diff options
Diffstat (limited to 'low-can-binding/can/can-bus.cpp')
-rw-r--r-- | low-can-binding/can/can-bus.cpp | 337 |
1 files changed, 337 insertions, 0 deletions
diff --git a/low-can-binding/can/can-bus.cpp b/low-can-binding/can/can-bus.cpp new file mode 100644 index 0000000..6167335 --- /dev/null +++ b/low-can-binding/can/can-bus.cpp @@ -0,0 +1,337 @@ +/* + * Copyright (C) 2015, 2016 "IoT.bzh" + * Author "Romain Forlot" <romain.forlot@iot.bzh> + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <net/if.h> +#include <sys/socket.h> +#include <json-c/json.h> +#include <linux/can/raw.h> +#include <map> +#include <cerrno> +#include <vector> +#include <string> +#include <algorithm> + +#include "can-bus.hpp" + +#include "can-signals.hpp" +#include "can-decoder.hpp" +#include "../binding/application.hpp" +#include "../utils/signals.hpp" +#include "../utils/openxc-utils.hpp" + +/// @brief Class constructor +/// +/// @param[in] conf_file - handle to the json configuration file. +can_bus_t::can_bus_t(utils::config_parser_t conf_file) + : conf_file_{conf_file} +{} + +/// @brief Take a decoded message to determine if its value comply with the wanted +/// filtering values. +/// +/// @param[in] vehicle_message - A decoded message to analyze +/// @param[in] can_subscription - the subscription which will be notified depending +/// on its filtering values. Filtering values are stored in the event_filtermember. +/// +/// @return True if the value is compliant with event filter values, false if not... +bool can_bus_t::apply_filter(const openxc_VehicleMessage& vehicle_message, std::shared_ptr<low_can_subscription_t> can_subscription) +{ + bool send = false; + if(is_valid(vehicle_message)) + { + float min = std::isnan(can_subscription->get_min()) ? -INFINITY : can_subscription->get_min(); + float max = std::isnan(can_subscription->get_max()) ? INFINITY : can_subscription->get_max(); + double value = get_numerical_from_DynamicField(vehicle_message); + send = (value < min && value > max) ? false : true; + } + return send; +} + +/// @brief Will make the decoding operation on a classic CAN message. It will not +/// handle CAN commands nor diagnostic messages that have their own method to get +/// this happens. +/// +/// It will add to the vehicle_message queue the decoded message and tell the event push +/// thread to process it. +/// +/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. +/// +/// @return How many signals has been decoded. +void can_bus_t::process_can_signals(const can_message_t& can_message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s) +{ + int subscription_id = can_message.get_sub_id(); + openxc_DynamicField decoded_message; + openxc_VehicleMessage vehicle_message; + + // First we have to found which can_signal_t it is + std::shared_ptr<low_can_subscription_t> sig = s[subscription_id]; + + if( s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event())) + { + bool send = true; + decoded_message = decoder_t::translateSignal(*sig->get_can_signal(), can_message, application_t::instance().get_all_can_signals(), &send); + openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message); + vehicle_message = build_VehicleMessage(s_message, can_message.get_timestamp()); + + if(send && apply_filter(vehicle_message, sig)) + { + std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_); + push_new_vehicle_message(subscription_id, vehicle_message); + DEBUG("%s CAN signals processed.", sig->get_name().c_str()); + } + } +} + +/// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal +/// corresponding and will add the vehicle_message to the queue of event to pushed before notifying +/// the event push thread to process it. +/// +/// @param[in] manager - the diagnostic manager object that handle diagnostic communication +/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode. +/// +/// @return How many signals has been decoded. +void can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message, std::map<int, std::shared_ptr<low_can_subscription_t> >& s) +{ + int subscription_id = can_message.get_sub_id(); + + openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message); + if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) && + s.find(subscription_id) != s.end() && afb_event_is_valid(s[subscription_id]->get_event())) + { + if (apply_filter(vehicle_message, s[subscription_id])) + { + std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_); + push_new_vehicle_message(subscription_id, vehicle_message); + DEBUG("%s CAN signals processed.", s[subscription_id]->get_name().c_str()); + } + } +} + +/// @brief thread to decoding raw CAN messages. +/// +/// Depending on the nature of message, if arbitration ID matches ID for a diagnostic response +/// then decoding a diagnostic message else use classic CAN signals decoding functions. +/// +/// It will take from the can_message_q_ queue the next can message to process then it search +/// about signal subscribed if there is a valid afb_event for it. We only decode signal for which a +/// subscription has been made. Can message will be decoded using translateSignal that will pass it to the +/// corresponding decoding function if there is one assigned for that signal. If not, it will be the default +/// noopDecoder function that will operate on it. +/// +/// TODO: make diagnostic messages parsing optionnal. +void can_bus_t::can_decode_message() +{ + utils::signals_manager_t& sm = utils::signals_manager_t::instance(); + + while(is_decoding_) + { + std::unique_lock<std::mutex> can_message_lock(can_message_mutex_); + new_can_message_cv_.wait(can_message_lock); + while(!can_message_q_.empty()) + { + const can_message_t can_message = next_can_message(); + can_message_lock.unlock(); + + { + std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex()); + std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals(); + if(application_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message)) + {process_diagnostic_signals(application_t::instance().get_diagnostic_manager(), can_message, s);} + else + {process_can_signals(can_message, s);} + } + can_message_lock.lock(); + } + new_decoded_can_message_.notify_one(); + can_message_lock.unlock(); + } +} + +/// @brief thread to push events to suscribers. It will read subscribed_signals map to look +/// which are events that has to be pushed. +void can_bus_t::can_event_push() +{ + openxc_SimpleMessage s_message; + json_object* jo; + utils::signals_manager_t& sm = utils::signals_manager_t::instance(); + + while(is_pushing_) + { + std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_); + new_decoded_can_message_.wait(decoded_can_message_lock); + while(!vehicle_message_q_.empty()) + { + std::pair<int, openxc_VehicleMessage> v_message = next_vehicle_message(); + decoded_can_message_lock.unlock(); + { + std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex()); + std::map<int, std::shared_ptr<low_can_subscription_t> >& s = sm.get_subscribed_signals(); + s_message = get_simple_message(v_message.second); + if(s.find(v_message.first) != s.end() && afb_event_is_valid(s[v_message.first]->get_event())) + { + jo = json_object_new_object(); + jsonify_simple(s_message, jo); + if(afb_event_push(s[v_message.first]->get_event(), jo) == 0) + { + if(v_message.second.has_diagnostic_response) + {on_no_clients(s[v_message.first], v_message.second.diagnostic_response.pid, s);} + else + {on_no_clients(s[v_message.first], s);} + } + } + } + decoded_can_message_lock.lock(); + } + decoded_can_message_lock.unlock(); + } +} + +/// @brief Will initialize threads that will decode +/// and push subscribed events. +void can_bus_t::start_threads() +{ + is_decoding_ = true; + th_decoding_ = std::thread(&can_bus_t::can_decode_message, this); + th_decoding_.detach(); + + is_pushing_ = true; + th_pushing_ = std::thread(&can_bus_t::can_event_push, this); + th_pushing_.detach(); +} + +/// @brief Will stop all threads holded by can_bus_t object +/// which are decoding and pushing then will wait that's +/// they'll finish their job. +void can_bus_t::stop_threads() +{ + is_decoding_ = false; + is_pushing_ = false; +} + +/// @brief return new_can_message_cv_ member +/// +/// @return return new_can_message_cv_ member +std::condition_variable& can_bus_t::get_new_can_message_cv() +{ + return new_can_message_cv_; +} + +/// @brief return can_message_mutex_ member +/// +/// @return return can_message_mutex_ member +std::mutex& can_bus_t::get_can_message_mutex() +{ + return can_message_mutex_; +} + +/// @brief Return first can_message_t on the queue +/// +/// @return a can_message_t +const can_message_t can_bus_t::next_can_message() +{ + can_message_t can_msg; + + if(!can_message_q_.empty()) + { + can_msg = can_message_q_.front(); + can_message_q_.pop(); + DEBUG("Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(), + can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]); + return can_msg; + } + + return can_msg; +} + +/// @brief Push a can_message_t into the queue +/// +/// @param[in] can_msg - the const reference can_message_t object to push into the queue +void can_bus_t::push_new_can_message(const can_message_t& can_msg) +{ + can_message_q_.push(can_msg); +} + +/// @brief Return first openxc_VehicleMessage on the queue +/// +/// @return a openxc_VehicleMessage containing a decoded can message +std::pair<int, openxc_VehicleMessage> can_bus_t::next_vehicle_message() +{ + std::pair<int, openxc_VehicleMessage> v_msg; + + if(! vehicle_message_q_.empty()) + { + v_msg = vehicle_message_q_.front(); + vehicle_message_q_.pop(); + DEBUG("next vehicle message poped"); + return v_msg; + } + + return v_msg; +} + +/// @brief Push a openxc_VehicleMessage into the queue +/// +/// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue +void can_bus_t::push_new_vehicle_message(int subscription_id, const openxc_VehicleMessage& v_msg) +{ + vehicle_message_q_.push(std::make_pair(subscription_id, v_msg)); +} + +/// @brief Fills the CAN device map member with value from device +/// mapping configuration file read at initialization. +void can_bus_t::set_can_devices() +{ + can_devices_ = conf_file_.get_devices_name(); + + if(can_devices_.empty()) + { + ERROR("No mapping found in config file: '%s'. Check it that it have a CANbus-mapping section.", + conf_file_.filepath().c_str()); + } +} + + +/// @brief Return the CAN device index from the map +/// map are sorted so index depend upon alphabetical sorting. +int can_bus_t::get_can_device_index(const std::string& bus_name) const +{ + int i = 0; + for(const auto& d: can_devices_) + { + if(d.first == bus_name) + break; + i++; + } + return i; +} + +/// @brief Return CAN device name from a logical CAN device name gotten from +/// the signals.json description file which comes from a CAN databases file in +/// general. +const std::string can_bus_t::get_can_device_name(const std::string& id_name) const +{ + std::string ret; + for(const auto& d: can_devices_) + { + if(d.first == id_name) + { + ret = d.second; + break; + } + } + return ret; +} |