1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (c) 2023 Malik Talha
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gi
import vosk
gi.require_version('Gst', '1.0')
from gi.repository import Gst, GLib
Gst.init(None)
GLib.threads_init()
class WakeWordDetector:
def __init__(self, wake_word, stt_model, channels=1, sample_rate=16000, bits_per_sample=16):
self.loop = GLib.MainLoop()
self.pipeline = None
self.bus = None
self.wake_word = wake_word
self.wake_word_detected = False
self.sample_rate = sample_rate
self.channels = channels
self.bits_per_sample = bits_per_sample
self.frame_size = int(self.sample_rate * 0.02)
self.stt_model = stt_model # Speech to text model recognizer
self.recognizer_uuid = stt_model.setup_recognizer()
self.buffer_duration = 1 # Buffer audio for atleast 1 second
self.audio_buffer = bytearray()
def get_wake_word_status(self):
return self.wake_word_detected
def create_pipeline(self):
print("Creating pipeline for Wake Word Detection...")
self.pipeline = Gst.Pipeline()
autoaudiosrc = Gst.ElementFactory.make("autoaudiosrc", None)
queue = Gst.ElementFactory.make("queue", None)
audioconvert = Gst.ElementFactory.make("audioconvert", None)
wavenc = Gst.ElementFactory.make("wavenc", None)
capsfilter = Gst.ElementFactory.make("capsfilter", None)
caps = Gst.Caps.new_empty_simple("audio/x-raw")
caps.set_value("format", "S16LE")
caps.set_value("rate", self.sample_rate)
caps.set_value("channels", self.channels)
capsfilter.set_property("caps", caps)
appsink = Gst.ElementFactory.make("appsink", None)
appsink.set_property("emit-signals", True)
appsink.set_property("sync", False) # Set sync property to False to enable async processing
appsink.connect("new-sample", self.on_new_buffer, None)
self.pipeline.add(autoaudiosrc)
self.pipeline.add(queue)
self.pipeline.add(audioconvert)
self.pipeline.add(wavenc)
self.pipeline.add(capsfilter)
self.pipeline.add(appsink)
autoaudiosrc.link(queue)
queue.link(audioconvert)
audioconvert.link(capsfilter)
capsfilter.link(appsink)
self.bus = self.pipeline.get_bus()
self.bus.add_signal_watch()
self.bus.connect("message", self.on_bus_message)
def on_new_buffer(self, appsink, data) -> Gst.FlowReturn:
sample = appsink.emit("pull-sample")
buffer = sample.get_buffer()
data = buffer.extract_dup(0, buffer.get_size())
self.audio_buffer.extend(data)
if len(self.audio_buffer) >= self.sample_rate * self.buffer_duration * self.channels * self.bits_per_sample // 8:
self.process_audio_buffer()
return Gst.FlowReturn.OK
def process_audio_buffer(self):
# Process the accumulated audio data using the audio model
audio_data = bytes(self.audio_buffer)
if self.stt_model.init_recognition(self.recognizer_uuid, audio_data):
stt_result = self.stt_model.recognize(self.recognizer_uuid)
print("STT Result: ", stt_result)
if self.wake_word in stt_result["text"]:
self.wake_word_detected = True
print("Wake word detected!")
self.pipeline.send_event(Gst.Event.new_eos())
self.audio_buffer.clear() # Clear the buffer
def send_eos(self):
self.pipeline.send_event(Gst.Event.new_eos())
self.audio_buffer.clear()
def start_listening(self):
self.pipeline.set_state(Gst.State.PLAYING)
print("Listening for Wake Word...")
self.loop.run()
def stop_listening(self):
self.cleanup_pipeline()
self.loop.quit()
def on_bus_message(self, bus, message):
if message.type == Gst.MessageType.EOS:
print("End-of-stream message received")
self.stop_listening()
elif message.type == Gst.MessageType.ERROR:
err, debug_info = message.parse_error()
print(f"Error received from element {message.src.get_name()}: {err.message}")
print(f"Debugging information: {debug_info}")
self.stop_listening()
elif message.type == Gst.MessageType.WARNING:
err, debug_info = message.parse_warning()
print(f"Warning received from element {message.src.get_name()}: {err.message}")
print(f"Debugging information: {debug_info}")
elif message.type == Gst.MessageType.STATE_CHANGED:
if isinstance(message.src, Gst.Pipeline):
old_state, new_state, pending_state = message.parse_state_changed()
print(("Pipeline state changed from %s to %s." %
(old_state.value_nick, new_state.value_nick)))
def cleanup_pipeline(self):
if self.pipeline is not None:
print("Cleaning up pipeline...")
self.pipeline.set_state(Gst.State.NULL)
self.bus.remove_signal_watch()
print("Pipeline cleanup complete!")
self.bus = None
self.pipeline = None
self.stt_model.cleanup_recognizer(self.recognizer_uuid)
|