1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/*
* Copyright (C) 2019, 2020 "IoT.bzh"
* Author "Arthur Guyader" <arthur.guyader@iot.bzh>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "converter.hpp"
#include <sstream>
#include <net/if.h>
#include <afb/afb-binding>
#include <climits>
/**
* @brief Convert data to hex string
*
* @param data An array of data
* @param length The length of the data
* @return std::string The hex string
*/
std::string converter_t::to_hex(const uint8_t data[], const size_t length)
{
std::stringstream stream;
stream << std::hex << std::setfill('0');
stream << "0x";
for(int i = 0; i < length; i++)
stream << std::setfill('0') << std::setw(2) << std::hex << ((int) data[i]);
return stream.str();
}
/**
* @brief Convert data to ascii string
*
* @param data An array of data
* @param length The length of the data
* @return std::string The ascii string
*/
std::string converter_t::to_ascii(const uint8_t data[], const size_t length)
{
std::stringstream stream;
for(int i = 0; i < length; i++)
stream << ((char) data[i]);
return stream.str();
}
/**
* @brief Translate bit_position and bit_size
*
*
* @param bit_position The position in the frame
* @param bit_size The size of the signal
* @param new_start_byte The first bytes of the signal in the frame
* @param new_end_byte The last byte of the signal in the frame
* @param new_start_bit The first bit of the signal in the frame
* @param new_end_bit The last bit of the signal in the frame
*/
void converter_t::signal_to_bits_bytes(unsigned int bit_position, unsigned int bit_size, int &new_start_byte, int &new_end_byte, uint8_t &new_start_bit, uint8_t &new_end_bit)
{
new_start_byte = bit_position >> 3;
new_start_bit = bit_position % CHAR_BIT;
new_end_byte = (bit_position + bit_size - 1) >> 3;
new_end_bit = (bit_position + bit_size - 1) % CHAR_BIT;
}
/**
* @brief This is to use when you have a big endian CAN frame layout.
* It converts the bit position so it matches with little endiant CAN frame layout.
*
* @param msg_length Message length in bytes.
* @param bit_position Original bit position.
* @param bit_size Size of the data.
* @return uint32_t New bit position.
*/
uint32_t converter_t::bit_position_swap(unsigned int msg_length, unsigned int bit_position, unsigned int bit_size)
{
return (msg_length * CHAR_BIT) - bit_position - bit_size;
}
/**
* @brief This allow to get the correct bit_position using the weird Continental.
* bit numbering method where the Frame is read using little endianness
* and bit count using a big endianness
*
* @param msg_length Message length in bytes.
* @param bit_position Original bit position.
* @param bit_size Size of the data.
* @return uint32_t New bit position.
*/
uint32_t converter_t::continental_bit_position_mess(unsigned int msg_length, unsigned int bit_position, unsigned int bit_size)
{
return bit_position + CHAR_BIT - 2 * (bit_position % CHAR_BIT) - bit_size;
}
|