aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/lua/src/lcode.c
diff options
context:
space:
mode:
authorRomain Forlot <romain.forlot@iot.bzh>2017-10-23 18:44:34 +0200
committerRomain Forlot <romain.forlot@iot.bzh>2017-12-14 11:00:25 +0100
commit01650b71c92a67807e346bfff655c59df58f2bfd (patch)
tree1e42fb8a6aef0cd70c71b048ae79d2d00a4b27c9 /3rdparty/lua/src/lcode.c
parent8df3e437f941912067231250ff5695b8a3a7fd92 (diff)
Remove external 3rdparty library
Downloaded at build time. Change-Id: If15e9bcb4cc7d09cec1837a0ad62e4a3c6beb4e1 Signed-off-by: Romain Forlot <romain.forlot@iot.bzh>
Diffstat (limited to '3rdparty/lua/src/lcode.c')
-rw-r--r--3rdparty/lua/src/lcode.c1203
1 files changed, 0 insertions, 1203 deletions
diff --git a/3rdparty/lua/src/lcode.c b/3rdparty/lua/src/lcode.c
deleted file mode 100644
index 0bb4142..0000000
--- a/3rdparty/lua/src/lcode.c
+++ /dev/null
@@ -1,1203 +0,0 @@
-/*
-** $Id: lcode.c,v 2.112 2016/12/22 13:08:50 roberto Exp $
-** Code generator for Lua
-** See Copyright Notice in lua.h
-*/
-
-#define lcode_c
-#define LUA_CORE
-
-#include "lprefix.h"
-
-
-#include <math.h>
-#include <stdlib.h>
-
-#include "lua.h"
-
-#include "lcode.h"
-#include "ldebug.h"
-#include "ldo.h"
-#include "lgc.h"
-#include "llex.h"
-#include "lmem.h"
-#include "lobject.h"
-#include "lopcodes.h"
-#include "lparser.h"
-#include "lstring.h"
-#include "ltable.h"
-#include "lvm.h"
-
-
-/* Maximum number of registers in a Lua function (must fit in 8 bits) */
-#define MAXREGS 255
-
-
-#define hasjumps(e) ((e)->t != (e)->f)
-
-
-/*
-** If expression is a numeric constant, fills 'v' with its value
-** and returns 1. Otherwise, returns 0.
-*/
-static int tonumeral(const expdesc *e, TValue *v) {
- if (hasjumps(e))
- return 0; /* not a numeral */
- switch (e->k) {
- case VKINT:
- if (v) setivalue(v, e->u.ival);
- return 1;
- case VKFLT:
- if (v) setfltvalue(v, e->u.nval);
- return 1;
- default: return 0;
- }
-}
-
-
-/*
-** Create a OP_LOADNIL instruction, but try to optimize: if the previous
-** instruction is also OP_LOADNIL and ranges are compatible, adjust
-** range of previous instruction instead of emitting a new one. (For
-** instance, 'local a; local b' will generate a single opcode.)
-*/
-void luaK_nil (FuncState *fs, int from, int n) {
- Instruction *previous;
- int l = from + n - 1; /* last register to set nil */
- if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
- previous = &fs->f->code[fs->pc-1];
- if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
- int pfrom = GETARG_A(*previous); /* get previous range */
- int pl = pfrom + GETARG_B(*previous);
- if ((pfrom <= from && from <= pl + 1) ||
- (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
- if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
- if (pl > l) l = pl; /* l = max(l, pl) */
- SETARG_A(*previous, from);
- SETARG_B(*previous, l - from);
- return;
- }
- } /* else go through */
- }
- luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
-}
-
-
-/*
-** Gets the destination address of a jump instruction. Used to traverse
-** a list of jumps.
-*/
-static int getjump (FuncState *fs, int pc) {
- int offset = GETARG_sBx(fs->f->code[pc]);
- if (offset == NO_JUMP) /* point to itself represents end of list */
- return NO_JUMP; /* end of list */
- else
- return (pc+1)+offset; /* turn offset into absolute position */
-}
-
-
-/*
-** Fix jump instruction at position 'pc' to jump to 'dest'.
