diff options
author | Yannick Gicquel <yannick.gicquel@iot.bzh> | 2016-04-27 12:46:26 +0200 |
---|---|---|
committer | Yannick Gicquel <yannick.gicquel@iot.bzh> | 2016-04-27 12:55:38 +0200 |
commit | 3c1725ce4c632771d3cd4c1ae6782f9cc1b9beee (patch) | |
tree | 4e2fa36b6959c96c36e687ffdcd7b5e1e21d9167 | |
parent | bd169955f286dccfd8e747bea9cffa657ce0b86b (diff) |
linpack: add main source file
Signed-off-by: Yannick Gicquel <yannick.gicquel@iot.bzh>
-rw-r--r-- | linpack/linpack.c | 882 |
1 files changed, 882 insertions, 0 deletions
diff --git a/linpack/linpack.c b/linpack/linpack.c new file mode 100644 index 0000000..17b2824 --- /dev/null +++ b/linpack/linpack.c @@ -0,0 +1,882 @@ +/* +** +** LINPACK.C Linpack benchmark, calculates FLOPS. +** (FLoating Point Operations Per Second) +** +** Translated to C by Bonnie Toy 5/88 +** +** Modified by Will Menninger, 10/93, with these features: +** (modified on 2/25/94 to fix a problem with daxpy for +** unequal increments or equal increments not equal to 1. +** Jack Dongarra) +** +** - Defaults to double precision. +** - Averages ROLLed and UNROLLed performance. +** - User selectable array sizes. +** - Automatically does enough repetitions to take at least 10 CPU seconds. +** - Prints machine precision. +** - ANSI prototyping. +** +** To compile: cc -O -o linpack linpack.c -lm +** +** +*/ + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> +#include <time.h> +#include <float.h> + +#define DP + +#ifdef SP +#define ZERO 0.0 +#define ONE 1.0 +#define PREC "Single" +#define BASE10DIG FLT_DIG + +typedef float REAL; +#endif + +#ifdef DP +#define ZERO 0.0e0 +#define ONE 1.0e0 +#define PREC "Double" +#define BASE10DIG DBL_DIG + +typedef double REAL; +#endif + +static REAL linpack (long nreps,int arsize); +static void matgen (REAL *a,int lda,int n,REAL *b,REAL *norma); +static void dgefa (REAL *a,int lda,int n,int *ipvt,int *info,int roll); +static void dgesl (REAL *a,int lda,int n,int *ipvt,REAL *b,int job,int roll); +static void daxpy_r (int n,REAL da,REAL *dx,int incx,REAL *dy,int incy); +static REAL ddot_r (int n,REAL *dx,int incx,REAL *dy,int incy); +static void dscal_r (int n,REAL da,REAL *dx,int incx); +static void daxpy_ur (int n,REAL da,REAL *dx,int incx,REAL *dy,int incy); +static REAL ddot_ur (int n,REAL *dx,int incx,REAL *dy,int incy); +static void dscal_ur (int n,REAL da,REAL *dx,int incx); +static int idamax (int n,REAL *dx,int incx); +static REAL second (void); + +static void *mempool; + + +void main(void) + + { + char buf[80]; + int arsize; + long arsize2d,memreq,nreps; + size_t malloc_arg; + + while (1) + { + printf("Enter array size (q to quit) [200]: "); + fgets(buf,79,stdin); + if (buf[0]=='q' || buf[0]=='Q') + break; + if (buf[0]=='\0' || buf[0]=='\n') + arsize=200; + else + arsize=atoi(buf); + arsize/=2; + arsize*=2; + if (arsize<10) + { + printf("Too small.\n"); + continue; + } + arsize2d = (long)arsize*(long)arsize; + memreq=arsize2d*sizeof(REAL)+(long)arsize*sizeof(REAL)+(long)arsize*sizeof(int); + printf("Memory required: %ldK.