summaryrefslogtreecommitdiffstats
path: root/security-blueprint/part-5
diff options
context:
space:
mode:
Diffstat (limited to 'security-blueprint/part-5')
-rw-r--r--security-blueprint/part-5/0_Abstract.md103
-rw-r--r--security-blueprint/part-5/1-MAC.md165
-rw-r--r--security-blueprint/part-5/2-SystemD.md60
-rw-r--r--security-blueprint/part-5/3-SystemBus.md24
-rw-r--r--security-blueprint/part-5/4-Services.md37
-rw-r--r--security-blueprint/part-5/5-AppFw.md315
-rw-r--r--security-blueprint/part-5/6-Utilities.md78
-rw-r--r--security-blueprint/part-5/7-Users.md77
-rw-r--r--security-blueprint/part-5/App-flow.pngbin73545 -> 0 bytes
9 files changed, 0 insertions, 859 deletions
diff --git a/security-blueprint/part-5/0_Abstract.md b/security-blueprint/part-5/0_Abstract.md
deleted file mode 100644
index ddf7d2a..0000000
--- a/security-blueprint/part-5/0_Abstract.md
+++ /dev/null
@@ -1,103 +0,0 @@
-# Part 5 - Platform
-
-## Abstract
-
-The Automotive Grade Linux platform is a Linux distribution with **AGL** compliant applications and services.
-The platform includes the following software:
-
-- Linux **BSP** configured for reference boards.
-- Proprietary device drivers for common peripherals on reference boards.
-- Application framework.
-- Windows/layer management (graphics).
-- Sound resource management.
-- An atomic software update system (chapter Update).
-- Building and debug tools (based on Yocto project).
-
-<!-- section-todo -->
-
-Domain | Improvement
-------------------- | --------------------------------
-Platform-Abstract-1 | Create a graphics and sound part.
-
-<!-- end-section-todo -->
-
-This part focuses on the AGL platform including all tools and techniques used to
-upgrade the security and downgrade the danger. It must be possible to apply the
-two fundamental principles written at the very beginning of the document. First
-of all, security management must remain simple. You must also prohibit
-everything by default, and then define a set of authorization rules. As cases
-to deal with, we must:
-
-- Implement a **MAC** for processes and files.
-- Limit communication between applications (_SystemBus_ and _SystemD_ part).
-- Prohibit all tools used during development mode (_Utilities_ and _Services_ part).
-- Manage user capabilities (_Users_ part).
-- Manage application permissions and policies (_AGLFw_ part).
-
-<!-- section-note -->
-
-The tools and concepts used to meet these needs are only examples.
-Any other tool that meets the need can be used.
-
-<!-- end-section-note -->
-
-In AGL, as in many other embedded systems, different security mechanisms settle
-in the core layers to ensure isolation and data privacy. While the Mandatory
-Access Control layer (**SMACK**) provides global security and isolation, other
-mechanisms like **Cynara** are required to check application's permissions at
-runtime. Applicative permissions (also called "_privileges_") may vary depending
-on the user and the application being run: an application should have access to
-a given service only if it is run by the proper user and if the appropriate
-permissions are granted.
-
-## Discretionary Access Control
-
-**D**iscretionary **A**ccess **C**ontrol (**DAC**) is the traditional Linux method of separating
-users and groups from one another. In a shared environment where multiple users
-have access to a computer or network, Unix IDs have offered a way to contain access
-within privilege areas for individuals, or shared among the group or system.
-The Android system took this one step further, assigning new user IDs for each App.
-This was never the original intention of Linux UIDs, but was able to provide
-Android’s initial security element: the ability to sandbox applications.
-
-Although AGL mentions use of **DAC** for security isolation, the weight of the
-security responsibility lies in the **M**andatory **A**ccess **C**ontrol (**MAC**) and **Cynara**.
-Furthermore, there are system services with unique UIDs. however,the system
-does not go to the extreme of Android, where every application has its own UID.
-All sandboxing (app isolation) in AGL is handled in the **MAC** contexts.
-
-## Mandatory Access Control
-
-**M**andatory **A**ccess **C**ontrol (**MAC**) is an extension to **DAC**,
-whereby extended attributes (xattr) are associated with the filesystem.
-In the case of AGL, the smackfs filesystem allows files and directories
-to be associated with a SMACK label, providing the ability of further
-discrimination on access control. A SMACK label is a simple null terminated
-character string with a maximum of 255 bytes. While it doesn’t offer the
-richness of an SELinux label, which provides a user, role,type, and level,
-the simplicity of a single value makes the overall design far less complex.
-There is arguably less chance of the security author making mistakes in the policies set forth.
-
---------------------------------------------------------------------------------
-
-<!-- pagebreak -->
-
-## Acronyms and Abbreviations
-
-The following table lists the terms utilized within this part of the document.