-** (Jump addresses are relative in Lua)
-*/
-static void fixjump (FuncState *fs, int pc, int dest) {
- Instruction *jmp = &fs->f->code[pc];
- int offset = dest - (pc + 1);
- lua_assert(dest != NO_JUMP);
- if (abs(offset) > MAXARG_sBx)
- luaX_syntaxerror(fs->ls, "control structure too long");
- SETARG_sBx(*jmp, offset);
-}
-
-
-/*
-** Concatenate jump-list 'l2' into jump-list 'l1'
-*/
-void luaK_concat (FuncState *fs, int *l1, int l2) {
- if (l2 == NO_JUMP) return; /* nothing to concatenate? */
- else if (*l1 == NO_JUMP) /* no original list? */
- *l1 = l2; /* 'l1' points to 'l2' */
- else {
- int list = *l1;
- int next;
- while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
- list = next;
- fixjump(fs, list, l2); /* last element links to 'l2' */
- }
-}
-
-
-/*
-** Create a jump instruction and return its position, so its destination
-** can be fixed later (with 'fixjump'). If there are jumps to
-** this position (kept in 'jpc'), link them all together so that
-** 'patchlistaux' will fix all them directly to the final destination.
-*/
-int luaK_jump (FuncState *fs) {
- int jpc = fs->jpc; /* save list of jumps to here */
- int j;
- fs->jpc = NO_JUMP; /* no more jumps to here */
- j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
- luaK_concat(fs, &j, jpc); /* keep them on hold */
- return j;
-}
-
-
-/*
-** Code a 'return' instruction
-*/
-void luaK_ret (FuncState *fs, int first, int nret) {
- luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
-}
-
-
-/*
-** Code a "conditional jump", that is, a test or comparison opcode
-** followed by a jump. Return jump position.
-*/
-static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
- luaK_codeABC(fs, op, A, B, C);
- return luaK_jump(fs);
-}
-
-
-/*
-** returns current 'pc' and marks it as a jump target (to avoid wrong
-** optimizations with consecutive instructions not in the same basic block).
-*/
-int luaK_getlabel (FuncState *fs) {
- fs->lasttarget = fs->pc;
- return fs->pc;
-}
-
-
-/*
-** Returns the position of the instruction "controlling" a given
-** jump (that is, its condition), or the jump itself if it is
-** unconditional.
-*/
-static Instruction *getjumpcontrol (FuncState *fs, int pc) {
- Instruction *pi = &fs->f->code[pc];
- if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
- return pi-1;
- else
- return pi;
-}
-
-
-/*
-** Patch destination register for a TESTSET instruction.
-** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
-** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
-** register. Otherwise, change instruction to a simple 'TEST' (produces
-** no register value)
-*/
-static int patchtestreg (FuncState *fs, int node, int reg) {
- Instruction *i = getjumpcontrol(fs, node);
- if (GET_OPCODE(*i) != OP_TESTSET)
- return 0; /* cannot patch other instructions */
- if (reg != NO_REG && reg != GETARG_B(*i))
- SETARG_A(*i, reg);
- else {
- /* no register to put value or register already has the value;
- change instruction to simple test */
- *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
- }
- return 1;
-}
-
-
-/*
-** Traverse a list of tests ensuring no one produces a value
-*/
-static void removevalues (FuncState *fs, int list) {
- for (; list != NO_JUMP; list = getjump(fs, list))
- patchtestreg(fs, list, NO_REG);
-}
-
-
-/*
-** Traverse a list of tests, patching their destination address and
-** registers: tests producing values jump to 'vtarget' (and put their
-** values in 'reg'), other tests jump to 'dtarget'.
-*/
-static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
- int dtarget) {
- while (list != NO_JUMP) {
- int next = getjump(fs, list);
- if (patchtestreg(fs, list, reg))
- fixjump(fs, list, vtarget);
- else
- fixjump(fs, list, dtarget); /* jump to default target */
- list = next;
- }
-}
-
-
-/*
-** Ensure all pending jumps to current position are fixed (jumping
-** to current position with no values) and reset list of pending
-** jumps
-*/
-static void dischargejpc (FuncState *fs) {
- patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
- fs->jpc = NO_JUMP;
-}
-
-
-/*
-** Add elements in 'list' to list of pending jumps to "here"
-** (current position)
-*/
-void luaK_patchtohere (FuncState *fs, int list) {
- luaK_getlabel(fs); /* mark "here" as a jump target */
- luaK_concat(fs, &fs->jpc, list);
-}
-
-
-/*
-** Path all jumps in 'list' to jump to 'target'.
-** (The assert means that we cannot fix a jump to a forward address
-** because we only know addresses once code is generated.)
