_head.can_id  = can_id;

		socket_ << bcm_msg;
			if(! socket_)
				return -1;
	}
	else
	{
		for(uint8_t i = 0; i < 8; i++)
		{
			can_id  =  OBD2_FUNCTIONAL_RESPONSE_START + i;
			bcm_msg.msg_head.can_id  = can_id;

			socket_ << bcm_msg;
			if(! socket_)
				return -1;
		}
	}

	return 0;
}

/// @brief send function use by diagnostic library. Only one bus used for now
///  so diagnostic request is sent using the default diagnostic bus not matter of
///  which is specified in the diagnostic message definition.
///
/// @param[in] arbitration_id - CAN arbitration ID to use when send message. OBD2 broadcast ID
///  is 0x7DF by example.
/// @param[in] data - The data payload for the message. NULL is valid if size is also 0.
/// @param[in] size - The size of the data payload, in bytes.
///
/// @return true if the CAN message was sent successfully. 
bool diagnostic_manager_t::shims_send(const uint32_t arbitration_id, const uint8_t* data, const uint8_t size)
{
	diagnostic_manager_t& dm = configuration_t::instance().get_diagnostic_manager();
	active_diagnostic_request_t* current_adr = dm.get_last_recurring_requests();
	utils::socketcan_bcm_t& tx_socket = current_adr->get_socket();

	// Make sure that socket has been opened.
	if(! tx_socket)
		tx_socket.open(
			dm.get_can_bus());

	struct utils::simple_bcm_msg bcm_msg;
	struct can_frame cfd;

	memset(&cfd, 0, sizeof(cfd));
	memset(&bcm_msg.msg_head, 0, sizeof(bcm_msg.msg_head));

	struct timeval freq = current_adr->get_frequency_clock().get_timeval_from_period();

	bcm_msg.msg_head.opcode  = TX_SETUP;
	bcm_msg.msg_head.can_id  = arbitration_id;
	bcm_msg.msg_head.flags = SETTIMER|STARTTIMER|TX_CP_CAN_ID;
	bcm_msg.msg_head.ival2.tv_sec = freq.tv_sec;
	bcm_msg.msg_head.ival2.tv_usec = freq.tv_usec;
	bcm_msg.msg_head.nframes = 1;
	cfd.can_dlc = size;
	::memcpy(cfd.data, data, size);

	bcm_msg.frames = cfd;

	tx_socket << bcm_msg;
	if(tx_socket)
		return true;
	return false;
}

/// @brief The type signature for an optional logging function, if the user
/// wishes to provide one. It should print, store or otherwise display the
/// message.
///
/// message - A format string to log using the given parameters.
/// ... (vargs) - the parameters for the format string.
///
void diagnostic_manager_t::shims_logger(const char* format, ...)
{
	va_list args;
	va_start(args, format);

	char buffer[256];
	vsnprintf(buffer, 256, format, args);

	DEBUG(binder_interface, "%s: %s", __FUNCTION__, buffer);
}

/// @brief The type signature for a... OpenXC TODO: not used yet.
void diagnostic_manager_t::shims_timer()
{}

std::string diagnostic_manager_t::get_can_bus()
{
	return bus_;
}

active_diagnostic_request_t* diagnostic_manager_t::get_last_recurring_requests() const
{
	return recurring_requests_.back();
}

/// @brief Return diagnostic manager shims member.
DiagnosticShims& diagnostic_manager_t::get_shims()
{
	return shims_;
}

/// @brief Search for a specific active diagnostic request in the provided requests list
/// and erase it from the vector. This is useful at unsubscription to clean up the list otherwize
/// all received CAN messages will be passed to DiagnosticRequestHandle of all active diagnostic request
/// contained in the vector but no event if connected to, so we will decode uneeded request.
///
/// @param[in] entry - a pointer of an active_diagnostic_request instance to clean up
/// @param[in] requests_list - a vector where to make the search and cleaning.
void diagnostic_manager_t::find_and_erase(active_diagnostic_request_t* entry, std::vector<active_diagnostic_request_t*>& requests_list)
{
	auto i = std::find(requests_list.begin(), requests_list.end(), entry);
	if ( i != requests_list.end())
		requests_list.erase(i);
}

// @brief TODO: implement cancel_request if needed... Don't know.
void diagnostic_manager_t::cancel_request(active_diagnostic_request_t* entry)
{
	entry->get_socket().close();
}