-
-Acronyms or Abbreviations | Description
-------------------------- | --------------------------------------------------------------
-_ACL_ | **A**ccess **C**ontrol **L**ists
-_alsa_ | **A**dvanced **L**inux **S**ound **A**rchitecture
-_API_ | **A**pplication **P**rogramming **I**nterface
-_AppFw_ | **App**lication **F**rame**w**ork
-_BSP_ | **B**oard **S**upport **P**ackage
-_Cap_ | **Cap**abilities
-_DAC_ | **D**iscretionary **A**ccess **C**ontrol
-_DDOS_ | **D**istributed **D**enial **O**f **S**ervice
-_DOS_ | **D**enial **O**f **S**ervice
-_IPC_ | **I**nter-**P**rocess **C**ommunication
-_MAC_ | **M**andatory **A**ccess **C**ontrol
-_PAM_ | **P**luggable **A**uthentication **M**odules
-_SMACK_ | **S**implified **M**andatory **A**ccess **C**ontrol **K**ernel
diff --git a/security-blueprint/part-5/1-MAC.md b/security-blueprint/part-5/1-MAC.md
deleted file mode 100644
index 73543e9..0000000
--- a/security-blueprint/part-5/1-MAC.md
+++ /dev/null
@@ -1,165 +0,0 @@
-# Mandatory Access Control
-
-<!-- section-note -->
-
-We decided to put the **MAC** protection on the platform part despite the fact
-that it applies to the kernel too, since its use will be mainly at the platform
-level (except floor part).
-
-<!-- end-section-note -->
-
-**M**andatory **A**ccess **C**ontrol (**MAC**) is a protection provided by the
-Linux kernel that requires a **L**inux **S**ecurity **M**odule (**LSM**). AGL
-uses an **LSM** called **S**implified **M**andatory **A**ccess **C**ontrol
-**K**ernel (**SMACK**). This protection involves the creation of **SMACK**
-labels as part of the extended attributes **SMACK** labels to the file extended
-attributes. And a policy is also created to define the behaviour of each label.
-
-The kernel access controls is based on these labels and this policy. If there
-is no rule, no access will be granted and as a consequence, what is not
-explicitly authorized is forbidden.
-
-There are two types of **SMACK** labels:
-
-- **Execution SMACK** (Attached to the process): Defines how files are
- _accessed_ and _created_ by that process.
-- **File Access SMACK** (Written to the extended attribute of the file): Defines
- _which_ process can access the file.
-
-By default a process executes with its File Access **SMACK** label unless an
-Execution **SMACK** label is defined.
-
-AGL's **SMACK** scheme is based on the _Tizen 3 Q2/2015_. It divides the System
-into the following domains:
-
-- Floor.
-- System.
-- Applications, Services and User.
-
-See [AGL security framework review](http://iot.bzh/download/public/2017/AMMQ1Tokyo/AGL-security-framework-review.pdf) and [Smack White Paper](http://schaufler-ca.com/yahoo_site_admin/assets/docs/SmackWhitePaper.257153003.pdf)
-for more information.
-
---------------------------------------------------------------------------------
-
-<!-- pagebreak -->
-
-## Floor
-
-The _floor_ domain includes the base system services and any associated data and
-libraries. This data remains unchanged at runtime. Writing to floor files or
-directories is allowed only in development mode or during software installation
-or upgrade.
-
-The following table details the _floor_ domain:
-
-Label | Name | Execution **SMACK** | File Access **SMACK**
------ | ----- | ------------------- | ---------------------------------------
-`-` | Floor | `r-x` for all | Only kernel and internal kernel thread.
-`^` | Hat | `---` for all | `rx` on all domains.
-`*` | Star | `rwx` for all | None
-
-<!-- section-note -->
-
-- The Hat label is Only for privileged system services (currently only
- systemd-journal). Useful for backup or virus scans. No file with this label
- should exist except in the debug log.
-
-- The Star label is used for device files or `/tmp` Access restriction managed
- via **DAC**. Individual files remain protected by their **SMACK** label.
-
-<!-- end-section-note --> <!-- section-config -->
-
-Domain | `Label` name | Recommendations
------------------- | ------------ | -----------------------------------------------------------
-Kernel-MAC-Floor-1 | `^` | Only for privileged system services.
-Kernel-MAC-Floor-2 | `*` | Used for device files or `/tmp` Access restriction via DAC.
-
-<!-- end-section-config -->
-
---------------------------------------------------------------------------------
-
-<!-- pagebreak -->
-
-## System
-
-The _system_ domain includes a reduced set of core system services of the OS and
-any associated data. This data may change at runtime.
-
-The following table details the _system_ domain:
-
-Label | Name | Execution **SMACK** | File Access **SMACK**
----------------- | --------- | ----------------------------------------------- | ---------------------
-`System` | System | None | Privileged processes
-`System::Run` | Run | `rwxatl` for User and System label | None
-`System::Shared` | Shared | `rwxatl` for system domain `r-x` for User label | None
-`System::Log` | Log | `rwa` for System label `xa` for user label | None
-`System::Sub` | SubSystem | Subsystem Config files | SubSystem only
-
-<!-- section-config -->
-
-Domain | `Label` name | Recommendations
-------------------- | ---------------- | -------------------------------------------------------------------------------------------------------------
-Kernel-MAC-System-1 | `System` | Process should write only to file with transmute attribute.
-Kernel-MAC-System-2 | `System::run` | Files are created with the directory label from user and system domain (transmute) Lock is implicit with `w`.
-Kernel-MAC-System-3 | `System::Shared` | Files are created with the directory label from system domain (transmute) User domain has locked privilege.
-Kernel-MAC-System-4 | `System::Log` | Some limitation may impose to add `w` to enable append.