-*/
-void luaK_patchlist (FuncState *fs, int list, int target) {
- if (target == fs->pc) /* 'target' is current position? */
- luaK_patchtohere(fs, list); /* add list to pending jumps */
- else {
- lua_assert(target < fs->pc);
- patchlistaux(fs, list, target, NO_REG, target);
- }
-}
-
-
-/*
-** Path all jumps in 'list' to close upvalues up to given 'level'
-** (The assertion checks that jumps either were closing nothing
-** or were closing higher levels, from inner blocks.)
-*/
-void luaK_patchclose (FuncState *fs, int list, int level) {
- level++; /* argument is +1 to reserve 0 as non-op */
- for (; list != NO_JUMP; list = getjump(fs, list)) {
- lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
- (GETARG_A(fs->f->code[list]) == 0 ||
- GETARG_A(fs->f->code[list]) >= level));
- SETARG_A(fs->f->code[list], level);
- }
-}
-
-
-/*
-** Emit instruction 'i', checking for array sizes and saving also its
-** line information. Return 'i' position.
-*/
-static int luaK_code (FuncState *fs, Instruction i) {
- Proto *f = fs->f;
- dischargejpc(fs); /* 'pc' will change */
- /* put new instruction in code array */
- luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
- MAX_INT, "opcodes");
- f->code[fs->pc] = i;
- /* save corresponding line information */
- luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
- MAX_INT, "opcodes");
- f->lineinfo[fs->pc] = fs->ls->lastline;
- return fs->pc++;
-}
-
-
-/*
-** Format and emit an 'iABC' instruction. (Assertions check consistency
-** of parameters versus opcode.)
-*/
-int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
- lua_assert(getOpMode(o) == iABC);
- lua_assert(getBMode(o) != OpArgN || b == 0);
- lua_assert(getCMode(o) != OpArgN || c == 0);
- lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
- return luaK_code(fs, CREATE_ABC(o, a, b, c));
-}
-
-
-/*
-** Format and emit an 'iABx' instruction.
-*/
-int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
- lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
- lua_assert(getCMode(o) == OpArgN);
- lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
- return luaK_code(fs, CREATE_ABx(o, a, bc));
-}
-
-
-/*
-** Emit an "extra argument" instruction (format 'iAx')
-*/
-static int codeextraarg (FuncState *fs, int a) {
- lua_assert(a <= MAXARG_Ax);
- return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
-}
-
-
-/*
-** Emit a "load constant" instruction, using either 'OP_LOADK'
-** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
-** instruction with "extra argument".
-*/
-int luaK_codek (FuncState *fs, int reg, int k) {
- if (k <= MAXARG_Bx)
- return luaK_codeABx(fs, OP_LOADK, reg, k);
- else {
- int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
- codeextraarg(fs, k);
- return p;
- }
-}
-
-
-/*
-** Check register-stack level, keeping track of its maximum size
-** in field 'maxstacksize'
-*/
-void luaK_checkstack (FuncState *fs, int n) {
- int newstack = fs->freereg + n;
- if (newstack > fs->f->maxstacksize) {
- if (newstack >= MAXREGS)
- luaX_syntaxerror(fs->ls,
- "function or expression needs too many registers");
- fs->f->maxstacksize = cast_byte(newstack);
- }
-}
-
-
-/*
-** Reserve 'n' registers in register stack
-*/
-void luaK_reserveregs (FuncState *fs, int n) {
- luaK_checkstack(fs, n);
- fs->freereg += n;
-}
-
-
-/*
-** Free register 'reg', if it is neither a constant index nor
-** a local variable.
-)
-*/
-static void freereg (FuncState *fs, int reg) {
- if (!ISK(reg) && reg >= fs->nactvar) {
- fs->freereg--;
- lua_assert(reg == fs->freereg);
- }
-}
-
-
-/*
-** Free register used by expression 'e' (if any)
-*/
-static void freeexp (FuncState *fs, expdesc *e) {
- if (e->k == VNONRELOC)
- freereg(fs, e->u.info);
-}
-
-
-/*
-** Free registers used by expressions 'e1' and 'e2' (if any) in proper
-** order.
-*/
-static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
- int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
- int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
- if (r1 > r2) {
- freereg(fs, r1);
- freereg(fs, r2);
- }
- else {
- freereg(fs, r2);
- freereg(fs, r1);
- }
-}
-
-
-/*
-** Add constant 'v' to prototype's list of constants (field 'k').