/// @brief Cleanup a specific request if it isn't running and get complete. As it is almost
/// impossible to get that state for a recurring request without waiting for that, you can 
/// force the cleaning operation.
///
/// @param[in] entry - the request to clean
/// @param[in] force - Force the cleaning or not ?
void diagnostic_manager_t::cleanup_request(active_diagnostic_request_t* entry, bool force)
{
	if((force || (entry != nullptr && entry->get_in_flight() && entry->request_completed())))
	{
		entry->set_in_flight(false);

		char request_string[128] = {0};
		diagnostic_request_to_string(&entry->get_handle()->request,
			request_string, sizeof(request_string));
		if(force && entry->get_recurring())
		{
			find_and_erase(entry, recurring_requests_);
			cancel_request(entry);
			DEBUG(binder_interface, "%s: Cancelling completed, recurring request: %s", __FUNCTION__, request_string);
		}
		else
		{
			DEBUG(binder_interface, "%s: Cancelling completed, non-recurring request: %s", __FUNCTION__, request_string);
			find_and_erase(entry, non_recurring_requests_);
			cancel_request(entry);
		}
	}
}

/// @brief Clean up all requests lists, recurring and not recurring.
///
/// @param[in] force - Force the cleaning or not ? If true, that will do
/// the same effect as a call to reset().
void diagnostic_manager_t::cleanup_active_requests(bool force)
{
	for(auto& entry : non_recurring_requests_)
		if (entry != nullptr)
			cleanup_request(entry, force);

	for(auto& entry : recurring_requests_)
		if (entry != nullptr)
			cleanup_request(entry, force);
}

/// @brief Will return the active_diagnostic_request_t pointer for theDiagnosticRequest or nullptr if
/// not found.
///
/// @param[in] request - Search key, method will go through recurring list to see if it find that request
///  holded by the DiagnosticHandle member.
active_diagnostic_request_t* diagnostic_manager_t::find_recurring_request(const DiagnosticRequest* request)
{
	for (auto& entry : recurring_requests_)
	{
		if(entry != nullptr)
		{
			if(diagnostic_request_equals(&entry->get_handle()->request, request))
			{
				return entry;
				break;
			}
		}
	}
	return nullptr;
}

/// @brief Add and send a new one-time diagnostic request.
///
/// A one-time (aka non-recurring) request can existing in parallel with a
/// recurring request for the same PID or mode, that's not a problem.
///
/// For an example, see the docs for addRecurringRequest. This function is very
/// similar but leaves out the frequencyHz parameter.
///
/// @param[in] request - The parameters for the request.
/// @param[in] name - Human readable name this response, to be used when
///      publishing received responses. TODO: If the name is NULL, the published output
///      will use the raw OBD-II response format.
/// @param[in] wait_for_multiple_responses - If false, When any response is received
///      for this request it will be removed from the active list. If true, the
///      request will remain active until the timeout clock expires, to allow it
///      to receive multiple response. Functional broadcast requests will always
///      waint for the timeout, regardless of this parameter.
/// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
///      responses to this request. If the decoder is NULL, the output will
///      include the raw payload instead of a parsed value.
/// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
///      response is received for this request.
///
/// @return true if the request was added successfully. Returns false if there
/// wasn't a free active request entry, if the frequency was too high or if the
/// CAN acceptance filters could not be configured,
active_diagnostic_request_t* diagnostic_manager_t::add_request(DiagnosticRequest* request, const std::string name,
	bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
	const DiagnosticResponseCallback callback)
{
	cleanup_active_requests(false);

	active_diagnostic_request_t* entry = nullptr;

	if (non_recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
	{
		// TODO: implement Acceptance Filter
		//	if(updateRequiredAcceptanceFilters(bus, request)) {
			active_diagnostic_request_t* entry = new active_diagnostic_request_t(bus_, request, name,
					wait_for_multiple_responses, decoder, callback, 0);
			entry->set_handle(shims_, request);

			char request_string[128] = {0};
			diagnostic_request_to_string(&entry->get_handle()->request, request_string,
					sizeof(request_string));

			find_and_erase(entry, non_recurring_requests_);
			DEBUG(binder_interface, "%s: Added one-time diagnostic request on bus %s: %s", __FUNCTION__,
					bus_.c_str(), request_string);

			non_recurring_requests_.push_back(entry);
	}
	else
	{
		WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)non_recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
		non_recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
	}
	return entry;
}

bool diagnostic_manager_t::validate_optional_request_attributes(float frequencyHz)
{
	if(frequencyHz > MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ) {
		DEBUG(binder_interface, "%s: Requested recurring diagnostic frequency %lf is higher than maximum of %d", __FUNCTION__,
			frequencyHz, MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ);
		return false;
	}
	return true;
}