-Kernel-MAC-System-5 | `System::Sub` | Isolation of risky Subsystem.
-
-<!-- end-section-config -->
-
---------------------------------------------------------------------------------
-
-<!-- pagebreak -->
-
-## Applications, Services and User
-
-The _application_, _services_ and _user_ domain includes code that provides
-services to the system and user, as well as any associated data. All code
-running on this domain is under _Cynara_ control.
-
-The following table details the _application_, _services_ and _user_ domain:
-
-Label | Name | Execution **SMACK** | File Access **SMACK**
-------------------- | ------ | --------------------------------------------------------------------------- | ---------------------------
-`User::Pkg::$AppID` | AppID | `rwx` (for files created by the App). `rx` for files installed by **AppFw** | $App runtime executing $App
-`User::Home` | Home | `rwx-t` from System label `r-x-l` from App | None
-`User::App-Shared` | Shared | `rwxat` from System and User domains label of $User | None
-
-<!-- section-config -->
-
-Domain | `Label` name | Recommendations
-------------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------
-Kernel-MAC-System-1 | `User::Pkg::$AppID` | Only one Label is allowed per App. A data directory is created by the AppFw in `rwx` mode.
-Kernel-MAC-System-2 | `User::Home` | AppFw needs to create a directory in `/home/$USER/App-Shared` at first launch if not present with label app-data access is `User::App-Shared` without transmute.
-Kernel-MAC-System-3 | `User::App-Shared` | Shared space between all App running for a given user.
-
-<!-- end-section-config -->
-
-## Attack Vectors
-
-There are 4 major components to the system:
-
-- The LSM kernel module.
-- The `smackfs` filesystem.
-- Basic utilities for policy management and checking.
-- The policy/configuration data.
-
-As with any mandatory access system, the policy management needs to be carefully separated
-from the checking, as the management utilities can become a convenient point of attack.
-Dynamic additions to the policy system need to be carefully verified, as the ability to
-update the policies is often needed, but introduces a possible threat. Finally,
-even if the policy management is well secured, the policy checking and failure response
-to that checking is also of vital importance to the smooth operation of the system.
-
-While **MAC** is a certainly a step up in security when compared to DAC, there are still
-many ways to compromise a SMACK-enabled Linux system. Some of these ways are as follows:
-
-- Disabling SMACK at invocation of the kernel (with command-line: security=none).
-- Disabling SMACK in the kernel build and redeploying the kernel.
-- Changing a SMACK attribute of a file or directory at install time.
-- Tampering with a process with the CAP_MAC_ADMIN privilege.
-- Setting/Re-setting the SMACK label of a file.
-- Tampering with the default domains (i.e. /etc/smack/accesses.d/default-access-domains).
-- Disabling or tampering with the SMACK filesystem (i.e. /smackfs).
-- Adding policies with `smackload` (adding the utility if not present).
-- Changing labels with `chsmack` (adding the utility if not present).
diff --git a/security-blueprint/part-5/2-SystemD.md b/security-blueprint/part-5/2-SystemD.md
deleted file mode 100644
index 35abe16..0000000
--- a/security-blueprint/part-5/2-SystemD.md
+++ /dev/null
@@ -1,60 +0,0 @@
-# SystemD
-
-`afm-system-daemon` is used to:
-
-- Manage users and user sessions.
-- Setup applications and services (_CGroups_, _namespaces_, autostart, permissions).
-- Use of `libsystemd` for its programs (event management, **D-Bus** interface).
-
-<!-- section-config -->
-
-Domain | Object | Recommendations
------------------- | -------------- | ------------------------------------
-Platform-SystemD-1 | Security model | Use Namespaces for containerization.
-Platform-SystemD-2 | Security model | Use CGroups to organise processes.
-
-<!-- end-section-config -->
-
-See [systemd integration and user management](http://iot.bzh/download/public/2017/AMM-Dresden/AGL-systemd.pdf) for more information.
-
-## Benefits
-
-- Removal of one privileged process: **afm-user-daemon**
-- Access and use of high level features:
-
- - Socket activation.
- - Management of users and integration of **PAM**.
- - Dependency resolution to services.
- - `Cgroups` and resource control.
- - `Namespaces` containerization.
- - Autostart of required API.
- - Permissions and security settings.
- - Network management.
-
-<!-- pagebreak -->
-
-## CGroups
-
-Control Groups offer a lot of features, with the most useful ones you can
-control: Memory usage, how much CPU time is allocated, how much device I/O is
-allowed or which devices can be accessed. **SystemD** uses _CGroups_ to organise
-processes (each service is a _CGroups_, and all processes started by that
-service use that _CGroups_). By default, **SystemD** automatically creates a
-hierarchy of slice, scope and service units to provide a unified structure for
-the _CGroups_ tree. With the `systemctl` command, you can further modify this
-structure by creating custom slices. Currently, in AGL, there are 2 slices
-(**user.slice** and **system.slice**).
-
-## Namespaces
-
-### User side
-
-There are several ways of authenticating users (Key Radio Frequency, Phone,
-Gesture, ...). Each authentication provides dynamic allocation of **uids** to
-authenticated users. **Uids** is used to ensure privacy of users and **SMACK**
-for applications privacy.