-** Use scanner's table to cache position of constants in constant list
-** and try to reuse constants. Because some values should not be used
-** as keys (nil cannot be a key, integer keys can collapse with float
-** keys), the caller must provide a useful 'key' for indexing the cache.
-*/
-static int addk (FuncState *fs, TValue *key, TValue *v) {
- lua_State *L = fs->ls->L;
- Proto *f = fs->f;
- TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
- int k, oldsize;
- if (ttisinteger(idx)) { /* is there an index there? */
- k = cast_int(ivalue(idx));
- /* correct value? (warning: must distinguish floats from integers!) */
- if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
- luaV_rawequalobj(&f->k[k], v))
- return k; /* reuse index */
- }
- /* constant not found; create a new entry */
- oldsize = f->sizek;
- k = fs->nk;
- /* numerical value does not need GC barrier;
- table has no metatable, so it does not need to invalidate cache */
- setivalue(idx, k);
- luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
- while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
- setobj(L, &f->k[k], v);
- fs->nk++;
- luaC_barrier(L, f, v);
- return k;
-}
-
-
-/*
-** Add a string to list of constants and return its index.
-*/
-int luaK_stringK (FuncState *fs, TString *s) {
- TValue o;
- setsvalue(fs->ls->L, &o, s);
- return addk(fs, &o, &o); /* use string itself as key */
-}
-
-
-/*
-** Add an integer to list of constants and return its index.
-** Integers use userdata as keys to avoid collision with floats with
-** same value; conversion to 'void*' is used only for hashing, so there
-** are no "precision" problems.
-*/
-int luaK_intK (FuncState *fs, lua_Integer n) {
- TValue k, o;
- setpvalue(&k, cast(void*, cast(size_t, n)));
- setivalue(&o, n);
- return addk(fs, &k, &o);
-}
-
-/*
-** Add a float to list of constants and return its index.
-*/
-static int luaK_numberK (FuncState *fs, lua_Number r) {
- TValue o;
- setfltvalue(&o, r);
- return addk(fs, &o, &o); /* use number itself as key */
-}
-
-
-/*
-** Add a boolean to list of constants and return its index.
-*/
-static int boolK (FuncState *fs, int b) {
- TValue o;
- setbvalue(&o, b);
- return addk(fs, &o, &o); /* use boolean itself as key */
-}
-
-
-/*
-** Add nil to list of constants and return its index.
-*/
-static int nilK (FuncState *fs) {
- TValue k, v;
- setnilvalue(&v);
- /* cannot use nil as key; instead use table itself to represent nil */
- sethvalue(fs->ls->L, &k, fs->ls->h);
- return addk(fs, &k, &v);
-}
-
-
-/*
-** Fix an expression to return the number of results 'nresults'.
-** Either 'e' is a multi-ret expression (function call or vararg)
-** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
-*/
-void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
- if (e->k == VCALL) { /* expression is an open function call? */
- SETARG_C(getinstruction(fs, e), nresults + 1);
- }
- else if (e->k == VVARARG) {
- Instruction *pc = &getinstruction(fs, e);
- SETARG_B(*pc, nresults + 1);
- SETARG_A(*pc, fs->freereg);
- luaK_reserveregs(fs, 1);
- }
- else lua_assert(nresults == LUA_MULTRET);
-}
-
-
-/*
-** Fix an expression to return one result.
-** If expression is not a multi-ret expression (function call or
-** vararg), it already returns one result, so nothing needs to be done.
-** Function calls become VNONRELOC expressions (as its result comes
-** fixed in the base register of the call), while vararg expressions
-** become VRELOCABLE (as OP_VARARG puts its results where it wants).
-** (Calls are created returning one result, so that does not need
-** to be fixed.)
-*/
-void luaK_setoneret (FuncState *fs, expdesc *e) {
- if (e->k == VCALL) { /* expression is an open function call? */
- /* already returns 1 value */
- lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
- e->k = VNONRELOC; /* result has fixed position */
- e->u.info = GETARG_A(getinstruction(fs, e));
- }
- else if (e->k == VVARARG) {
- SETARG_B(getinstruction(fs, e), 2);
- e->k = VRELOCABLE; /* can relocate its simple result */
- }
-}
-
-
-/*
-** Ensure that expression 'e' is not a variable.
