aboutsummaryrefslogtreecommitdiffstats
path: root/binding/rtl_fm.c
blob: 5b0048265d6966254e6c4bd39a321c0b79566b58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
/*
 * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
 * Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de>
 * Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
 * Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com>
 * Copyright (C) 2013 by Elias Oenal <EliasOenal@gmail.com>
 * Copyright (C) 2016, 2017 Konsulko Group
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Note that this version replaces the standalone main() with separate
 * init/start/stop API calls to allow building into another application.
 * Other than removing the separate controller thread and adding an output
 * function callback, other changes have been kept to a minimum to
 * potentially allow using other rtl_fm features by modifying rtl_fm_init.
 *
 * December 2016, Scott Murray <scott.murray@konsulko.com>
 */

/*
 * written because people could not do real time
 * FM demod on Atom hardware with GNU radio
 * based on rtl_sdr.c and rtl_tcp.c
 *
 * lots of locks, but that is okay
 * (no many-to-many locks)
 *
 * todo:
 *       sanity checks
 *       scale squelch to other input parameters
 *       test all the demodulations
 *       pad output on hop
 *       frequency ranges could be stored better
 *       scaled AM demod amplification
 *       auto-hop after time limit
 *       peak detector to tune onto stronger signals
 *       fifo for active hop frequency
 *       clips
 *       noise squelch
 *       merge stereo patch
 *       merge soft agc patch
 *       merge udp patch
 *       testmode to detect overruns
 *       watchdog to reset bad dongle
 *       fix oversampling
 */

#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include <pthread.h>

#include "rtl-sdr.h"
#include "rtl_fm.h"
#include "convenience/convenience.h"

#define DEFAULT_SAMPLE_RATE		24000
#define DEFAULT_BUF_LENGTH		RTL_FM_DEFAULT_BUF_LENGTH
#define MAXIMUM_OVERSAMPLE		RTL_FM_MAXIMUM_OVERSAMPLE
#define MAXIMUM_BUF_LENGTH		RTL_FM_MAXIMUM_BUF_LENGTH
#define AUTO_GAIN			-100
#define BUFFER_DUMP			4096

#define FREQUENCIES_LIMIT		1000

#define DEFAULT_SQUELCH_LEVEL		140
#define DEFAULT_CONSEQ_SQUELCH		10

static volatile int do_exit = 0;
static int lcm_post[17] = {1,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15,1};
static int ACTUAL_BUF_LENGTH;

static int *atan_lut = NULL;
static int atan_lut_size = 131072; /* 512 KB */
static int atan_lut_coef = 8;

struct dongle_state
{
	int      exit_flag;
	pthread_t thread;
	rtlsdr_dev_t *dev;
	int      dev_index;
	uint32_t freq;
	uint32_t rate;
	int      gain;
	uint16_t buf16[MAXIMUM_BUF_LENGTH];
	uint32_t buf_len;
	int      ppm_error;
	int      offset_tuning;
	int      direct_sampling;
	int      mute;
	struct demod_state *demod_target;
};

struct demod_state
{
	int      exit_flag;
	pthread_t thread;
	int16_t  lowpassed[MAXIMUM_BUF_LENGTH];
	int      lp_len;
	int16_t  lp_i_hist[10][6];
	int16_t  lp_q_hist[10][6];
	int16_t  result[MAXIMUM_BUF_LENGTH];
	int16_t  droop_i_hist[9];
	int16_t  droop_q_hist[9];
	int      result_len;
	int      rate_in;
	int      rate_out;
	int      rate_out2;
	int      now_r, now_j;
	int      pre_r, pre_j;
	int      prev_index;
	int      downsample;    /* min 1, max 256 */
	int      post_downsample;
	int      output_scale;
	int      squelch_level, conseq_squelch, squelch_hits, terminate_on_squelch;
	int      downsample_passes;
	int      comp_fir_size;
	int      custom_atan;
	int      deemph, deemph_a;
	int      now_lpr;
	int      prev_lpr_index;
	int      dc_block, dc_avg;
	void     (*mode_demod)(struct demod_state*);
	pthread_rwlock_t rw;
	pthread_cond_t ready;
	pthread_mutex_t ready_m;
	struct output_state *output_target;
};

struct output_state
{
	int      exit_flag;
	pthread_t thread;
	rtl_fm_output_fn_t output_fn;
	void     *output_fn_data;
	int16_t  result[MAXIMUM_BUF_LENGTH];
	int      result_len;
	int      rate;
	pthread_rwlock_t rw;
	pthread_cond_t ready;
	pthread_mutex_t ready_m;
};

struct controller_state
{
	int      exit_flag;
	pthread_t thread;
	uint32_t freqs[FREQUENCIES_LIMIT];
	int      freq_len;
	int      freq_now;
	int      edge;
	int      wb_mode;
	pthread_cond_t hop;
	pthread_mutex_t hop_m;

	void (*freq_callback)(uint32_t, void*);
	void *freq_callback_data;

	int scanning;
	int scan_direction;
	void (*scan_callback)(uint32_t, void*);
	void *scan_callback_data;
	uint32_t scan_step;
	uint32_t scan_min;
	uint32_t scan_max;
	int scan_squelch_level;
	int scan_squelch_count;
};