-
-First, the user initiates authentication with **PAM** activation. **PAM**
-Standard offers highly configurable authentication with modular design like
-face recognition, Voice identification or with a password. Then users should
-access identity services with services and applications.
diff --git a/security-blueprint/part-5/3-SystemBus.md b/security-blueprint/part-5/3-SystemBus.md
deleted file mode 100644
index e2af387..0000000
--- a/security-blueprint/part-5/3-SystemBus.md
+++ /dev/null
@@ -1,24 +0,0 @@
-# D-Bus
-
-D-Bus is a well-known **IPC** (Inter-Process Communication) protocol (and
-daemon) that helps applications to talk to each other. The use of D-Bus is great
-because it allows to implement discovery and signaling.
-
-The D-Bus session is by default addressed by environment variable
-`DBUS_SESSION_BUS_ADDRESS`. Using **systemd** variable `DBUS_SESSION_BUS_ADDRESS`
-is automatically set for user sessions. D-Bus usage is linked to permissions.
-
-D-Bus has already had several [security issues](https://www.cvedetails.com/vulnerability-list/vendor_id-13442/D-bus-Project.html)
-(mostly **DoS** issues), to allow applications to keep talking to each other.
-It is important to protect against this type of attack to keep the system more
-stable.
-
-
-<!-- section-config -->
-
-Domain | Object | Recommendations
---------------- | -------------- | ------------------------------------
-Platform-DBus-1 | Security model | Use D-Bus as IPC.
-Platform-DBus-2 | Security model | Apply D-BUS security patches: [D-Bus CVE](https://www.cvedetails.com/vulnerability-list/vendor_id-13442/D-bus-Project.html)
-
-<!-- end-section-config -->
diff --git a/security-blueprint/part-5/4-Services.md b/security-blueprint/part-5/4-Services.md
deleted file mode 100644
index 013f693..0000000
--- a/security-blueprint/part-5/4-Services.md
+++ /dev/null
@@ -1,37 +0,0 @@
-# System services and daemons
-
-<!-- section-todo -->
-
-Domain | Improvement
-------------------- | -----------
-Platform-Services-1 | SystemD ?
-Platform-Services-2 | Secure daemon ?
-
-<!-- end-section-todo -->
-
-## Tools
-
-- **connman**: An internet connection manager designed to be slim and to use as
- few resources as possible. It is a fully modular system that can be extended,
- through plug-ins, to support all kinds of wired or wireless technologies.
-- **bluez** is a Bluetooth stack. Its goal is to program an implementation of
- the Bluetooth wireless standards specifications. In addition to the basic stack,
- the `bluez-utils` and `bluez-firmware` packages contain low level utilities such
- as `dfutool` which can interrogate the Bluetooth adapter chipset in order to
- determine whether its firmware can be upgraded.
-- **gstreamer** is a pipeline-based multimedia framework. It can be used to build
- a system that reads files in one format, processes them, and exports them in
- another format.
-- **alsa** is a software framework and part of the Linux kernel that provides an
- **API** for sound card device drivers.
-
-<!-- section-config -->
-
-Domain | `Tool` name | _State_
--------------------- | ----------- | -------
-Platform-Utilities-1 | `connman` | _Used_ as a connection manager.
-Platform-Utilities-2 | `bluez` | _Used_ as a Bluetooth manager.
-Platform-Utilities-3 | `gstreamer` | _Used_ to manage multimedia file format.
-Platform-Utilities-4 | `alsa` | _Used_ to provides an API for sound card device drivers.
-
-<!-- end-section-config -->
diff --git a/security-blueprint/part-5/5-AppFw.md b/security-blueprint/part-5/5-AppFw.md
deleted file mode 100644
index e92a0c6..0000000
--- a/security-blueprint/part-5/5-AppFw.md
+++ /dev/null
@@ -1,315 +0,0 @@
-# Application framework/model (**AppFw**)
-
-The AGL application framework consists of several inter-working parts:
-
-- **SMACK**: The kernel level **LSM** (**L**inux **S**ecurity **M**odule) that performs extended access control of the system.
-- **Cynara**: the native gatekeeper daemon used for policy handling, updating to the database and policy checking.
-- Security Manager: a master service, through which all security events are intended to take place.
-- Several native application framework utilities: `afm-main-binding`, `afm-user-daemon`, `afm-system-daemon`.
-
-The application framework manages:
-
-- The applications and services management: Installing, Uninstalling, Listing, ...
-- The life cycle of applications: Start -> (Pause, Resume) -> Stop.
-- Events and signals propagation.
-- Privileges granting and checking.
-- API for interaction with applications.
-
-<!-- section-note -->
-
-- The **security model** refers to the security model used to ensure security
- and to the tools that are provided for implementing that model. It's an
- implementation detail that should not impact the layers above the application
- framework.
-
-- The **security model** refers to how **DAC** (**D**iscretionary **A**ccess **C**ontrol),
- **MAC** (Mandatory Access Control) and `Capabilities` are used by the system to
- ensure security and privacy. It also includes features of reporting using
- audit features and by managing logs and alerts.
-
-<!-- end-section-note -->
-
-The **AppFw** uses the security model to ensure the security and the privacy of
-the applications that it manages. It must be compliant with the underlying
-security model. But it should hide it to the applications.
