1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
/*
* Copyright (C) 2015, 2016 "IoT.bzh"
* Author "Romain Forlot" <romain.forlot@iot.bzh>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <map>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <thread>
#include <fcntl.h>
#include <unistd.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <linux/can.h>
#include <sys/socket.h>
#include <json-c/json.h>
#include <linux/can/raw.h>
#include "timer.hpp"
#include "openxc.pb.h"
extern "C"
{
#include <afb/afb-binding.h>
#include <afb/afb-service-itf.h>
}
// TODO actual max is 32 but dropped to 24 for memory considerations
#define MAX_ACCEPTANCE_FILTERS 24
// TODO this takes up a ton of memory
#define MAX_DYNAMIC_MESSAGE_COUNT 12
#define CAN_MESSAGE_SIZE 8
#define CAN_ACTIVE_TIMEOUT_S 30
/**
* @brief The type signature for a CAN signal decoder.
*
* @desc A SignalDecoder transforms a raw floating point CAN signal into a number,
* string or boolean.
*
* @param[in] CanSignal signal - The CAN signal that we are decoding.
* @param[in] CanSignal signals - The list of all signals.
* @param[in] int signalCount - The length of the signals array.
* @param[in] float value - The CAN signal parsed from the message as a raw floating point
* value.
* @param[out] bool send - An output parameter. If the decoding failed or the CAN signal should
* not send for some other reason, this should be flipped to false.
*
* @return a decoded value in an openxc_DynamicField struct.
*/
typedef openxc_DynamicField (*SignalDecoder)(struct CanSignal* signal,
CanSignal* signals, int signalCount, float value, bool* send);
/**
* @brief: The type signature for a CAN signal encoder.
*
* @desc A SignalEncoder transforms a number, string or boolean into a raw floating
* point value that fits in the CAN signal.
*
* @params[signal] - The CAN signal to encode.
* @params[value] - The dynamic field to encode.
* @params[send] - An output parameter. If the encoding failed or the CAN signal should
* not be encoded for some other reason, this will be flipped to false.
*/
typedef uint64_t (*SignalEncoder)(struct CanSignal* signal,
openxc_DynamicField* value, bool* send);
/**
* @enum CanMessageFormat
* @brief The ID format for a CAN message.
*/
enum CanMessageFormat {
STANDARD, /*!< STANDARD - standard 11-bit CAN arbitration ID. */
EXTENDED, /*!< EXTENDED - an extended frame, with a 29-bit arbitration ID. */
ERROR, /*!< ERROR - ERROR code used at initialization to signify that it isn't usable'*/
};
typedef enum CanMessageFormat CanMessageFormat;
/**
* @class can_message_t
*
* @brief A compact representation of a single CAN message, meant to be used in in/out
* buffers.
*
* param[in]
* param[in]
* param[in]
* @param[in]
*/
/*************************
* old CanMessage struct *
*************************
struct CanMessage {
uint32_t id;
CanMessageFormat format;
uint8_t data[CAN_MESSAGE_SIZE];
uint8_t length;
};
typedef struct CanMessage CanMessage;
*/
class can_message_t {
private:
const struct afb_binding_interface* interface_; /*!< afb_binding_interface interface between daemon and binding */
uint32_t id_; /*!< uint32_t id - The ID of the message. */
uint8_t length_; /*!< uint8_t length - the length of the data array (max 8). */
CanMessageFormat format_; /*!< CanMessageFormat format - the format of the message's ID.*/
uint8_t data_[CAN_MESSAGE_SIZE]; /*!< uint8_t data - The message's data field with a size of 8 which is the standard about CAN bus messages.*/
public:
/**
* @brief Class constructor
*
* Constructor about can_message_t class.
*
* @param interface - const structafb_binding_interface pointer
*/
can_message_t(const struct afb_binding_interface* interface);
/**
* @brief Retrieve id_ member value.
*
* @return uint32_t id_ class member
*/
uint32_t get_id() const;
/**
* @brief Retrieve format_ member value.
*
* @return CanMessageFormat format_ class member
*/
int get_format() const;
/**
* @brief Retrieve data_ member value.
*
* @return uint8_t data_ pointer class member
*/
const uint8_t* get_data() const;
/**
* @brief Retrieve length_ member value.
*
* @return uint8_t length_ class member
*/
uint8_t get_length() const;
/**
* @brief Control whether the object is correctly initialized
* to be sent over the CAN bus
*
* @return true if object correctly initialized and false if not...
*/
bool is_correct_to_send();
/**
* @brief Set id_ member value.
*
* Preferred way to initialize these members by using
* convert_from_canfd_frame method.
*
* @param uint32_t id_ class member
*/
void set_id(const uint32_t new_id);
/**
* @brief Set format_ member value.
*
* Preferred way to initialize these members by using
* convert_from_canfd_frame method.
*
* @param CanMessageFormat format_ class member
*/
void set_format(const CanMessageFormat format);
/**
* @brief Set data_ member value.
*
* Preferred way to initialize these members by using
* convert_from_canfd_frame method.
*
* @param uint8_t data_ array with a max size of 8 elements.