// multiple of these, eventually
struct dongle_state dongle;
struct demod_state demod;
struct output_state output;
struct controller_state controller;

#if 0
static void sighandler(int signum)
{
	fprintf(stderr, "Signal caught, exiting!\n");
	do_exit = 1;
	rtlsdr_cancel_async(dongle.dev);
}
#endif

/* more cond dumbness */
#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m)
#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m)

/* {length, coef, coef, coef}  and scaled by 2^15
   for now, only length 9, optimal way to get +85% bandwidth */
#define CIC_TABLE_MAX 10
int cic_9_tables[][10] = {
	{0,},
	{9, -156,  -97, 2798, -15489, 61019, -15489, 2798,  -97, -156},
	{9, -128, -568, 5593, -24125, 74126, -24125, 5593, -568, -128},
	{9, -129, -639, 6187, -26281, 77511, -26281, 6187, -639, -129},
	{9, -122, -612, 6082, -26353, 77818, -26353, 6082, -612, -122},
	{9, -120, -602, 6015, -26269, 77757, -26269, 6015, -602, -120},
	{9, -120, -582, 5951, -26128, 77542, -26128, 5951, -582, -120},
	{9, -119, -580, 5931, -26094, 77505, -26094, 5931, -580, -119},
	{9, -119, -578, 5921, -26077, 77484, -26077, 5921, -578, -119},
	{9, -119, -577, 5917, -26067, 77473, -26067, 5917, -577, -119},
	{9, -199, -362, 5303, -25505, 77489, -25505, 5303, -362, -199},
};

void rotate_90(unsigned char *buf, uint32_t len)
/* 90 rotation is 1+0j, 0+1j, -1+0j, 0-1j
   or [0, 1, -3, 2, -4, -5, 7, -6] */
{
	uint32_t i;
	unsigned char tmp;
	for (i=0; i<len; i+=8) {
		/* uint8_t negation = 255 - x */
		tmp = 255 - buf[i+3];
		buf[i+3] = buf[i+2];
		buf[i+2] = tmp;

		buf[i+4] = 255 - buf[i+4];
		buf[i+5] = 255 - buf[i+5];

		tmp = 255 - buf[i+6];
		buf[i+6] = buf[i+7];
		buf[i+7] = tmp;
	}
}

void low_pass(struct demod_state *d)
/* simple square window FIR */
{
	int i=0, i2=0;
	while (i < d->lp_len) {
		d->now_r += d->lowpassed[i];
		d->now_j += d->lowpassed[i+1];
		i += 2;
		d->prev_index++;
		if (d->prev_index < d->downsample) {
			continue;
		}
		d->lowpassed[i2]   = d->now_r; // * d->output_scale;
		d->lowpassed[i2+1] = d->now_j; // * d->output_scale;
		d->prev_index = 0;
		d->now_r = 0;
		d->now_j = 0;
		i2 += 2;
	}
	d->lp_len = i2;
}

int low_pass_simple(int16_t *signal2, int len, int step)
// no wrap around, length must be multiple of step
{
	int i, i2, sum;
	for(i=0; i < len; i+=step) {
		sum = 0;
		for(i2=0; i2<step; i2++) {
			sum += (int)signal2[i + i2];
		}
		//signal2[i/step] = (int16_t)(sum / step);
		signal2[i/step] = (int16_t)(sum);
	}
	signal2[i/step + 1] = signal2[i/step];
	return len / step;
}

void low_pass_real(struct demod_state *s)
/* simple square window FIR */
// add support for upsampling?
{
	int i=0, i2=0;
	int fast = (int)s->rate_out;
	int slow = s->rate_out2;
	while (i < s->result_len) {
		s->now_lpr += s->result[i];
		i++;
		s->prev_lpr_index += slow;
		if (s->prev_lpr_index < fast) {
			continue;
		}
		s->result[i2] = (int16_t)(s->now_lpr / (fast/slow));
		s->prev_lpr_index -= fast;
		s->now_lpr = 0;
		i2 += 1;
	}
	s->result_len = i2;
}

void fifth_order(int16_t *data, int length, int16_t *hist)
/* for half of interleaved data */
{
	int i;
	int16_t a, b, c, d, e, f;
	a = hist[1];
	b = hist[2];
	c = hist[3];
	d = hist[4];
	e = hist[5];
	f = data[0];
	/* a downsample should improve resolution, so don't fully shift */
	data[0] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
	for (i=4; i<length; i+=4) {
		a = c;
		b = d;
		c = e;
		d = f;
		e = data[i-2];
		f = data[i];
		data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
	}
	/* archive */
	hist[0] = a;
	hist[1] = b;
	hist[2] = c;
	hist[3] = d;
	hist[4] = e;
	hist[5] = f;
}