-
-<!-- section-config -->
-
-Domain | Object | Recommendations
----------------------- | -------------- | --------------------------------
-Platform-AGLFw-AppFw-1 | Security model | Use the AppFw as Security model.
-
-<!-- end-section-config -->
-
-See [AGL AppFw Privileges Management](http://docs.automotivelinux.org/docs/devguides/en/dev/reference/iotbzh2016/appfw/03-AGL-AppFW-Privileges-Management.pdf) and [AGL - Application Framework Documentation](http://iot.bzh/download/public/2017/SDK/AppFw-Documentation-v3.1.pdf) for more
-information.
-
-<!-- pagebreak -->
-
-The Security Manager communicates policy information to **Cynara**,
-which retains information in its own database in the format of a text
-file with comma-separated values (CSV). There are provisions to retain
-a copy of the CSV text file when the file is being updated.
-
-Runtime checking occurs through **Cynara**. Each application that is
-added to the framework has its own instantiation of a SMACK context
-and D-bus bindings. The afb_daemon and Binder form a web-service that
-is communicated to through http or a websocket from the application-proper.
-This http or websocket interface uses a standard unique web token for API communication.
-
-![Application Framework Flow](App-flow.png)
-
-## Cynara
-
-There's a need for another mechanism responsible for checking applicative
-permissions: Currently in AGL, this task depends on a policy-checker service
-(**Cynara**).
-
-- Stores complex policies in databases.
-- "Soft" security (access is checked by the framework).
-
-Cynara interact with **D-Bus** in order to deliver this information.
-
-Cynara consists of several parts:
-
-- Cynara: a daemon for controlling policies and responding to access control requests.
-- Database: a spot to hold policies.
-- Libraries: several static and dynamic libraries for communicating with Cynara.
-
-The daemon communicates to the libraries over Unix domain sockets.
-The database storage format is a series of CSV-like files with an index file.
-
-There are several ways that an attacker can manipulate policies of the Cynara system:
-
-- Disable Cynara by killing the process.
-- Tamper with the Cynara binary on-disk or in-memory.
-- Corrupt the database controlled by Cynara.
-- Tamper with the database controlled by Cynara.
-- Highjack the communication between Cynara and the database.
-
-The text-based database is the weakest part of the system and although there are some
-consistency mechanisms in place (i.e. the backup guard), these mechanisms are weak at best
-and can be countered by an attacker very easily.
-
-<!-- section-config -->
-
-Domain | Object | Recommendations
------------------------ | ----------- | -------------------------------------
-Platform-AGLFw-Cynara-1 | Permissions | Use Cynara as policy-checker service.
-
-<!-- end-section-config -->
-
-### Policies
-
-- Policy rules:
-
- - Are simple - for pair [application context, privilege] there is straight
- answer (single Policy Type): [ALLOW / DENY / ...].
- - No code is executed (no script).
- - Can be easily cached and managed.
-
-- Application context (describes id of the user and the application credentials)
- It is build of:
-
- - UID of the user that runs the application.
- - **SMACK** label of application.
-
-## Holding policies
-
-Policies are kept in buckets. Buckets are set of policies which have additional
-a property of default answer, the default answer is yielded if no policy matches
-searched key. Buckets have names which might be used in policies (for directions).
-
-## Attack Vectors
-
-The following attack vectors are not completely independent. While attackers may
-have varying levels of access to an AGL system, experience has shown that a typical
-attack can start with direct access to a system, find the vulnerabilities,
-then proceed to automate the attack such that it can be invoked from less accessible
-standpoint (e.g. remotely). Therefore, it is important to assess all threat levels,
-and protect the system appropriately understanding that direct access attacks
-are the door-way into remote attacks.
-
-### Remote Attacks
-
-The local web server interface used for applications is the first point of attack,
-as web service APIs are well understood and easily intercepted. The local web server
-could potentially be exploited by redirecting web requests through the local service
-and exploiting the APIs. While there is the use of a security token on the web
-service API, this is weak textual matching at best. This will not be difficult to spoof.
-It is well known that [API Keys do not provide any real security](http://nordicapis.com/why-api-keys-are-not-enough/).
-
-It is likely that the architectural inclusion of an http / web-service interface
-provided the most flexibility for applications to be written natively or in HTML5.
-However, this flexibility may trade-off with security concerns. For example,
-if a native application were linked directly to the underlying framework services,
-there would be fewer concerns over remote attacks coming through the web-service interface.
-
-Leaving the interface as designed, mitigations to attacks could include further
-securing the interface layer with cryptographic protocols:
-e.g. encrypted information passing, key exchange (e.g. Elliptic-Curve Diffie-Hellman).
-
-### User-level Native Attacks
-
-- Modifying the CSV data-base
-- Modifying the SQLite DB
-- Tampering with the user-level binaries
-- Tampering with the user daemons
-- Spoofing the D-bus Interface
-- Adding executables/libraries
-
-With direct access to the device, there are many security concerns on the native level.
-For example, as **Cynara** uses a text file data-base with comma-separated values (CSV),
-an attacker could simply modify the data-base to escalate privileges of an application.
-Once a single application has all the privileges possible on the system, exploits can
-come through in this manner. Similarly the SQLite database used by the Security Manager
-is not much different than a simple text file. There are many tools available to add,
-remove, modify entries in an SQLite data-base.
