aboutsummaryrefslogtreecommitdiffstats
path: root/agl_service_voiceagent/utils/stt_model.py
blob: d51ae31cb0e3f07304bd0eeb33ab19aaa50da27a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (c) 2023 Malik Talha
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import vosk
import wave
from agl_service_voiceagent.utils.common import generate_unique_uuid

class STTModel:
    """
    STTModel is a class for speech-to-text (STT) recognition using the Vosk speech recognition library.
    """

    def __init__(self, model_path, sample_rate=16000):
        """
        Initialize the STTModel instance with the provided model and sample rate.

        Args:
            model_path (str): The path to the Vosk speech recognition model.
            sample_rate (int, optional): The audio sample rate in Hz (default is 16000).
        """
        self.sample_rate = sample_rate
        self.model = vosk.Model(model_path)
        self.recognizer = {}
        self.chunk_size = 1024
    

    def setup_recognizer(self):
        """
        Set up a Vosk recognizer for a new session and return a unique identifier (UUID) for the session.

        Returns:
            str: A unique identifier (UUID) for the session.
        """
        uuid = generate_unique_uuid(6)
        self.recognizer[uuid] = vosk.KaldiRecognizer(self.model, self.sample_rate)
        return uuid


    def init_recognition(self, uuid, audio_data):
        """
        Initialize the Vosk recognizer for a session with audio data.

        Args:
            uuid (str): The unique identifier (UUID) for the session.
            audio_data (bytes): Audio data to process.

        Returns:
            bool: True if initialization was successful, False otherwise.
        """
        return self.recognizer[uuid].AcceptWaveform(audio_data)


    def recognize(self, uuid, partial=False):
        """
        Recognize speech and return the result as a JSON object.

        Args:
            uuid (str): The unique identifier (UUID) for the session.
            partial (bool, optional): If True, return partial recognition results (default is False).

        Returns:
            dict: A JSON object containing recognition results.
        """
        self.recognizer[uuid].SetWords(True)
        if partial:
            result = json.loads(self.recognizer[uuid].PartialResult())
        else:
            result = json.loads(self.recognizer[uuid].Result())
            self.recognizer[uuid].Reset()
        return result
    

    def recognize_from_file(self, uuid, filename):
        """
        Recognize speech from an audio file and return the recognized text.

        Args:
            uuid (str): The unique identifier (UUID) for the session.
            filename (str): The path to the audio file.

        Returns:
            str: The recognized text or error messages.
        """
        if not os.path.exists(filename):
            print(f"Audio file '{filename}' not found.")
            return "FILE_NOT_FOUND"
        
        wf = wave.open(filename, "rb")
        if wf.getnchannels() != 1 or wf.getsampwidth() != 2 or wf.getcomptype() != "NONE":
            print("Audio file must be WAV format mono PCM.")
            return "FILE_FORMAT_INVALID"
        
        # audio_data = wf.readframes(wf.getnframes())
        # we need to perform chunking as target AGL system can't handle an entire audio file
        audio_data = b""
        while True:
            chunk = wf.readframes(self.chunk_size)
            if not chunk:
                break  # End of file reached
            audio_data += chunk

        if audio_data:
            if self.init_recognition(uuid, audio_data):
                result = self.recognize(uuid)
                return result['text']
            else:
                result = self.recognize(uuid, partial=True)
                return result['partial']

        else:
            print("Voice not recognized. Please speak again...")
            return "VOICE_NOT_RECOGNIZED"
    

    def cleanup_recognizer(self, uuid):
        """
        Clean up and remove the Vosk recognizer for a session.

        Args:
            uuid (str): The unique identifier (UUID) for the session.
        """
        del self.recognizer[uuid]