void generic_fir(int16_t *data, int length, int *fir, int16_t *hist)
/* Okay, not at all generic.  Assumes length 9, fix that eventually. */
{
	int d, temp, sum;
	for (d=0; d<length; d+=2) {
		temp = data[d];
		sum = 0;
		sum += (hist[0] + hist[8]) * fir[1];
		sum += (hist[1] + hist[7]) * fir[2];
		sum += (hist[2] + hist[6]) * fir[3];
		sum += (hist[3] + hist[5]) * fir[4];
		sum +=            hist[4]  * fir[5];
		data[d] = sum >> 15 ;
		hist[0] = hist[1];
		hist[1] = hist[2];
		hist[2] = hist[3];
		hist[3] = hist[4];
		hist[4] = hist[5];
		hist[5] = hist[6];
		hist[6] = hist[7];
		hist[7] = hist[8];
		hist[8] = temp;
	}
}

/* define our own complex math ops
   because ARMv5 has no hardware float */

void multiply(int ar, int aj, int br, int bj, int *cr, int *cj)
{
	*cr = ar*br - aj*bj;
	*cj = aj*br + ar*bj;
}

int polar_discriminant(int ar, int aj, int br, int bj)
{
	int cr, cj;
	double angle;
	multiply(ar, aj, br, -bj, &cr, &cj);
	angle = atan2((double)cj, (double)cr);
	return (int)(angle / 3.14159 * (1<<14));
}

int fast_atan2(int y, int x)
/* pre scaled for int16 */
{
	int yabs, angle;
	int pi4=(1<<12), pi34=3*(1<<12);  // note pi = 1<<14
	if (x==0 && y==0) {
		return 0;
	}
	yabs = y;
	if (yabs < 0) {
		yabs = -yabs;
	}
	if (x >= 0) {
		angle = pi4  - pi4 * (x-yabs) / (x+yabs);
	} else {
		angle = pi34 - pi4 * (x+yabs) / (yabs-x);
	}
	if (y < 0) {
		return -angle;
	}
	return angle;
}

int polar_disc_fast(int ar, int aj, int br, int bj)
{
	int cr, cj;
	multiply(ar, aj, br, -bj, &cr, &cj);
	return fast_atan2(cj, cr);
}

int atan_lut_init(void)
{
	int i = 0;

	atan_lut = malloc(atan_lut_size * sizeof(int));

	for (i = 0; i < atan_lut_size; i++) {
		atan_lut[i] = (int) (atan((double) i / (1<<atan_lut_coef)) / 3.14159 * (1<<14));
	}

	return 0;
}

int polar_disc_lut(int ar, int aj, int br, int bj)
{
	int cr, cj, x, x_abs;

	multiply(ar, aj, br, -bj, &cr, &cj);

	/* special cases */
	if (cr == 0 || cj == 0) {
		if (cr == 0 && cj == 0)
			{return 0;}
		if (cr == 0 && cj > 0)
			{return 1 << 13;}
		if (cr == 0 && cj < 0)
			{return -(1 << 13);}
		if (cj == 0 && cr > 0)
			{return 0;}
		if (cj == 0 && cr < 0)
			{return 1 << 14;}
	}

	/* real range -32768 - 32768 use 64x range -> absolute maximum: 2097152 */
	x = (cj << atan_lut_coef) / cr;
	x_abs = abs(x);

	if (x_abs >= atan_lut_size) {
		/* we can use linear range, but it is not necessary */
		return (cj > 0) ? 1<<13 : -1<<13;
	}

	if (x > 0) {
		return (cj > 0) ? atan_lut[x] : atan_lut[x] - (1<<14);
	} else {
		return (cj > 0) ? (1<<14) - atan_lut[-x] : -atan_lut[-x];
	}

	return 0;
}

void fm_demod(struct demod_state *fm)
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	pcm = polar_discriminant(lp[0], lp[1],
		fm->pre_r, fm->pre_j);
	fm->result[0] = (int16_t)pcm;
	for (i = 2; i < (fm->lp_len-1); i += 2) {
		switch (fm->custom_atan) {
		case 0:
			pcm = polar_discriminant(lp[i], lp[i+1],
				lp[i-2], lp[i-1]);
			break;
		case 1:
			pcm = polar_disc_fast(lp[i], lp[i+1],
				lp[i-2], lp[i-1]);
			break;
		case 2:
			pcm = polar_disc_lut(lp[i], lp[i+1],
				lp[i-2], lp[i-1]);
			break;
		}
		fm->result[i/2] = (int16_t)pcm;
	}
	fm->pre_r = lp[fm->lp_len - 2];
	fm->pre_j = lp[fm->lp_len - 1];
	fm->result_len = fm->lp_len/2;
}