-
-On the next level, a common point of attack is to modify binaries or daemons for exploiting
-functionality. There are many Linux tools available to aid in this regard,
-including: [IDA Pro](https://www.hex-rays.com/products/ida/index.shtml),
-and [radare2](https://rada.re/r/). With the ability to modify binaries,
-an attacker can do any number of activities including: removing calls to security checks,
-redirecting control to bypass verification functionality, ignoring security policy handling,
-escalating privileges, etc.
-
-Additionally, another attack vector would be to spoof the D-bus interface. D-bus is a
-message passing system built upon Inter-Process Communication (IPC), where structured
-messages are passed based upon a protocol. The interface is generic and well documented.
-Therefore, modifying or adding binaries/libraries to spoof this interface is a relatively
-straight-forward process. Once the interface has been spoofed, the attacker can issue any
-number of commands that lead into control of low-level functionality.
-
-Protecting a system from native attacks requires a methodical approach. First, the system
-should reject processes that are not sanctioned to run. Signature-level verification at
-installation time will help in this regard, but run-time integrity verification is much better.
-Signatures need to originate from authorized parties, which is discussed further
-in a later section on the Application Store.
-
-On the next level, executables should not be allowed to do things where they have not been
-granted permission. DAC and SMACK policies can help in this regard. On the other hand,
-there remain concerns with memory accesses, system calls, and other process activity
-that may go undetected. For this reason, a secure environment which monitors all activity
-can give indication of all unauthorized activity on the system.
-
-Finally, it is very difficult to catch attacks of direct tampering in a system.
-These types of attacks require a defense-in-depth approach, where complementary software
-protection and hardening techniques are needed. Tamper-resistance and anti-reverse-engineering
-technologies include program transformations/obfuscation, integrity verification,
-and white-box cryptography. If applied in a mutually-dependent fashion and considering
-performance/security tradeoffs, the approach can provide an effective barrier
-to direct attacks to the system. Furthermore, the use of threat monitoring provides a
-valuable telemetry/analytics capability and the ability to react and renew a system under attack.
-
-### Root-level Native Attacks
-
-- Tampering the system daemon
-- Tampering Cynara
-- Tampering the security manager
-- Disabling SMACK
-- Tampering the kernel
-
-Once root-level access (i.e. su) has been achieved on the device, there are many ways
-to compromise the system. The system daemon, **Cynara**, and the security manager are
-vulnerable to tampering attacks. For example, an executable can be modified in memory
-to jam a branch, jump to an address, or disregard a check. This can be as simple as replacing
-a branch instruction with a NOP, changing a memory value, or using a debugger (e.g. gdb, IDA)
-to change an instruction. Tampering these executables would mean that policies can be
-ignored and verification checks can be bypassed.
-
-Without going so far as to tamper an executable, the **SMACK** system is also vulnerable to attack.
-For example, if the kernel is stopped and restarted with the *security=none* flag,
-then SMACK is not enabled. Furthermore, `systemd` starts the loading of **SMACK** rules during
-start-up. If this start-up process is interfered with, then **SMACK** will not run.
-Alternatively, new policies can be added with `smackload` allowing unforseen privileges
-to alternative applications/executables.
-
-Another intrusion on the kernel level is to rebuild the kernel (as it is open-source)
-and replace it with a copy that has **SMACK** disabled, or even just the **SMACK** filesystem
-(`smackfs`) disabled. Without the extended label attributes, the **SMACK** system is disabled.
-
-Root-level access to the device has ultimate power, where the entire system can be compromised.
-More so, a system with this level access allows an attacker to craft a simpler *point-attack*
-which can operate on a level requiring fewer privileges (e.g. remote access, user-level access).
-
-## Vulnerable Resources
-
-### Resource: `afm-user-daemon`
-
-The `afm-user-daemon` is in charge of handling applications on behalf of a user. Its main tasks are:
-
-- Enumerate applications that the end user can run and keep this list available on demand.
-- Start applications on behalf of the end user, set user running environment, set user security context.
-- List current runnable or running applications.
-- Stop (aka pause), continue (aka resume), terminate a running instance of a given application.
-- Transfer requests for installation/uninstallation of applications to the corresponding system daemon afm-system-daemon.
-
-The `afm-user-daemon` launches applications. It builds a secure environment for the application
-before starting it within that environment. Different kinds of applications can be launched,
-based on a configuration file that describes how to launch an application of a given kind within
-a given launching mode: local or remote. Launching an application locally means that
-the application and its binder are launched together. Launching an application remotely
-translates in only launching the application binder.
-
-The UI by itself has to be activated remotely by a request (i.e. HTML5 homescreen in a browser).
-Once launched, running instances of the application receive a `runid` that identifies them.
-`afm-user-daemon` manages the list of applications that it has launched.
-When owning the right permissions, a client can get the list of running instances and details
-about a specific running instance. It can also terminate, stop or continue a given application.
-If the client owns the right permissions, `afm-user-daemon` delegates the task of
-installing and uninstalling applications to `afm-system-daemon`.
-
-`afm-user-daemon` is launched as a `systemd` service attached to a user session.
-Normally, the service file is located at /usr/lib/systemd/user/afm-user-daemon.service.
-
-Attacker goals:
-
-- Disable `afm-user-daemon`.
-- Tamper with the `afm-user-daemon` configuration.