-*/
-void luaK_dischargevars (FuncState *fs, expdesc *e) {
- switch (e->k) {
- case VLOCAL: { /* already in a register */
- e->k = VNONRELOC; /* becomes a non-relocatable value */
- break;
- }
- case VUPVAL: { /* move value to some (pending) register */
- e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
- e->k = VRELOCABLE;
- break;
- }
- case VINDEXED: {
- OpCode op;
- freereg(fs, e->u.ind.idx);
- if (e->u.ind.vt == VLOCAL) { /* is 't' in a register? */
- freereg(fs, e->u.ind.t);
- op = OP_GETTABLE;
- }
- else {
- lua_assert(e->u.ind.vt == VUPVAL);
- op = OP_GETTABUP; /* 't' is in an upvalue */
- }
- e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
- e->k = VRELOCABLE;
- break;
- }
- case VVARARG: case VCALL: {
- luaK_setoneret(fs, e);
- break;
- }
- default: break; /* there is one value available (somewhere) */
- }
-}
-
-
-/*
-** Ensures expression value is in register 'reg' (and therefore
-** 'e' will become a non-relocatable expression).
-*/
-static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VNIL: {
- luaK_nil(fs, reg, 1);
- break;
- }
- case VFALSE: case VTRUE: {
- luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
- break;
- }
- case VK: {
- luaK_codek(fs, reg, e->u.info);
- break;
- }
- case VKFLT: {
- luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
- break;
- }
- case VKINT: {
- luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
- break;
- }
- case VRELOCABLE: {
- Instruction *pc = &getinstruction(fs, e);
- SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
- break;
- }
- case VNONRELOC: {
- if (reg != e->u.info)
- luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
- break;
- }
- default: {
- lua_assert(e->k == VJMP);
- return; /* nothing to do... */
- }
- }
- e->u.info = reg;
- e->k = VNONRELOC;
-}
-
-
-/*
-** Ensures expression value is in any register.
-*/
-static void discharge2anyreg (FuncState *fs, expdesc *e) {
- if (e->k != VNONRELOC) { /* no fixed register yet? */
- luaK_reserveregs(fs, 1); /* get a register */
- discharge2reg(fs, e, fs->freereg-1); /* put value there */
- }
-}
-
-
-static int code_loadbool (FuncState *fs, int A, int b, int jump) {
- luaK_getlabel(fs); /* those instructions may be jump targets */
- return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
-}
-
-
-/*
-** check whether list has any jump that do not produce a value
-** or produce an inverted value
-*/
-static int need_value (FuncState *fs, int list) {
- for (; list != NO_JUMP; list = getjump(fs, list)) {
- Instruction i = *getjumpcontrol(fs, list);
- if (GET_OPCODE(i) != OP_TESTSET) return 1;
- }
- return 0; /* not found */
-}
-
-
-/*
-** Ensures final expression result (including results from its jump
-** lists) is in register 'reg'.
-** If expression has jumps, need to patch these jumps either to
-** its final position or to "load" instructions (for those tests
-** that do not produce values).
-*/
-static void exp2reg (FuncState *fs, expdesc *e, int reg) {
- discharge2reg(fs, e, reg);
- if (e->k == VJMP) /* expression itself is a test? */
- luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
- if (hasjumps(e)) {
- int final; /* position after whole expression */
- int p_f = NO_JUMP; /* position of an eventual LOAD false */
- int p_t = NO_JUMP; /* position of an eventual LOAD true */
- if (need_value(fs, e->t) || need_value(fs, e->f)) {
- int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
- p_f = code_loadbool(fs, reg, 0, 1);
- p_t = code_loadbool(fs, reg, 1, 0);
- luaK_patchtohere(fs, fj);
- }
- final = luaK_getlabel(fs);
- patchlistaux(fs, e->f, final, reg, p_f);
- patchlistaux(fs, e->t, final, reg, p_t);
- }
- e->f = e->t = NO_JUMP;
- e->u.info = reg;
- e->k = VNONRELOC;
-}
-
-
-/*
-** Ensures final expression result (including results from its jump
-** lists) is in next available register.
-*/
-void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
- luaK_dischargevars(fs, e);
- freeexp(fs, e);
- luaK_reserveregs(fs, 1);
- exp2reg(fs, e, fs->freereg - 1);
-}
-
-
-/*
-** Ensures final expression result (including results from its jump
-** lists) is in some (any) register and return that register.