*/
void set_data(const uint8_t new_data);
/**
* @brief Set length_ member value.
*
* Preferred way to initialize these members by using
* convert_from_canfd_frame method.
*
* @param uint8_t length_ array with a max size of 8 elements.
*/
void set_length(const uint8_t new_length);
/**
* @brief Take a canfd_frame struct to initialize class members
*
* This is the preferred way to initialize class members.
*
* @param canfd_frame struct read from can bus device.
*/
void convert_from_canfd_frame(const canfd_frame& frame);
/**
* @brief Take all initialized class's members and build an
* canfd_frame struct that can be use to send a CAN message over
* the bus.
*
* @return canfd_frame struct built from class members.
*/
canfd_frame convert_to_canfd_frame();
};
/**
* @brief Object used to handle decoding and manage event queue to be pushed.
*
* @params[in] interface_ - afb_binding_interface pointer to the binder. Used to log messages
* @params[in] conf_file_ - configuration file handle used to initialize can_bus_dev_t objects.
*/
class can_bus_t {
private:
int conf_file_;
std::thread th_decoding_;
std::thread th_pushing_;
bool has_can_message_;
std::queue <can_message_t> can_message_q_;
bool has_vehicle_message_;
std::queue <openxc_VehicleMessage> vehicle_message_q_;
public:
const struct afb_binding_interface *interface_;
can_bus_t(const struct afb_binding_interface *itf, int& conf_file);
int init_can_dev();
std::vector<std::string> read_conf();
void start_threads();
can_message_t next_can_message();
void push_new_can_message(const can_message_t& can_msg);
bool has_can_message() const;
openxc_VehicleMessage next_vehicle_message();
void push_new_vehicle_message(const openxc_VehicleMessage& v_msg);
bool has_vehicle_message() const;
};
/**
* @brief Object representing a can device. Handle opening, closing and reading on the
* socket. This is the low level object to be use by can_bus_t.
*
* @params[in] std::string device_name_ - name of the linux device handling the can bus. Generally vcan0, can0, etc.
*/
class can_bus_dev_t {
private:
std::string device_name_;
int can_socket_;
bool is_fdmode_on_;
struct sockaddr_can txAddress_;
std::thread th_reading_;
bool is_running_;
public:
can_bus_dev_t(const std::string& dev_name);
int open(const struct afb_binding_interface* interface);
int close();
bool is_running();
void start_reading(can_bus_t& can_bus);
canfd_frame read(const struct afb_binding_interface *interface);
int send_can_message(can_message_t& can_msg, const struct afb_binding_interface* interface);
};
/**
* @brief A state encoded (SED) signal's mapping from numerical values to
* OpenXC state names.
*
* @param[in] in value - The integer value of the state on the CAN bus.
* @param[in] char* name - The corresponding string name for the state in OpenXC.
*/
struct CanSignalState {
const int value;
const char* name;
};
typedef struct CanSignalState CanSignalState;
/**
* @brief A CAN signal to decode from the bus and output over USB.
*
* @param[in] message - The message this signal is a part of.
* @param[in] genericName - The name of the signal to be output over USB.
* @param[in] bitPosition - The starting bit of the signal in its CAN message (assuming
* non-inverted bit numbering, i.e. the most significant bit of
* each byte is 0)
* @param[in] bitSize - The width of the bit field in the CAN message.
* @param[in] factor - The final value will be multiplied by this factor. Use 1 if you
* don't need a factor.
* @param[in] offset - The final value will be added to this offset. Use 0 if you
* don't need an offset.
* @param[in] minValue - The minimum value for the processed signal.
* @param[in] maxValue - The maximum value for the processed signal.
* @param[in] frequencyClock - A FrequencyClock struct to control the maximum frequency to
* process and send this signal. To process every value, set the
* clock's frequency to 0.
* @param[in] sendSame - If true, will re-send even if the value hasn't changed.
* @param[in] forceSendChanged - If true, regardless of the frequency, it will send the
* value if it has changed.
* @param[in] states - An array of CanSignalState describing the mapping
* between numerical and string values for valid states.
* @param[in] stateCount - The length of the states array.
* @param[in] writable - True if the signal is allowed to be written from the USB host
* back to CAN. Defaults to false.
* @param[in] decoder - An optional function to decode a signal from the bus to a human
* readable value. If NULL, the default numerical decoder is used.
* @param[in] encoder - An optional function to encode a signal value to be written to
* CAN into a byte array. If NULL, the default numerical encoder
* is used.
* @param[in] received - True if this signal has ever been received.
* @param[in] lastValue - The last received value of the signal. If 'received' is false,
* this value is undefined.
*/
struct CanSignal {
struct CanMessageDefinition* message;
const char* genericName;
uint8_t bitPosition;
uint8_t bitSize;
float factor;
float offset;
float minValue;
float maxValue;
FrequencyClock frequencyClock;
bool sendSame;
bool forceSendChanged;
const CanSignalState* states;
uint8_t stateCount;
bool writable;
SignalDecoder decoder;
SignalEncoder encoder;
bool received;
float lastValue;
};
typedef struct CanSignal CanSignal;
/**
* @brief The definition of a CAN message. This includes a lot of metadata, so
* to save memory this struct should not be used for storing incoming and
* outgoing CAN messages.