- - /usr/lib/systemd/user/afm-user-daemon.service.
- - Application(widget) config.xml file.
- - /etc/afm/afm-launch.conf (launcher configuration).
-
-- Escalate user privileges to gain more access with `afm-user-daemon`.
-- Install malicious application (widget).
-- Tamper with `afm-user-daemon` on disk or in memory.
-
-### Resource: `afm-system-daemon`
-
-The `afm-system-daemon` is in charge of installing applications on the AGL system. Its main tasks are:
-
-- Install applications and setup security framework for newly installed applications.
-- Uninstall applications.
-
-`afm-system-daemon` is launched as a `systemd` service attached to system. Normally,
-the service file is located at /lib/systemd/system/afm-systemdaemon.service.
-
-Attacker goals:
-
-- Disable `afm-system-daemon`.
-- Tamper with the `afm-system-daemon` configuration.
-- Tamper `afm-system-daemon` on disk or in memory.
-
-### Resource `afb-daemon`
-
-`afb-binder` is in charge of serving resources and features through an HTTP interface.
-`afb-daemon` is in charge of binding one instance of an application to the AGL framework
-and AGL system. The application and its companion binder run in a secured and isolated
-environment set for them. Applications are intended to access to AGL system through the binder.
-`afb-daemon` binders serve files through HTTP protocol and offers developers the capability
-to expose application API methods through HTTP or WebSocket protocol.
-
-Binder bindings are used to add APIs to `afb-daemon`. The user can write a binding for `afb-daemon`.
-The binder `afb-daemon` serves multiple purposes:
-
-1. It acts as a gateway for the application to access the system.
-2. It acts as an HTTP server for serving files to HTML5 applications.
-3. It allows HTML5 applications to have native extensions subject to security enforcement for accessing hardware resources or for speeding up parts of algorithm.
-
-Attacker goals:
-
-- Break from isolation.
-- Disable `afb-daemon`.
-- Tamper `afb-demon` on disk or in memory.
-- Tamper **capabilities** by creating/installing custom bindings for `afb-daemon`. \ No newline at end of file
diff --git a/security-blueprint/part-5/6-Utilities.md b/security-blueprint/part-5/6-Utilities.md
deleted file mode 100644
index 309cbc4..0000000
--- a/security-blueprint/part-5/6-Utilities.md
+++ /dev/null
@@ -1,78 +0,0 @@
-# Utilities
-
-- **busybox**: Software that provides several stripped-down Unix tools in a
- single executable file. Of course, it will be necessary to use a "production"
- version of **busybox** in order to avoid all the tools useful only in
- development mode.
-
-<!-- section-config -->
-
-Domain | `Tool` name | _State_
--------------------- | ----------- | ----------------------------------------------------------------------
-Platform-Utilities-1 | `busybox` | _Used_ to provide a number of tools. Do not compile development tools.
-
-<!-- end-section-config -->
-
-## Functionalities to exclude in production mode
-
-In production mode, a number of tools must be disabled to prevent an attacker
-from finding logs for example. This is useful to limit the visible surface and
-thus complicate the fault finding process. The tools used only in development
-mode are marked by an '**agl-devel**' feature. When building in production mode,
-these tools will not be compiled.
-
-<!-- section-config -->
-
-Domain | `Utility` name and normal `path` | _State_
---------------------- | ---------------------------------------------------- | ----------
-Platform-Utilities-1 | `chgrp` in `/bin/chgrp` | _Disabled_
-Platform-Utilities-2 | `chmod` in `/bin/chmod` | _Disabled_
-Platform-Utilities-3 | `chown` in `/bin/chown` | _Disabled_
-Platform-Utilities-4 | `dmesg` in `/bin/dmesg` | _Disabled_
-Platform-Utilities-5 | `Dnsdomainname` in `/bin/dnsdomainname` | _Disabled_
-Platform-Utilities-6 | `dropbear`, Remove "dropbear" from `/etc/init.d/rcs` | _Disabled_
-Platform-Utilities-7 | `Editors` in (vi) `/bin/vi` | _Disabled_
-Platform-Utilities-8 | `find` in `/bin/find` | _Disabled_
-Platform-Utilities-9 | `gdbserver` in `/bin/gdbserver` | _Disabled_
-Platform-Utilities-10 | `hexdump` in `/bin/hexdump` | _Disabled_
-Platform-Utilities-11 | `hostname` in `/bin/hostname` | _Disabled_
-Platform-Utilities-12 | `install` in `/bin/install` | _Disabled_
-Platform-Utilities-13 | `iostat` in `/bin/iostat` | _Disabled_
-Platform-Utilities-14 | `killall` in `/bin/killall` | _Disabled_
-Platform-Utilities-15 | `klogd` in `/sbin/klogd` | _Disabled_
-Platform-Utilities-16 | `logger` in `/bin/logger` | _Disabled_
-Platform-Utilities-17 | `lsmod` in `/sbin/lsmod` | _Disabled_
-Platform-Utilities-18 | `pmap` in `/bin/pmap` | _Disabled_
-Platform-Utilities-19 | `ps` in `/bin/ps` | _Disabled_
-Platform-Utilities-20 | `ps` in `/bin/ps` | _Disabled_
-Platform-Utilities-21 | `rpm` in `/bin/rpm` | _Disabled_
-Platform-Utilities-22 | `SSH` | _Disabled_
-Platform-Utilities-23 | `stbhotplug` in `/sbin/stbhotplug` | _Disabled_