/// @brief Add and send a new recurring diagnostic request.
///
/// At most one recurring request can be active for the same arbitration ID, mode
/// and (if set) PID on the same bus at one time. If you try and call
/// addRecurringRequest with the same key, it will return an error.
///
/// TODO: This also adds any neccessary CAN acceptance filters so we can receive the
/// response. If the request is to the functional broadcast ID (0x7df) filters
/// are added for all functional addresses (0x7e8 to 0x7f0).
///
/// Example:
///
///     // Creating a functional broadcast, mode 1 request for PID 2.
///     DiagnosticRequest request = {
///         arbitration_id: 0x7df,
///         mode: 1,
///         has_pid: true,
///         pid: 2
///     };
///
///     // Add a recurring request, to be sent at 1Hz, and published with the
///     // name "my_pid_request"
///     addRecurringRequest(&getConfiguration()->diagnosticsManager,
///          canBus,
///          &request,
///          "my_pid_request",
///          false,
///          NULL,
///          NULL,
///          1);
///
/// @param[in] request - The parameters for the request.
/// @param[in] name - An optional human readable name this response, to be used when
///      publishing received responses. If the name is NULL, the published output
///      will use the raw OBD-II response format.
/// @param[in] wait_for_multiple_responses - If false, When any response is received
///      for this request it will be removed from the active list. If true, the
///      request will remain active until the timeout clock expires, to allow it
///      to receive multiple response. Functional broadcast requests will always
///      waint for the timeout, regardless of this parameter.
/// @param[in] decoder - An optional DiagnosticResponseDecoder to parse the payload of
///      responses to this request. If the decoder is NULL, the output will
///      include the raw payload instead of a parsed value.
/// @param[in] callback - An optional DiagnosticResponseCallback to be notified whenever a
///      response is received for this request.
/// @param[in] frequencyHz - The frequency (in Hz) to send the request. A frequency above
///      MAX_RECURRING_DIAGNOSTIC_FREQUENCY_HZ is not allowed, and will make this
///      function return false.
///
/// @return true if the request was added successfully. Returns false if there
/// was too much already running requests, if the frequency was too high TODO:or if the
/// CAN acceptance filters could not be configured,
active_diagnostic_request_t* diagnostic_manager_t::add_recurring_request(DiagnosticRequest* request, const char* name,
		bool wait_for_multiple_responses, const DiagnosticResponseDecoder decoder,
		const DiagnosticResponseCallback callback, float frequencyHz)
{
	active_diagnostic_request_t* entry = nullptr;

	if(!validate_optional_request_attributes(frequencyHz))
		return entry;

	cleanup_active_requests(false);

	if(find_recurring_request(request) == nullptr)
	{
		if(recurring_requests_.size() <= MAX_SIMULTANEOUS_DIAG_REQUESTS)
		{
			// TODO: implement Acceptance Filter
			//if(updateRequiredAcceptanceFilters(bus, request)) {
			entry = new active_diagnostic_request_t(bus_, request, name,
					wait_for_multiple_responses, decoder, callback, frequencyHz);
			recurring_requests_.push_back(entry);

			entry->set_handle(shims_, request);
			if(add_rx_filter(OBD2_FUNCTIONAL_BROADCAST_ID) < 0)
				{ recurring_requests_.pop_back(); }
			else
				{
					start_diagnostic_request(&shims_, entry->get_handle()); 
					if(event_source_ == nullptr && sd_event_add_io(afb_daemon_get_event_loop(binder_interface->daemon), 
						&event_source_,
						socket_.socket(),
						EPOLLIN,
						read_diagnostic_message,
						nullptr) < 0)
					{
						cleanup_request(entry, true);
						WARNING(binder_interface, "%s: signal: %s isn't supported. Canceling operation.", __FUNCTION__, entry->get_name().c_str());
						return entry;
					}
				}
		}
		else
		{
			WARNING(binder_interface, "%s: There isn't enough request entry. Vector exhausted %d/%d", __FUNCTION__, (int)recurring_requests_.size(), MAX_SIMULTANEOUS_DIAG_REQUESTS);
			recurring_requests_.resize(MAX_SIMULTANEOUS_DIAG_REQUESTS);
		}
	}
	else
		{ DEBUG(binder_interface, "%s: Can't add request, one already exists with same key", __FUNCTION__);}
	return entry;
}

/// @brief Returns true if there are two active requests running for the same arbitration ID.
bool diagnostic_manager_t::conflicting(active_diagnostic_request_t* request, active_diagnostic_request_t* candidate) const
{
	return (candidate->get_in_flight() && candidate != request &&
			candidate->get_can_bus_dev() == request->get_can_bus_dev() &&
			candidate->get_id() == request->get_id());
}


/// @brief Returns true if there are no other active requests to the same arbitration ID
/// and if there aren't more than 8 requests in flight at the same time.
bool diagnostic_manager_t::clear_to_send(active_diagnostic_request_t* request) const
{
	int total_in_flight = 0;
	for ( auto entry : non_recurring_requests_)
	{
		if(conflicting(request, entry))
			return false;
		if(entry->get_in_flight())
			total_in_flight++;
	}

	for ( auto entry : recurring_requests_)
	{
		if(conflicting(request, entry))
			return false;
		if(entry->get_in_flight())
			total_in_flight++;
	}

	if(total_in_flight > MAX_SIMULTANEOUS_IN_FLIGHT_REQUESTS)
		return false;
	return true;
}

