summaryrefslogtreecommitdiffstats
path: root/agl_service_voiceagent/servicers/voice_agent_servicer.py
blob: 4038b855f520bed04daef6a8110d9bb01ada2b74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (c) 2023 Malik Talha
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import grpc
import time
import threading
from generated import voice_agent_pb2
from generated import voice_agent_pb2_grpc
from agl_service_voiceagent.utils.audio_recorder import AudioRecorder
from agl_service_voiceagent.utils.wake_word import WakeWordDetector
from agl_service_voiceagent.utils.stt_model import STTModel
from agl_service_voiceagent.utils.config import get_config_value
from agl_service_voiceagent.nlu.snips_interface import SnipsInterface
from agl_service_voiceagent.nlu.rasa_interface import RASAInterface
from agl_service_voiceagent.utils.common import generate_unique_uuid, delete_file


class VoiceAgentServicer(voice_agent_pb2_grpc.VoiceAgentServiceServicer):
    def __init__(self):
        # Get the config values
        self.service_version = get_config_value('SERVICE_VERSION')
        self.wake_word = get_config_value('WAKE_WORD')
        self.base_audio_dir = get_config_value('BASE_AUDIO_DIR')
        self.channels = int(get_config_value('CHANNELS'))
        self.sample_rate = int(get_config_value('SAMPLE_RATE'))
        self.bits_per_sample = int(get_config_value('BITS_PER_SAMPLE'))
        self.stt_model_path = get_config_value('STT_MODEL_PATH')
        self.snips_model_path = get_config_value('SNIPS_MODEL_PATH')
        self.rasa_model_path = get_config_value('RASA_MODEL_PATH')
        self.rasa_server_port = int(get_config_value('RASA_SERVER_PORT'))
        self.base_log_dir = get_config_value('BASE_LOG_DIR')
        self.store_voice_command = bool(int(get_config_value('STORE_VOICE_COMMANDS')))

        # Initialize class methods
        self.stt_model = STTModel(self.stt_model_path, self.sample_rate)
        self.snips_interface = SnipsInterface(self.snips_model_path)
        self.rasa_interface = RASAInterface(self.rasa_server_port, self.rasa_model_path, self.base_log_dir)
        self.rasa_interface.start_server()
        self.rvc_stream_uuids = {}


    def CheckServiceStatus(self, request, context):
        response = voice_agent_pb2.ServiceStatus(
            version=self.service_version,
            status=True
        )
        return response


    def DetectWakeWord(self, request, context):
        wake_word_detector = WakeWordDetector(self.wake_word, self.stt_model, self.channels, self.sample_rate, self.bits_per_sample)
        wake_word_detector.create_pipeline()
        detection_thread = threading.Thread(target=wake_word_detector.start_listening)
        detection_thread.start()
        while True:
            status = wake_word_detector.get_wake_word_status()
            time.sleep(1)
            if not context.is_active():
                wake_word_detector.send_eos()
                break
            yield voice_agent_pb2.WakeWordStatus(status=status)
            if status:
                break

        detection_thread.join()
    
    
    def RecognizeVoiceCommand(self, requests, context):
        stt = ""
        intent = ""
        intent_slots = []

        for request in requests:
            if request.record_mode == voice_agent_pb2.MANUAL:

                if request.action == voice_agent_pb2.START:
                    status = voice_agent_pb2.REC_PROCESSING
                    stream_uuid = generate_unique_uuid(8)
                    recorder = AudioRecorder(self.stt_model, self.base_audio_dir, self.channels, self.sample_rate, self.bits_per_sample)
                    recorder.set_pipeline_mode("manual")
                    audio_file = recorder.create_pipeline()

                    self.rvc_stream_uuids[stream_uuid] = {
                        "recorder": recorder,
                        "audio_file": audio_file
                    }
                    
                    recorder.start_recording()

                elif request.action == voice_agent_pb2.STOP:
                    stream_uuid = request.stream_id
                    status = voice_agent_pb2.REC_SUCCESS

                    recorder = self.rvc_stream_uuids[stream_uuid]["recorder"]
                    audio_file = self.rvc_stream_uuids[stream_uuid]["audio_file"]
                    del self.rvc_stream_uuids[stream_uuid]

                    recorder.stop_recording()
                    recognizer_uuid = self.stt_model.setup_recognizer()
                    stt = self.stt_model.recognize_from_file(recognizer_uuid, audio_file)

                    if stt not in ["FILE_NOT_FOUND", "FILE_FORMAT_INVALID", "VOICE_NOT_RECOGNIZED", ""]:
                        if request.nlu_model == voice_agent_pb2.SNIPS:
                            extracted_intent = self.snips_interface.extract_intent(stt)
                            intent, intent_actions = self.snips_interface.process_intent(extracted_intent)

                            if not intent or intent == "":
                                status = voice_agent_pb2.INTENT_NOT_RECOGNIZED

                            for action, value in intent_actions.items():
                                intent_slots.append(voice_agent_pb2.IntentSlot(name=action, value=value))
                        
                        elif request.nlu_model == voice_agent_pb2.RASA:
                            extracted_intent = self.rasa_interface.extract_intent(stt)
                            intent, intent_actions = self.rasa_interface.process_intent(extracted_intent)

                            if not intent or intent == "":
                                status = voice_agent_pb2.INTENT_NOT_RECOGNIZED

                            for action, value in intent_actions.items():
                                intent_slots.append(voice_agent_pb2.IntentSlot(name=action, value=value))

                    else:
                        stt = ""
                        status = voice_agent_pb2.VOICE_NOT_RECOGNIZED
                    
                    # cleanup the kaldi recognizer
                    self.stt_model.cleanup_recognizer(recognizer_uuid)

                    # delete the audio file
                    if not self.store_voice_command:   
                        delete_file(audio_file)


        # Process the request and generate a RecognizeResult
        response = voice_agent_pb2.RecognizeResult(
            command=stt,
            intent=intent,
            intent_slots=intent_slots,
            stream_id=stream_uuid,
            status=status
        )
        return response