-*/
-int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
- luaK_dischargevars(fs, e);
- if (e->k == VNONRELOC) { /* expression already has a register? */
- if (!hasjumps(e)) /* no jumps? */
- return e->u.info; /* result is already in a register */
- if (e->u.info >= fs->nactvar) { /* reg. is not a local? */
- exp2reg(fs, e, e->u.info); /* put final result in it */
- return e->u.info;
- }
- }
- luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
- return e->u.info;
-}
-
-
-/*
-** Ensures final expression result is either in a register or in an
-** upvalue.
-*/
-void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
- if (e->k != VUPVAL || hasjumps(e))
- luaK_exp2anyreg(fs, e);
-}
-
-
-/*
-** Ensures final expression result is either in a register or it is
-** a constant.
-*/
-void luaK_exp2val (FuncState *fs, expdesc *e) {
- if (hasjumps(e))
- luaK_exp2anyreg(fs, e);
- else
- luaK_dischargevars(fs, e);
-}
-
-
-/*
-** Ensures final expression result is in a valid R/K index
-** (that is, it is either in a register or in 'k' with an index
-** in the range of R/K indices).
-** Returns R/K index.
-*/
-int luaK_exp2RK (FuncState *fs, expdesc *e) {
- luaK_exp2val(fs, e);
- switch (e->k) { /* move constants to 'k' */
- case VTRUE: e->u.info = boolK(fs, 1); goto vk;
- case VFALSE: e->u.info = boolK(fs, 0); goto vk;
- case VNIL: e->u.info = nilK(fs); goto vk;
- case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
- case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
- case VK:
- vk:
- e->k = VK;
- if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */
- return RKASK(e->u.info);
- else break;
- default: break;
- }
- /* not a constant in the right range: put it in a register */
- return luaK_exp2anyreg(fs, e);
-}
-
-
-/*
-** Generate code to store result of expression 'ex' into variable 'var'.
-*/
-void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
- switch (var->k) {
- case VLOCAL: {
- freeexp(fs, ex);
- exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */
- return;
- }
- case VUPVAL: {
- int e = luaK_exp2anyreg(fs, ex);
- luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
- break;
- }
- case VINDEXED: {
- OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
- int e = luaK_exp2RK(fs, ex);
- luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
- break;
- }
- default: lua_assert(0); /* invalid var kind to store */
- }
- freeexp(fs, ex);
-}
-
-
-/*
-** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
-*/
-void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
- int ereg;
- luaK_exp2anyreg(fs, e);
- ereg = e->u.info; /* register where 'e' was placed */
- freeexp(fs, e);
- e->u.info = fs->freereg; /* base register for op_self */
- e->k = VNONRELOC; /* self expression has a fixed register */
- luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
- luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
- freeexp(fs, key);
-}
-
-
-/*
-** Negate condition 'e' (where 'e' is a comparison).
-*/
-static void negatecondition (FuncState *fs, expdesc *e) {
- Instruction *pc = getjumpcontrol(fs, e->u.info);
- lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
- GET_OPCODE(*pc) != OP_TEST);
- SETARG_A(*pc, !(GETARG_A(*pc)));
-}
-
-
-/*
-** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
-** is true, code will jump if 'e' is true.) Return jump position.
-** Optimize when 'e' is 'not' something, inverting the condition
-** and removing the 'not'.
-*/
-static int jumponcond (FuncState *fs, expdesc *e, int cond) {
- if (e->k == VRELOCABLE) {
- Instruction ie = getinstruction(fs, e);
- if (GET_OPCODE(ie) == OP_NOT) {
- fs->pc--; /* remove previous OP_NOT */
- return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
- }
- /* else go through */
- }
- discharge2anyreg(fs, e);
- freeexp(fs, e);
- return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
-}
-
-
-/*
-** Emit code to go through if 'e' is true, jump otherwise.
-*/
-void luaK_goiftrue (FuncState *fs, expdesc *e) {
- int pc; /* pc of new jump */
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VJMP: { /* condition? */
- negatecondition(fs, e); /* jump when it is false */
- pc = e->u.info; /* save jump position */
- break;
- }
- case VK: case VKFLT: case VKINT: case VTRUE: {
- pc = NO_JUMP; /* always true; do nothing */
- break;
- }
- default: {
- pc = jumponcond(fs, e, 0); /* jump when false */
- break;
- }
- }
- luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
- luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
- e->t = NO_JUMP;
-}
-
-
-/*
-** Emit code to go through if 'e' is false, jump otherwise.