*
* @param[in] bus - A pointer to the bus this message is on.
* @param[in] id - The ID of the message.
* @param[in] format - the format of the message's ID.
* @param[in] clock - an optional frequency clock to control the output of this
* message, if sent raw, or simply to mark the max frequency for custom
* handlers to retriec++ if ? syntaxve.
* @param[in] forceSendChanged - If true, regardless of the frequency, it will send CAN
* message if it has changed when using raw passthrough.
* @param[in] lastValue - The last received value of the message. Defaults to undefined.
* This is required for the forceSendChanged functionality, as the stack
* needs to compare an incoming CAN message with the previous frame.
*/
struct CanMessageDefinition {
struct CanBus* bus;
uint32_t id;
CanMessageFormat format;
FrequencyClock frequencyClock;
bool forceSendChanged;
uint8_t lastValue[CAN_MESSAGE_SIZE];
};
typedef struct CanMessageDefinition CanMessageDefinition;
/**
* @brief A parent wrapper for a particular set of CAN messages and associated
* CAN buses(e.g. a vehicle or program).
*
* @param[in] index - A numerical ID for the message set, ideally the index in an array
* for fast lookup
* @param[in] name - The name of the message set.
* @param[in] busCount - The number of CAN buses defined for this message set.
* @param[in] messageCount - The number of CAN messages (across all buses) defined for
* this message set.
* @param[in] signalCount - The number of CAN signals (across all messages) defined for
* this message set.
* @param[in] commandCount - The number of CanCommmands defined for this message set.
*/
typedef struct {
uint8_t index;
const char* name;
uint8_t busCount;
unsigned short messageCount;
unsigned short signalCount;
unsigned short commandCount;
} CanMessageSet;
/**
* @brief The type signature for a function to handle a custom OpenXC command.
*
* @param[in] char* name - the name of the received command.
* @param[in] openxc_DynamicField* value - the value of the received command, in a DynamicField. The actual type
* may be a number, string or bool.
* @param[in] openxc_DynamicField* event - an optional event from the received command, in a DynamicField. The
* actual type may be a number, string or bool.
* @param[in] CanSignal* signals - The list of all signals.
* @param[in] int signalCount - The length of the signals array.
*/
typedef void (*CommandHandler)(const char* name, openxc_DynamicField* value,
openxc_DynamicField* event, CanSignal* signals, int signalCount);
/* Public: The structure to represent a supported custom OpenXC command.
*
* For completely customized CAN commands without a 1-1 mapping between an
* OpenXC message from the host and a CAN signal, you can define the name of the
* command and a custom function to handle it in the VI. An example is
* the "turn_signal_status" command in OpenXC, which has a value of "left" or
* "right". The vehicle may have separate CAN signals for the left and right
* turn signals, so you will need to implement a custom command handler to send
* the correct signals.
*
* Command handlers are also useful if you want to trigger multiple CAN messages
* or signals from a signal OpenXC message.
*
* genericName - The name of the command.
* handler - An function to process the received command's data and perform some
* action.
*/
typedef struct {
const char* genericName;
CommandHandler handler;
} CanCommand;
/**
* @brief Pre initialize actions made before CAN bus initialization
*
* @param[in] can_bus_dev_t bus - A CanBus struct defining the bus's metadata
* @param[in] bool writable - configure the controller in a writable mode. If false, it will be
* configured as "listen only" and will not allow writes or even CAN ACKs.
* @param[in] buses - An array of all CAN buses.
* @param[in] int busCount - The length of the buses array.
*/
void pre_initialize(can_bus_dev_t* bus, bool writable, can_bus_dev_t* buses, const int busCount);
/* Post-initialize actions made after CAN bus initialization and before the
* event loop connection.
*
* bus - A CanBus struct defining the bus's metadata
* writable - configure the controller in a writable mode. If false, it will be
* configured as "listen only" and will not allow writes or even CAN ACKs.
* buses - An array of all CAN buses.
* busCount - The length of the buses array.
*/
void post_initialize(can_bus_dev_t* bus, bool writable, can_bus_dev_t* buses, const int busCount);
/* Public: Check if the device is connected to an active CAN bus, i.e. it's
* received a message in the recent past.
*
* Returns true if a message was received on the CAN bus within
* CAN_ACTIVE_TIMEOUT_S seconds.
*/
bool isBusActive(can_bus_dev_t* bus);
/* Public: Log transfer statistics about all active CAN buses to the debug log.
*
* buses - an array of active CAN buses.
* busCount - the length of the buses array.
*/
void logBusStatistics(can_bus_dev_t* buses, const int busCount);
/**
* @brief Function representing thread activated by can bus objects
*/
void can_reader(can_bus_dev_t& can_bus_dev, can_bus_t& can_bus);
void can_decode_message(can_bus_t& can_bus);
void can_event_push(can_bus_t& can_bus);
|