1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
#include <obd2/obd2.h>
#include <bitfield/bitfield.h>
#include <string.h>
#include <limits.h>
#include <stddef.h>
#include <sys/param.h>
#define ARBITRATION_ID_OFFSET 0x8
#define MODE_RESPONSE_OFFSET 0x40
#define NEGATIVE_RESPONSE_MODE 0x7f
#define MAX_DIAGNOSTIC_PAYLOAD_SIZE 6
#define MODE_BYTE_INDEX 0
#define PID_BYTE_INDEX 1
#define NEGATIVE_RESPONSE_MODE_INDEX 1
#define NEGATIVE_RESPONSE_NRC_INDEX 2
#ifndef MAX
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#endif
DiagnosticShims diagnostic_init_shims(LogShim log,
SendCanMessageShim send_can_message,
SetTimerShim set_timer) {
DiagnosticShims shims = {
log: log,
send_can_message: send_can_message,
set_timer: set_timer
};
return shims;
}
DiagnosticRequestHandle diagnostic_request(DiagnosticShims* shims,
DiagnosticRequest* request, DiagnosticResponseReceived callback) {
DiagnosticRequestHandle handle = {
request: *request,
callback: callback,
success: false,
completed: false
};
uint8_t payload[MAX_DIAGNOSTIC_PAYLOAD_SIZE] = {0};
payload[MODE_BYTE_INDEX] = request->mode;
if(request->pid_length > 0) {
set_bitfield(request->pid, PID_BYTE_INDEX * CHAR_BIT,
request->pid_length * CHAR_BIT, payload, sizeof(payload));
}
if(request->payload_length > 0) {
memcpy(&payload[PID_BYTE_INDEX + request->pid_length],
request->payload, request->payload_length);
}
handle.isotp_shims = isotp_init_shims(shims->log,
shims->send_can_message,
shims->set_timer);
handle.isotp_send_handle = isotp_send(&handle.isotp_shims,
request->arbitration_id, payload,
1 + request->payload_length + request->pid_length,
NULL);
if(shims->log != NULL) {
shims->log("Sending diagnostic request: arb_id: 0x%02x, mode: 0x%x, pid: 0x%x, payload: 0x%02x%02x%02x%02x%02x%02x%02x, size: %d\r\n",
request->arbitration_id,
request->mode,
request->pid,
request->payload[0],
request->payload[1],
request->payload[2],
request->payload[3],
request->payload[4],
request->payload[5],
request->payload[6],
request->payload_length);
}
handle.isotp_receive_handle = isotp_receive(&handle.isotp_shims,
request->arbitration_id + ARBITRATION_ID_OFFSET,
NULL);
// TODO notes on multi frame:
// TODO what are the timers for exactly?
//
// when sending multi frame, send 1 frame, wait for a response
// if it says send all, send all right away
// if it says flow control, set the time for the next send
// instead of creating a timer with an async callback, add a process_handle
// function that's called repeatedly in the main loop - if it's time to
// send, we do it. so there's a process_handle_send and receive_can_frame
// that are just called continuously from the main loop. it's a waste of a
// few cpu cycles but it may be more natural than callbacks.
//
// what woudl a timer callback look like...it would need to pass the handle
// and that's all. seems like a context void* would be able to capture all
// of the information but arg, memory allocation. look at how it's done in
// the other library again
//
return handle;
}
DiagnosticRequestHandle diagnostic_request_pid(DiagnosticShims* shims,
DiagnosticPidRequestType pid_request_type, uint16_t arbitration_id,
uint16_t pid, DiagnosticResponseReceived callback) {
DiagnosticRequest request = {
arbitration_id: arbitration_id,
mode: pid_request_type == DIAGNOSTIC_STANDARD_PID ? 0x1 : 0x22,
pid: pid,
pid_length: pid_request_type == DIAGNOSTIC_STANDARD_PID ? 1 : 2
};
return diagnostic_request(shims, &request, callback);
}
static bool handle_negative_response(IsoTpMessage* message,
DiagnosticResponse* response, DiagnosticShims* shims) {
bool response_was_negative = false;
if(response->mode == NEGATIVE_RESPONSE_MODE) {
response_was_negative = true;
if(message->size > NEGATIVE_RESPONSE_MODE_INDEX) {
response->mode = message->payload[NEGATIVE_RESPONSE_MODE_INDEX];
}
if(message->size > NEGATIVE_RESPONSE_NRC_INDEX) {
response->negative_response_code = message->payload[NEGATIVE_RESPONSE_NRC_INDEX];
}
response->success = false;
response->completed = true;
}
return response_was_negative;
}
static bool handle_positive_response(DiagnosticRequestHandle* handle,
IsoTpMessage* message, DiagnosticResponse* response,
DiagnosticShims* shims) {
bool response_was_positive = false;
if(response->mode == handle->request.mode + MODE_RESPONSE_OFFSET) {
response_was_positive = true;
// hide the "response" version of the mode from the user
// if it matched
response->mode = handle->request.mode;
bool has_pid = false;
if(handle->request.pid_length > 0 && message->size > 1) {
has_pid = true;
if(handle->request.pid_length == 2) {
response->pid = get_bitfield(message->payload, message->size,
PID_BYTE_INDEX * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT);
} else {
response->pid = message->payload[PID_BYTE_INDEX];
}
}
uint8_t payload_index = 1 + handle->request.pid_length;
response->payload_length = MAX(0, message->size - payload_index);
if(response->payload_length > 0) {
memcpy(response->payload, &message->payload[payload_index],
response->payload_length);
}
if(!has_pid || response->pid == handle->request.pid) {
response->success = true;
response->completed = true;
} else {
response_was_positive = false;
}
}
return response_was_positive;
}
DiagnosticResponse diagnostic_receive_can_frame(DiagnosticShims* shims,
DiagnosticRequestHandle* handle, const uint16_t arbitration_id,
const uint8_t data[], const uint8_t size) {
DiagnosticResponse response = {
arbitration_id: arbitration_id,
success: false,
completed: false
};
if(!handle->isotp_send_handle.completed) {
isotp_continue_send(&handle->isotp_shims,
&handle->isotp_send_handle, arbitration_id, data, size);
} else if(!handle->isotp_receive_handle.completed) {
IsoTpMessage message = isotp_continue_receive(&handle->isotp_shims,
&handle->isotp_receive_handle, arbitration_id, data, size);
if(message.completed) {
if(message.size > 0) {
response.mode = message.payload[0];
if(handle_negative_response(&message, &response, shims)) {
shims->log("Received a negative response to mode %d on arb ID 0x%x",
response.mode, response.arbitration_id);
handle->success = true;
handle->completed = true;
} else if(handle_positive_response(handle, &message, &response,
shims)) {
shims->log("Received a positive mode %d response on arb ID 0x%x",
response.mode, response.arbitration_id);
handle->success = true;
handle->completed = true;
} else {
shims->log("Response was for a mode 0x%x request (pid 0x%x), not our mode 0x%x request (pid 0x%x)",
response.mode - MODE_RESPONSE_OFFSET, response.pid,
handle->request.mode, handle->request.pid);
}
} else {
shims->log("Received an empty response on arb ID 0x%x",
response.arbitration_id);
}
if(handle->completed && handle->callback != NULL) {
handle->callback(&response);
}
}
} else {
shims->log("Mode %d request to arb ID 0x%x is already completed",
handle->request.mode, handle->request.arbitration_id);
}
return response;
}
|