-*/
-void luaK_goiffalse (FuncState *fs, expdesc *e) {
- int pc; /* pc of new jump */
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VJMP: {
- pc = e->u.info; /* already jump if true */
- break;
- }
- case VNIL: case VFALSE: {
- pc = NO_JUMP; /* always false; do nothing */
- break;
- }
- default: {
- pc = jumponcond(fs, e, 1); /* jump if true */
- break;
- }
- }
- luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
- luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
- e->f = NO_JUMP;
-}
-
-
-/*
-** Code 'not e', doing constant folding.
-*/
-static void codenot (FuncState *fs, expdesc *e) {
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VNIL: case VFALSE: {
- e->k = VTRUE; /* true == not nil == not false */
- break;
- }
- case VK: case VKFLT: case VKINT: case VTRUE: {
- e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
- break;
- }
- case VJMP: {
- negatecondition(fs, e);
- break;
- }
- case VRELOCABLE:
- case VNONRELOC: {
- discharge2anyreg(fs, e);
- freeexp(fs, e);
- e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
- e->k = VRELOCABLE;
- break;
- }
- default: lua_assert(0); /* cannot happen */
- }
- /* interchange true and false lists */
- { int temp = e->f; e->f = e->t; e->t = temp; }
- removevalues(fs, e->f); /* values are useless when negated */
- removevalues(fs, e->t);
-}
-
-
-/*
-** Create expression 't[k]'. 't' must have its final result already in a
-** register or upvalue.
-*/
-void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
- lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
- t->u.ind.t = t->u.info; /* register or upvalue index */
- t->u.ind.idx = luaK_exp2RK(fs, k); /* R/K index for key */
- t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
- t->k = VINDEXED;
-}
-
-
-/*
-** Return false if folding can raise an error.
-** Bitwise operations need operands convertible to integers; division
-** operations cannot have 0 as divisor.
-*/
-static int validop (int op, TValue *v1, TValue *v2) {
- switch (op) {
- case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
- case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
- lua_Integer i;
- return (tointeger(v1, &i) && tointeger(v2, &i));
- }
- case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
- return (nvalue(v2) != 0);
- default: return 1; /* everything else is valid */
- }
-}
-
-
-/*
-** Try to "constant-fold" an operation; return 1 iff successful.
-** (In this case, 'e1' has the final result.)
-*/
-static int constfolding (FuncState *fs, int op, expdesc *e1,
- const expdesc *e2) {
- TValue v1, v2, res;
- if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
- return 0; /* non-numeric operands or not safe to fold */
- luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
- if (ttisinteger(&res)) {
- e1->k = VKINT;
- e1->u.ival = ivalue(&res);
- }
- else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
- lua_Number n = fltvalue(&res);
- if (luai_numisnan(n) || n == 0)
- return 0;
- e1->k = VKFLT;
- e1->u.nval = n;
- }
- return 1;
-}
-
-
-/*
-** Emit code for unary expressions that "produce values"
-** (everything but 'not').
-** Expression to produce final result will be encoded in 'e'.
-*/
-static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
- int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
- freeexp(fs, e);
- e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
- e->k = VRELOCABLE; /* all those operations are relocatable */
- luaK_fixline(fs, line);
-}
-
-
-/*
-** Emit code for binary expressions that "produce values"
-** (everything but logical operators 'and'/'or' and comparison
-** operators).
-** Expression to produce final result will be encoded in 'e1'.
-** Because 'luaK_exp2RK' can free registers, its calls must be
-** in "stack order" (that is, first on 'e2', which may have more
-** recent registers to be released).
-*/
-static void codebinexpval (FuncState *fs, OpCode op,
- expdesc *e1, expdesc *e2, int line) {
- int rk2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */
- int rk1 = luaK_exp2RK(fs, e1);
- freeexps(fs, e1, e2);
- e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2); /* generate opcode */
- e1->k = VRELOCABLE; /* all those operations are relocatable */
- luaK_fixline(fs, line);
-}
-
-
-/*
-** Emit code for comparisons.
-** 'e1' was already put in R/K form by 'luaK_infix'.