-Platform-Utilities-24 | `strace` in `/bin/trace` | _Disabled_
-Platform-Utilities-25 | `su` in `/bin/su` | _Disabled_
-Platform-Utilities-26 | `syslogd` in (logger) `/bin/logger` | _Disabled_
-Platform-Utilities-27 | `top` in `/bin/top` | _Disabled_
-Platform-Utilities-28 | `UART` in `/proc/tty/driver/` | _Disabled_
-Platform-Utilities-29 | `which` in `/bin/which` | _Disabled_
-Platform-Utilities-30 | `who` and `whoami` in `/bin/whoami` | _Disabled_
-Platform-Utilities-31 | `awk` (busybox) | _Enabled_
-Platform-Utilities-32 | `cut` (busybox) | _Enabled_
-Platform-Utilities-33 | `df` (busybox) | _Enabled_
-Platform-Utilities-34 | `echo` (busybox) | _Enabled_
-Platform-Utilities-35 | `fdisk` (busybox) | _Enabled_
-Platform-Utilities-36 | `grep` (busybox) | _Enabled_
-Platform-Utilities-37 | `mkdir` (busybox) | _Enabled_
-Platform-Utilities-38 | `mount` (vfat) (busybox) | _Enabled_
-Platform-Utilities-39 | `printf` (busybox) | _Enabled_
-Platform-Utilities-40 | `sed` in `/bin/sed` (busybox) | _Enabled_
-Platform-Utilities-41 | `tail` (busybox) | _Enabled_
-Platform-Utilities-42 | `tee` (busybox) | _Enabled_
-Platform-Utilities-43 | `test` (busybox) | _Enabled_
-
-<!-- end-section-config --> <!-- section-note -->
-
-The _Enabled_ Unix/Linux utilities above shall be permitted as they are often
-used in the start-up scripts and for USB logging. If any of these utilities are
-not required by the device then those should be removed.
-
-<!-- end-section-note -->
diff --git a/security-blueprint/part-5/7-Users.md b/security-blueprint/part-5/7-Users.md
deleted file mode 100644
index af5a686..0000000
--- a/security-blueprint/part-5/7-Users.md
+++ /dev/null
@@ -1,77 +0,0 @@
-# Users
-
-The user policy can group users by function within the car. For example, we can
-consider a driver and his passengers. Each user is assigned to a single group to
-simplify the management of space security.
-
-## Root Access
-
-The main applications, those that provide the principal functionality of the
-embedded device, should not execute with root identity or any capability.
-
-If the main application is allowed to execute at any capability, then the entire
-system is at the mercy of the said application's good behaviour. Problems arise
-when an application is compromised and able to execute commands which could
-consistently and persistently compromise the system by implanting rogue
-applications.
-
-It is suggested that the middleware and the UI should run in a context on a user
-with no capability and all persistent resources should be maintained without any
-capability.
-
-One way to ensure this is by implementing a server-client paradigm. Services
-provided by the system's drivers can be shared this way. The other advantage of
-this approach is that multiple applications can share the same resources at the
-same time.
-
-<!-- section-config -->
-
-Domain | Object | Recommendations
---------------------- | ---------------- | -----------------------------------------------------
-Platform-Users-root-1 | Main application | Should not execute as root.
-Platform-Users-root-2 | UI | Should run in a context on a user with no capability.
-
-<!-- end-section-config -->
-
-Root access should not be allowed for the following utilities:
-
-<!-- section-config -->
-
-Domain | `Utility` name | _State_
---------------------- | -------------- | -------------
-Platform-Users-root-3 | `login` | _Not allowed_
-Platform-Users-root-4 | `su` | _Not allowed_
-Platform-Users-root-5 | `ssh` | _Not allowed_
-Platform-Users-root-6 | `scp` | _Not allowed_
-Platform-Users-root-7 | `sftp` | _Not allowed_
-
-<!-- end-section-config -->
-
-Root access should not be allowed for the console device. The development
-environment should allow users to login with pre-created user accounts.
-
-Switching to elevated privileges shall be allowed in the development environment
-via `sudo`.
-
---------------------------------------------------------------------------------
-
-<!-- pagebreak -->
-
-## Capabilities
-
-<!-- section-todo -->
-
-Domain | Improvement
------------------------------ | ------------------------
-Platform-Users-Capabilities-1 | Kernel or Platform-user?
-Platform-Users-Capabilities-2 | Add config note.
-
-<!-- end-section-todo -->
-
-The goal is to restrict functionality that will not be useful in **AGL**. They
-are integrated into the **LSM**. Each privileged transaction is associated with
-a capability. These capabilities are divided into three groups:
-
-- e: Effective: This means the capability is “activated”.
-- p: Permitted: This means the capability can be used/is allowed.
-- i: Inherited: The capability is kept by child/subprocesses upon execve() for example.
diff --git a/security-blueprint/part-5/App-flow.png b/security-blueprint/part-5/App-flow.png
deleted file mode 100644
index 7b87c29..0000000
--- a/security-blueprint/part-5/App-flow.png
+++ /dev/null
Binary files differ