void am_demod(struct demod_state *fm)
// todo, fix this extreme laziness
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	int16_t *r  = fm->result;
	for (i = 0; i < fm->lp_len; i += 2) {
		// hypot uses floats but won't overflow
		//r[i/2] = (int16_t)hypot(lp[i], lp[i+1]);
		pcm = lp[i] * lp[i];
		pcm += lp[i+1] * lp[i+1];
		r[i/2] = (int16_t)sqrt(pcm) * fm->output_scale;
	}
	fm->result_len = fm->lp_len/2;
	// lowpass? (3khz)  highpass?  (dc)
}

void usb_demod(struct demod_state *fm)
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	int16_t *r  = fm->result;
	for (i = 0; i < fm->lp_len; i += 2) {
		pcm = lp[i] + lp[i+1];
		r[i/2] = (int16_t)pcm * fm->output_scale;
	}
	fm->result_len = fm->lp_len/2;
}

void lsb_demod(struct demod_state *fm)
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	int16_t *r  = fm->result;
	for (i = 0; i < fm->lp_len; i += 2) {
		pcm = lp[i] - lp[i+1];
		r[i/2] = (int16_t)pcm * fm->output_scale;
	}
	fm->result_len = fm->lp_len/2;
}

void raw_demod(struct demod_state *fm)
{
	int i;
	for (i = 0; i < fm->lp_len; i++) {
		fm->result[i] = (int16_t)fm->lowpassed[i];
	}
	fm->result_len = fm->lp_len;
}

void deemph_filter(struct demod_state *fm)
{
	static int avg;  // cheating...
	int i, d;
	// de-emph IIR
	// avg = avg * (1 - alpha) + sample * alpha;
	for (i = 0; i < fm->result_len; i++) {
		d = fm->result[i] - avg;
		if (d > 0) {
			avg += (d + fm->deemph_a/2) / fm->deemph_a;
		} else {
			avg += (d - fm->deemph_a/2) / fm->deemph_a;
		}
		fm->result[i] = (int16_t)avg;
	}
}

void dc_block_filter(struct demod_state *fm)
{
	int i, avg;
	int64_t sum = 0;
	for (i=0; i < fm->result_len; i++) {
		sum += fm->result[i];
	}
	avg = sum / fm->result_len;
	avg = (avg + fm->dc_avg * 9) / 10;
	for (i=0; i < fm->result_len; i++) {
		fm->result[i] -= avg;
	}
	fm->dc_avg = avg;
}

int mad(int16_t *samples, int len, int step)
/* mean average deviation */
{
	int i=0, sum=0, ave=0;
	if (len == 0)
		{return 0;}
	for (i=0; i<len; i+=step) {
		sum += samples[i];
	}
	ave = sum / (len * step);
	sum = 0;
	for (i=0; i<len; i+=step) {
		sum += abs(samples[i] - ave);
	}
	return sum / (len / step);
}

int rms(int16_t *samples, int len, int step)
/* largely lifted from rtl_power */
{
	int i;
	long p, t, s;
	double dc, err;

	p = t = 0L;
	for (i=0; i<len; i+=step) {
		s = (long)samples[i];
		t += s;
		p += s * s;
	}
	/* correct for dc offset in squares */
	dc = (double)(t*step) / (double)len;
	err = t * 2 * dc - dc * dc * len;

	return (int)sqrt((p-err) / len);
}

void arbitrary_upsample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* linear interpolation, len1 < len2 */
{
	int i = 1;
	int j = 0;
	int tick = 0;
	double frac;  // use integers...
	while (j < len2) {
		frac = (double)tick / (double)len2;
		buf2[j] = (int16_t)(buf1[i-1]*(1-frac) + buf1[i]*frac);
		j++;
		tick += len1;
		if (tick > len2) {
			tick -= len2;
			i++;
		}
		if (i >= len1) {
			i = len1 - 1;
			tick = len2;
		}
	}
}

void arbitrary_downsample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* fractional boxcar lowpass, len1 > len2 */
{
	int i = 1;
	int j = 0;
	int tick = 0;
	double remainder = 0;
	double frac;  // use integers...
	buf2[0] = 0;
	while (j < len2) {
		frac = 1.0;
		if ((tick + len2) > len1) {
			frac = (double)(len1 - tick) / (double)len2;}
		buf2[j] += (int16_t)((double)buf1[i] * frac + remainder);
		remainder = (double)buf1[i] * (1.0-frac);
		tick += len2;
		i++;
		if (tick > len1) {
			j++;
			buf2[j] = 0;
			tick -= len1;
		}
		if (i >= len1) {
			i = len1 - 1;
			tick = len1;
		}
	}
	for (j=0; j<len2; j++) {
		buf2[j] = buf2[j] * len2 / len1;}
}