-*/
-static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
- int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
- : check_exp(e1->k == VNONRELOC, e1->u.info);
- int rk2 = luaK_exp2RK(fs, e2);
- freeexps(fs, e1, e2);
- switch (opr) {
- case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */
- e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
- break;
- }
- case OPR_GT: case OPR_GE: {
- /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */
- OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
- e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */
- break;
- }
- default: { /* '==', '<', '<=' use their own opcodes */
- OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
- e1->u.info = condjump(fs, op, 1, rk1, rk2);
- break;
- }
- }
- e1->k = VJMP;
-}
-
-
-/*
-** Aplly prefix operation 'op' to expression 'e'.
-*/
-void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
- static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
- switch (op) {
- case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
- if (constfolding(fs, op + LUA_OPUNM, e, &ef))
- break;
- /* FALLTHROUGH */
- case OPR_LEN:
- codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
- break;
- case OPR_NOT: codenot(fs, e); break;
- default: lua_assert(0);
- }
-}
-
-
-/*
-** Process 1st operand 'v' of binary operation 'op' before reading
-** 2nd operand.
-*/
-void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
- switch (op) {
- case OPR_AND: {
- luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
- break;
- }
- case OPR_OR: {
- luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
- break;
- }
- case OPR_CONCAT: {
- luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */
- break;
- }
- case OPR_ADD: case OPR_SUB:
- case OPR_MUL: case OPR_DIV: case OPR_IDIV:
- case OPR_MOD: case OPR_POW:
- case OPR_BAND: case OPR_BOR: case OPR_BXOR:
- case OPR_SHL: case OPR_SHR: {
- if (!tonumeral(v, NULL))
- luaK_exp2RK(fs, v);
- /* else keep numeral, which may be folded with 2nd operand */
- break;
- }
- default: {
- luaK_exp2RK(fs, v);
- break;
- }
- }
-}
-
-
-/*
-** Finalize code for binary operation, after reading 2nd operand.
-** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
-** concatenation is right associative), merge second CONCAT into first
-** one.
-*/
-void luaK_posfix (FuncState *fs, BinOpr op,
- expdesc *e1, expdesc *e2, int line) {
- switch (op) {
- case OPR_AND: {
- lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */
- luaK_dischargevars(fs, e2);
- luaK_concat(fs, &e2->f, e1->f);
- *e1 = *e2;
- break;
- }
- case OPR_OR: {
- lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */
- luaK_dischargevars(fs, e2);
- luaK_concat(fs, &e2->t, e1->t);
- *e1 = *e2;
- break;
- }
- case OPR_CONCAT: {
- luaK_exp2val(fs, e2);
- if (e2->k == VRELOCABLE &&
- GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
- lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
- freeexp(fs, e1);
- SETARG_B(getinstruction(fs, e2), e1->u.info);
- e1->k = VRELOCABLE; e1->u.info = e2->u.info;
- }
- else {
- luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
- codebinexpval(fs, OP_CONCAT, e1, e2, line);
- }
- break;
- }
- case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
- case OPR_IDIV: case OPR_MOD: case OPR_POW:
- case OPR_BAND: case OPR_BOR: case OPR_BXOR:
- case OPR_SHL: case OPR_SHR: {
- if (!constfolding(fs, op + LUA_OPADD, e1, e2))
- codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
- break;
- }
- case OPR_EQ: case OPR_LT: case OPR_LE:
- case OPR_NE: case OPR_GT: case OPR_GE: {
- codecomp(fs, op, e1, e2);
- break;
- }
- default: lua_assert(0);
- }
-}
-
-
-/*
-** Change line information associated with current position.
-*/
-void luaK_fixline (FuncState *fs, int line) {
- fs->f->lineinfo[fs->pc - 1] = line;
-}
-
-
-/*
-** Emit a SETLIST instruction.
-** 'base' is register that keeps table;
-** 'nelems' is #table plus those to be stored now;
-** 'tostore' is number of values (in registers 'base + 1',...) to add to
-** table (or LUA_MULTRET to add up to stack top).
-*/
-void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
- int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
- int b = (tostore == LUA_MULTRET) ? 0 : tostore;
- lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
- if (c <= MAXARG_C)
- luaK_codeABC(fs, OP_SETLIST, base, b, c);
- else if (c <= MAXARG_Ax) {
- luaK_codeABC(fs, OP_SETLIST, base, b, 0);
- codeextraarg(fs, c);
- }
- else
- luaX_syntaxerror(fs->ls, "constructor too long");
- fs->freereg = base + 1; /* free registers with list values */
-}
-