1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
/*
* Copyright (C) 2015, 2016 "IoT.bzh"
* Author "Romain Forlot" <romain.forlot@iot.bzh>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <vector>
#include "uds/uds.h"
#include "can/can-bus.hpp"
#include "can/can-message.hpp"
#include "obd2/active-diagnostic-request.hpp"
#include "low-can-binding.hpp"
/* Private: Each CAN bus needs its own set of shim functions, so this should
* match the maximum CAN controller count.
*/
#define MAX_SHIM_COUNT can_bus_t.get_can_devices().size()
/**
* @brief The core structure for running the diagnostics module on the VI.
*
* @desc This stores details about the active requests and shims required to connect
* the diagnostics library to the VI's CAN peripheral.
*/
class diagnostic_manager_t {
protected:
static void shims_logger(const char* m, ...);
static void shims_timer();
private:
DiagnosticShims shims_; /*!< shims_ - An array of shim functions for each CAN bus that plug the diagnostics
* library (uds-c) into the VI's CAN peripheral.*/
can_bus_dev_t* bus_; /*!< bus_ - A pointer to the CAN bus that should be used for all standard OBD-II requests, if the bus is not
* explicitly spcified in the request. If NULL, all requests require an explicit bus.*/
std::queue<active_diagnostic_request_t> recurringRequests_; /*!< recurringRequests - A queue of active, recurring diagnostic requests. When
* a response is received for a recurring request or it times out, it is
* popped from the queue and pushed onto the back. */
std::vector<active_diagnostic_request_t> nonrecurringRequests_; /*!< nonrecurringRequests - A list of active one-time diagnostic requests. When a
* response is received for a non-recurring request or it times out, it is
* removed from this list and placed back in the free list.*/
std::vector<active_diagnostic_request_t> freeRequestEntries_; /*!< freeRequestEntries - A list of all available slots for active diagnostic
* requests. This free list is backed by statically allocated entries in
* the requestListEntries attribute.*/
std::vector<active_diagnostic_request_t> requestListEntries_[50]; /*!< requestListEntries - Static allocation for all active diagnostic requests.*/
bool initialized_; /*!< * initialized - True if the DiagnosticsManager has been initialized with shims. It will interface with the uds-c lib*/
public:
diagnostic_manager_t();
diagnostic_manager_t(can_bus_dev_t& bus);
void init_diagnostic_shims();
void checkSupportedPids(const active_diagnostic_request_t& request,
const DiagnosticResponse& response, float parsedPayload);
bool addRecurringRequest(DiagnosticRequest* request, const char* name,
bool waitForMultipleResponses, const DiagnosticResponseDecoder decoder,
const DiagnosticResponseCallback callback, float frequencyHz);
void reset();
void add_request(int pid);
};
|