void arbitrary_resample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* up to you to calculate lengths and make sure it does not go OOB
 * okay for buffers to overlap, if you are downsampling */
{
	if (len1 < len2) {
		arbitrary_upsample(buf1, buf2, len1, len2);
	} else {
		arbitrary_downsample(buf1, buf2, len1, len2);
	}
}

void full_demod(struct demod_state *d)
{
	int i, ds_p;
	int sr = 0;
	ds_p = d->downsample_passes;
	if (ds_p) {
		for (i=0; i < ds_p; i++) {
			fifth_order(d->lowpassed,   (d->lp_len >> i), d->lp_i_hist[i]);
			fifth_order(d->lowpassed+1, (d->lp_len >> i) - 1, d->lp_q_hist[i]);
		}
		d->lp_len = d->lp_len >> ds_p;
		/* droop compensation */
		if (d->comp_fir_size == 9 && ds_p <= CIC_TABLE_MAX) {
			generic_fir(d->lowpassed, d->lp_len,
				cic_9_tables[ds_p], d->droop_i_hist);
			generic_fir(d->lowpassed+1, d->lp_len-1,
				cic_9_tables[ds_p], d->droop_q_hist);
		}
	} else {
		low_pass(d);
	}
	/* power squelch */
	if (d->squelch_level) {
		sr = rms(d->lowpassed, d->lp_len, 1);
		if (sr < d->squelch_level) {
			d->squelch_hits++;
			for (i=0; i< d->lp_len; i++) {
				d->lowpassed[i] = 0;
			}
		} else {
			d->squelch_hits = 0;
		}
	}
	d->mode_demod(d);  /* lowpassed -> result */
	if (d->mode_demod == &raw_demod) {
		return;
	}
	/* todo, fm noise squelch */
	// use nicer filter here too?
	if (d->post_downsample > 1) {
		d->result_len = low_pass_simple(d->result, d->result_len, d->post_downsample);}
	if (d->deemph) {
		deemph_filter(d);}
	if (d->dc_block) {
		dc_block_filter(d);}
	if (d->rate_out2 > 0) {
		low_pass_real(d);
		//arbitrary_resample(d->result, d->result, d->result_len, d->result_len * d->rate_out2 / d->rate_out);
	}
}

static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
{
	int i;
	struct dongle_state *s = ctx;
	struct demod_state *d = s->demod_target;

	if (do_exit) {
		return;}
	if (!ctx) {
		return;}
	if (s->mute) {
		for (i=0; i<s->mute; i++) {
			buf[i] = 127;}
		s->mute = 0;
	}
	if (!s->offset_tuning) {
		rotate_90(buf, len);}
	for (i=0; i<(int)len; i++) {
		s->buf16[i] = (int16_t)buf[i] - 127;}
	pthread_rwlock_wrlock(&d->rw);
	memcpy(d->lowpassed, s->buf16, 2*len);
	d->lp_len = len;
	pthread_rwlock_unlock(&d->rw);
	safe_cond_signal(&d->ready, &d->ready_m);
}

static void *dongle_thread_fn(void *arg)
{
	struct dongle_state *s = arg;
	fprintf(stderr, "dongle_thread_fn running\n");
	rtlsdr_read_async(s->dev, rtlsdr_callback, s, 0, s->buf_len);
	fprintf(stderr, "dongle_thread_fn exited!\n");
	return 0;
}

static void rtl_fm_scan_callback(void)
{
	struct controller_state *s = &controller;
	uint32_t frequency = rtl_fm_get_freq();

	if(!s->scanning)
		return;

	if(!s->scan_direction) {
		frequency += s->scan_step;
		if(frequency > s->scan_max)
			frequency = s->scan_min;
	} else {
		frequency -= s->scan_step;
		if(frequency < s->scan_min)
			frequency = s->scan_max;
	}

	rtl_fm_set_freq(frequency);
}

static void rtl_fm_scan_end_callback(void)
{
	struct controller_state *s = &controller;

	if(!s->scanning)
		return;

	rtl_fm_scan_stop();

	if(s->scan_callback)
		s->scan_callback(rtl_fm_get_freq(), s->scan_callback_data);
}

static void *demod_thread_fn(void *arg)
{
	struct demod_state *d = arg;
	struct output_state *o = d->output_target;
	fprintf(stderr, "demod_thread_fn running\n");
	while (!do_exit) {
		safe_cond_wait(&d->ready, &d->ready_m);
		pthread_rwlock_wrlock(&d->rw);
		full_demod(d);
		pthread_rwlock_unlock(&d->rw);
		if (d->exit_flag) {
			do_exit = 1;
		}
		if (d->squelch_level) {
			if(d->squelch_hits > d->conseq_squelch) {
				d->squelch_hits = d->conseq_squelch + 1;  /* hair trigger */
				//safe_cond_signal(&controller.hop, &controller.hop_m);
				rtl_fm_scan_callback();
				continue;
			} else if(!d->squelch_hits) {
				rtl_fm_scan_end_callback();
			}
		}
		pthread_rwlock_wrlock(&o->rw);
		memcpy(o->result, d->result, 2*d->result_len);
		o->result_len = d->result_len;
		pthread_rwlock_unlock(&o->rw);
		safe_cond_signal(&o->ready, &o->ready_m);
	}
	fprintf(stderr, "demod_thread_fn exited!\n");
	return 0;
}