/// @brief Will decode the diagnostic response and build the final openxc_VehicleMessage to return.
///
/// @param[in] adr - A pointer to an active diagnostic request holding a valid diagnostic handle
/// @param[in] response - The response to decode from which the Vehicle message will be built and returned
///
/// @return A filled openxc_VehicleMessage or a zeroed struct if there is an error.
openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_response(active_diagnostic_request_t* adr, const DiagnosticResponse& response)
{
	openxc_VehicleMessage message = build_VehicleMessage();
	float value = (float)diagnostic_payload_to_integer(&response);
	if(adr->get_decoder() != nullptr)
	{
		value = adr->get_decoder()(&response, value);
	}

	if((response.success && adr->get_name().size()) > 0)
	{
		// If name, include 'value' instead of payload, and leave of response
		// details.
		message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField(value)));
	}
	else
	{
		// If no name, send full details of response but still include 'value'
		// instead of 'payload' if they provided a decoder. The one case you
		// can't get is the full detailed response with 'value'. We could add
		// another parameter for that but it's onerous to carry that around.
		message = build_VehicleMessage(adr, response, value);
	}

	// If not success but completed then the pid isn't supported
	if(!response.success)
	{
		struct utils::signals_found found_signals;
		found_signals = utils::signals_manager_t::instance().find_signals(build_DynamicField(adr->get_name()));
		found_signals.diagnostic_messages.front()->set_supported(false);
		cleanup_request(adr, true);
		NOTICE(binder_interface, "%s: PID not supported or ill formed. Please unsubscribe from it. Error code : %d", __FUNCTION__, response.negative_response_code);
		message = build_VehicleMessage(build_SimpleMessage(adr->get_name(), build_DynamicField("This PID isn't supported by your vehicle.")));
	}

	if(adr->get_callback() != nullptr)
	{
		adr->get_callback()(adr, &response, value);
	}

	// Reset the completed flag handle to make sure that it will be reprocessed the next time.
	adr->get_handle()->success = false;
	return message;
}

/// @brief Will take the CAN message and pass it to the receive functions that will process
/// diagnostic handle for each active diagnostic request then depending on the result we will 
/// return pass the diagnostic response to decode it.
///
/// @param[in] entry - A pointer to an active diagnostic request holding a valid diagnostic handle
/// @param[in] cm - A raw CAN message.
///
/// @return A pointer to a filled openxc_VehicleMessage or a nullptr if nothing has been found.
openxc_VehicleMessage diagnostic_manager_t::relay_diagnostic_handle(active_diagnostic_request_t* entry, const can_message_t& cm)
{
	DiagnosticResponse response = diagnostic_receive_can_frame(&shims_, entry->get_handle(), cm.get_id(), cm.get_data(), cm.get_length());
	if(response.completed && entry->get_handle()->completed)
	{
		if(entry->get_handle()->success)
			return relay_diagnostic_response(entry, response);
	}
	else if(!response.completed && response.multi_frame)
	{
		// Reset the timeout clock while completing the multi-frame receive
		entry->get_timeout_clock().tick();
	}

	return build_VehicleMessage();
}

/// @brief Find the active diagnostic request with the correct DiagnosticRequestHandle
/// member that will understand the CAN message using diagnostic_receive_can_frame function
/// from UDS-C library. Then decode it with an ad-hoc method.
///
/// @param[in] cm - Raw CAN message received
///
/// @return VehicleMessage with decoded value.
openxc_VehicleMessage diagnostic_manager_t::find_and_decode_adr(const can_message_t& cm)
{
	openxc_VehicleMessage vehicle_message = build_VehicleMessage();

	for ( auto entry : non_recurring_requests_)
	{
		vehicle_message = relay_diagnostic_handle(entry, cm);
		if (is_valid(vehicle_message))
			return vehicle_message;
	}

	for ( auto entry : recurring_requests_)
	{
		vehicle_message = relay_diagnostic_handle(entry, cm);
		if (is_valid(vehicle_message))
			return vehicle_message;
	}

	return vehicle_message;
}

/// @brief Tell if the CAN message received is a diagnostic response.
/// Request broadcast ID use 0x7DF and assigned ID goes from 0x7E0 to Ox7E7. That allows up to 8 ECU to respond 
/// at the same time. The response is the assigned ID + 0x8, so response ID can goes from 0x7E8 to 0x7EF.
///
/// @param[in] cm - CAN message received from the socket.
///
/// @return True if the active diagnostic request match the response.
bool diagnostic_manager_t::is_diagnostic_response(const can_message_t& cm)
{
	if (cm.get_id() >= 0x7e8 && cm.get_id() <= 0x7ef)
			return true;
	return false;
}