static void *output_thread_fn(void *arg)
{
	struct output_state *s = arg;
	fprintf(stderr, "output_thread_fn running\n");
	while (!do_exit) {
		// use timedwait and pad out under runs
		safe_cond_wait(&s->ready, &s->ready_m);
		pthread_rwlock_rdlock(&s->rw);
		if(s->output_fn) {
			s->output_fn(s->result, s->result_len, s->output_fn_data);
		}
		pthread_rwlock_unlock(&s->rw);
	}
	fprintf(stderr, "output_thread_fn exited!\n");
	return 0;
}

static void optimal_settings(int freq, int rate)
{
	// giant ball of hacks
	// seems unable to do a single pass, 2:1
	int capture_freq, capture_rate;
	struct dongle_state *d = &dongle;
	struct demod_state *dm = &demod;
	struct controller_state *cs = &controller;
	dm->downsample = (1000000 / dm->rate_in) + 1;
	if (dm->downsample_passes) {
		dm->downsample_passes = (int)log2(dm->downsample) + 1;
		dm->downsample = 1 << dm->downsample_passes;
	}
	capture_freq = freq;
	capture_rate = dm->downsample * dm->rate_in;
	if (!d->offset_tuning) {
		capture_freq = freq + capture_rate/4;}
	capture_freq += cs->edge * dm->rate_in / 2;
	dm->output_scale = (1<<15) / (128 * dm->downsample);
	if (dm->output_scale < 1) {
		dm->output_scale = 1;}
	if (dm->mode_demod == &fm_demod) {
		dm->output_scale = 1;}
	d->freq = (uint32_t)capture_freq;
	d->rate = (uint32_t)capture_rate;
}


void frequency_range(struct controller_state *s, char *arg)
{
	char *start, *stop, *step;
	int i;
	start = arg;
	stop = strchr(start, ':') + 1;
	stop[-1] = '\0';
	step = strchr(stop, ':') + 1;
	step[-1] = '\0';
	for(i=(int)atofs(start); i<=(int)atofs(stop); i+=(int)atofs(step))
	{
		s->freqs[s->freq_len] = (uint32_t)i;
		s->freq_len++;
		if (s->freq_len >= FREQUENCIES_LIMIT) {
			break;}
	}
	stop[-1] = ':';
	step[-1] = ':';
}

void dongle_init(struct dongle_state *s)
{
	s->rate = DEFAULT_SAMPLE_RATE;
	s->gain = AUTO_GAIN; // tenths of a dB
	s->mute = 0;
	s->direct_sampling = 0;
	s->offset_tuning = 0;
	s->demod_target = &demod;
}

void demod_init(struct demod_state *s)
{
	s->rate_in = DEFAULT_SAMPLE_RATE;
	s->rate_out = DEFAULT_SAMPLE_RATE;
	s->squelch_level = 0;
	s->conseq_squelch = DEFAULT_CONSEQ_SQUELCH;
	s->terminate_on_squelch = 0;
	s->squelch_hits = DEFAULT_CONSEQ_SQUELCH + 1;
	s->downsample_passes = 0;
	s->comp_fir_size = 0;
	s->prev_index = 0;
	s->post_downsample = 1;  // once this works, default = 4
	s->custom_atan = 0;
	s->deemph = 0;
	s->rate_out2 = -1;  // flag for disabled
	s->mode_demod = &fm_demod;
	s->pre_j = s->pre_r = s->now_r = s->now_j = 0;
	s->prev_lpr_index = 0;
	s->deemph_a = 0;
	s->now_lpr = 0;
	s->dc_block = 0;
	s->dc_avg = 0;
	pthread_rwlock_init(&s->rw, NULL);
	pthread_cond_init(&s->ready, NULL);
	pthread_mutex_init(&s->ready_m, NULL);
	s->output_target = &output;
}

void demod_cleanup(struct demod_state *s)
{
	pthread_rwlock_destroy(&s->rw);
	pthread_cond_destroy(&s->ready);
	pthread_mutex_destroy(&s->ready_m);
}

void output_init(struct output_state *s)
{
	s->rate = DEFAULT_SAMPLE_RATE;
	s->output_fn = NULL;
	s->output_fn_data = NULL;
	pthread_rwlock_init(&s->rw, NULL);
	pthread_cond_init(&s->ready, NULL);
	pthread_mutex_init(&s->ready_m, NULL);
}

void output_cleanup(struct output_state *s)
{
	pthread_rwlock_destroy(&s->rw);
	pthread_cond_destroy(&s->ready);
	pthread_mutex_destroy(&s->ready_m);
}

void controller_init(struct controller_state *s)
{
	s->freqs[0] = 100000000;
	s->freq_len = 0;
	s->edge = 0;
	s->wb_mode = 0;
	pthread_cond_init(&s->hop, NULL);
	pthread_mutex_init(&s->hop_m, NULL);
}

void controller_cleanup(struct controller_state *s)
{
	pthread_cond_destroy(&s->hop);
	pthread_mutex_destroy(&s->hop_m);
}

int sanity_checks(void)
{
	int r = 1;
	if (controller.freq_len == 0) {
		fprintf(stderr, "Please specify a frequency.\n");
		r = 0;
	}

	if (controller.freq_len >= FREQUENCIES_LIMIT) {
		fprintf(stderr, "Too many channels, maximum %i.\n", FREQUENCIES_LIMIT);
		r = 0;
	}

	if (controller.freq_len > 1 && demod.squelch_level == 0) {
		fprintf(stderr, "Please specify a squelch level.  Required for scanning multiple frequencies.\n");
		r = 0;
	}
	return r;
}

int rtl_fm_init(uint32_t freq,
		uint32_t sample_rate,
		uint32_t resample_rate,
		rtl_fm_output_fn_t output_fn,
		void *output_fn_data)
{
	int r = 0;

	dongle_init(&dongle);
	demod_init(&demod);
	output_init(&output);
	controller_init(&controller);

	/*
	 * Simulate the effects of command line arguments:
	 *
	 * -W wbfm -s <sample rate> -r <resample rate>
	 */

	/* Set initial frequency */
	controller.freqs[0] = freq;
	controller.freq_len++;

	/* Set mode to wbfm */
	controller.wb_mode = 1;
	demod.mode_demod = &fm_demod;
	demod.rate_in = 170000;
	demod.rate_out = 170000;
	demod.rate_out2 = 32000;
	demod.custom_atan = 1;
	//demod.post_downsample = 4;
	demod.deemph = 1;
	controller.scan_squelch_count = DEFAULT_CONSEQ_SQUELCH;
	controller.scan_squelch_level = DEFAULT_SQUELCH_LEVEL;
	demod.squelch_level = 0;

	/* Adjust frequency for wb mode */
	controller.freqs[0] += 16000;

	/* Set sample rate */
	demod.rate_in = sample_rate;
	demod.rate_out = sample_rate;

	/* Set resample rate */
	output.rate = (int) resample_rate;
	demod.rate_out2 = (int) resample_rate;

	/* Set output function pointer */
	if(output_fn) {
		output.output_fn = output_fn;
		output.output_fn_data = output_fn_data;
	}

	/* quadruple sample_rate to limit to Δθ to ±π/2 */
	demod.rate_in *= demod.post_downsample;

	if (!output.rate) {
		output.rate = demod.rate_out;
	}

	if (!sanity_checks())
		return -1;

	if (controller.freq_len > 1) {
		demod.terminate_on_squelch = 0;
	}

	ACTUAL_BUF_LENGTH = lcm_post[demod.post_downsample] * DEFAULT_BUF_LENGTH;

	dongle.dev_index = verbose_device_search("0");
	if (dongle.dev_index < 0) {
		return -1;
	}

	r = rtlsdr_open(&dongle.dev, (uint32_t)dongle.dev_index);
	if (r < 0) {
		fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dongle.dev_index);
		return r;
	}

	if (demod.deemph) {
		demod.deemph_a = (int)round(1.0/((1.0-exp(-1.0/(demod.rate_out * 75e-6)))));
	}

	/* Set the tuner gain */
	if (dongle.gain == AUTO_GAIN) {
		verbose_auto_gain(dongle.dev);
	} else {
		dongle.gain = nearest_gain(dongle.dev, dongle.gain);
		verbose_gain_set(dongle.dev, dongle.gain);
	}

	verbose_ppm_set(dongle.dev, dongle.ppm_error);

	//r = rtlsdr_set_testmode(dongle.dev, 1);

	return r;
}

void rtl_fm_start(void)
{
	struct controller_state *s = &controller;

	/*
	 * A bunch of the following is pulled from the controller_thread_fn,
	 * which has been removed.
	 */

	/* Reset endpoint before we start reading from it (mandatory) */
	verbose_reset_buffer(dongle.dev);

	/* set up primary channel */
	optimal_settings(s->freqs[0], demod.rate_in);
	if (dongle.direct_sampling) {
		verbose_direct_sampling(dongle.dev, 1);}
	if (dongle.offset_tuning) {
		verbose_offset_tuning(dongle.dev);}

	/* Set the frequency */
	verbose_set_frequency(dongle.dev, dongle.freq);
	fprintf(stderr, "Oversampling input by: %ix.\n", demod.downsample);
	fprintf(stderr, "Oversampling output by: %ix.\n", demod.post_downsample);
	fprintf(stderr, "Buffer size: %0.2fms\n",
		1000 * 0.5 * (float)ACTUAL_BUF_LENGTH / (float)dongle.rate);

	/* Set the sample rate */
	verbose_set_sample_rate(dongle.dev, dongle.rate);
	fprintf(stderr, "Output at %u Hz.\n", demod.rate_in/demod.post_downsample);
	usleep(100000);

	rtl_fm_scan_stop();

	do_exit = 0;
	pthread_create(&output.thread, NULL, output_thread_fn, (void *)(&output));
	pthread_create(&demod.thread, NULL, demod_thread_fn, (void *)(&demod));
	pthread_create(&dongle.thread, NULL, dongle_thread_fn, (void *)(&dongle));
}

void rtl_fm_set_freq(uint32_t freq)
{
	struct controller_state *s = &controller;

	if(s->freqs[0] == freq)
		return;

	s->freqs[0] = freq;
	s->freq_len = 1;

	if (s->wb_mode) {
		s->freqs[0] += 16000;
	}

	optimal_settings(s->freqs[0], demod.rate_in);
	if (dongle.offset_tuning) {
		verbose_offset_tuning(dongle.dev);
	}
	rtlsdr_set_center_freq(dongle.dev, dongle.freq);

	// It does not look like refreshing the sample rate is desirable
	// (e.g. the scanning code in the removed controller thread function
	// did not do it), and behavior seemed a bit less robust with it
	// present.  However, I am leaving this here as a reminder to revisit
	// via some more testing.
	//rtlsdr_set_sample_rate(dongle.dev, dongle.rate);

	// This triggers a mute during the frequency change
	dongle.mute = BUFFER_DUMP;

	if(s->freq_callback)
		s->freq_callback(freq, s->freq_callback_data);
}

void rtl_fm_set_freq_callback(void (*callback)(uint32_t, void *),
			      void *data)
{
	struct controller_state *s = &controller;

	s->freq_callback = callback;
	s->freq_callback_data = data;
}

uint32_t rtl_fm_get_freq(void)
{
	struct controller_state *s = &controller;
	uint32_t frequency = s->freqs[0];

	if (s->wb_mode)
		frequency -= 16000;

	return frequency;
}

void rtl_fm_stop(void)
{
	rtl_fm_scan_stop();

	rtlsdr_cancel_async(dongle.dev);
	do_exit = 1;
	pthread_join(dongle.thread, NULL);
	safe_cond_signal(&demod.ready, &demod.ready_m);
	pthread_join(demod.thread, NULL);
	safe_cond_signal(&output.ready, &output.ready_m);
	pthread_join(output.thread, NULL);
}

void rtl_fm_scan_start(int direction,
		       void (*callback)(uint32_t, void *),
		       void *data,
		       uint32_t step,
		       uint32_t min,
		       uint32_t max)
{
	struct controller_state *s = &controller;
	struct demod_state *dm = &demod;
	uint32_t frequency = rtl_fm_get_freq();

	if(s->scanning && s->scan_direction == direction)
		return;

	s->scanning = 1;
	s->scan_direction = direction;
	s->scan_callback = callback;
	s->scan_callback_data = data;
	s->scan_step = step;
	s->scan_min = min;
	s->scan_max = max;

	/* Start scan by stepping in the desired direction */
	if(!direction) {
		frequency += s->scan_step;
		if(frequency > s->scan_max)
			frequency = s->scan_min;
	} else {
		frequency -= s->scan_step;
		if(frequency < s->scan_min)
			frequency = s->scan_max;
	}

	rtl_fm_set_freq(frequency);

	dm->conseq_squelch = s->scan_squelch_count;
	dm->squelch_hits = s->scan_squelch_count + 1;
	dm->squelch_level = s->scan_squelch_level;
}

void rtl_fm_scan_stop(void)
{
	struct controller_state *s = &controller;
	struct demod_state *dm = &demod;

	s->scanning = 0;

	dm->squelch_hits = s->scan_squelch_count + 1;
	dm->squelch_level = 0;
}

void rtl_fm_scan_set_squelch_level(int level)
{
	struct controller_state *s = &controller;

	s->scan_squelch_level = level;
}

void rtl_fm_scan_set_squelch_limit(int count)
{
	struct controller_state *s = &controller;

	s->scan_squelch_count = count;
}

void rtl_fm_cleanup(void)
{
	//dongle_cleanup(&dongle);
	demod_cleanup(&demod);
	output_cleanup(&output);
	controller_cleanup(&controller);

	rtlsdr_close(dongle.dev);
}

// vim: tabstop=8:softtabstop=8:shiftwidth=8:noexpandtab