\n",(memreq+512L)>>10); + malloc_arg=(size_t)memreq; + if (malloc_arg!=memreq || (mempool=malloc(malloc_arg))==NULL) + { + printf("Not enough memory available for given array size.\n\n"); + continue; + } + printf("\n\nLINPACK benchmark, %s precision.\n",PREC); + printf("Machine precision: %d digits.\n",BASE10DIG); + printf("Array size %d X %d.\n",arsize,arsize); + printf("Average rolled and unrolled performance:\n\n"); + printf(" Reps Time(s) DGEFA DGESL OVERHEAD KFLOPS\n"); + printf("----------------------------------------------------\n"); + nreps=1; + while (linpack(nreps,arsize)<10.) + nreps*=2; + free(mempool); + printf("\n"); + } + } + + +static REAL linpack(long nreps,int arsize) + + { + REAL *a,*b; + REAL norma,t1,kflops,tdgesl,tdgefa,totalt,toverhead,ops; + int *ipvt,n,info,lda; + long i,arsize2d; + + lda = arsize; + n = arsize/2; + arsize2d = (long)arsize*(long)arsize; + ops=((2.0*n*n*n)/3.0+2.0*n*n); + a=(REAL *)mempool; + b=a+arsize2d; + ipvt=(int *)&b[arsize]; + tdgesl=0; + tdgefa=0; + totalt=second(); + for (i=0;i<nreps;i++) + { + matgen(a,lda,n,b,&norma); + t1 = second(); + dgefa(a,lda,n,ipvt,&info,1); + tdgefa += second()-t1; + t1 = second(); + dgesl(a,lda,n,ipvt,b,0,1); + tdgesl += second()-t1; + } + for (i=0;i<nreps;i++) + { + matgen(a,lda,n,b,&norma); + t1 = second(); + dgefa(a,lda,n,ipvt,&info,0); + tdgefa += second()-t1; + t1 = second(); + dgesl(a,lda,n,ipvt,b,0,0); + tdgesl += second()-t1; + } + totalt=second()-totalt; + if (totalt<0.5 || tdgefa+tdgesl<0.2) + return(0.); + kflops=2.*nreps*ops/(1000.*(tdgefa+tdgesl)); + toverhead=totalt-tdgefa-tdgesl; + if (tdgefa<0.) + tdgefa=0.; + if (tdgesl<0.) + tdgesl=0.; + if (toverhead<0.) + toverhead=0.; + printf("%8ld %6.2f %6.2f%% %6.2f%% %6.2f%% %9.3f\n", + nreps,totalt,100.*tdgefa/totalt, + 100.*tdgesl/totalt,100.*toverhead/totalt, + kflops); + return(totalt); + } + + +/* +** For matgen, +** We would like to declare a[][lda], but c does not allow it. In this +** function, references to a[i][j] are written a[lda*i+j]. +*/ +static void matgen(REAL *a,int lda,int n,REAL *b,REAL *norma) + + { + int init,i,j; + + init = 1325; + *norma = 0.0; + for (j = 0; j < n; j++) + for (i = 0; i < n; i++) + { + init = (int)((long)3125*(long)init % 65536L); + a[lda*j+i] = (init - 32768.0)/16384.0; + *norma = (a[lda*j+i] > *norma) ? a[lda*j+i] : *norma; + } + for (i = 0; i < n; i++) + b[i] = 0.0; + for (j = 0; j < n; j++) + for (i = 0; i < n; i++) + b[i] = b[i] + a[lda*j+i]; + } + + +/* +** +** DGEFA benchmark +** +** We would like to declare a[][lda], but c does not allow it. In this +** function, references to a[i][j] are written a[lda*i+j]. +** +** dgefa factors a double precision matrix by gaussian elimination. +** +** dgefa is usually called by dgeco, but it can be called +** directly with a saving in time if rcond is not needed. +** (time for dgeco) = (1 + 9/n)*(time for dgefa) . +** +** on entry +** +** a REAL precision[n][lda] +** the matrix to be factored. +** +** lda integer +** the leading dimension of the array a . +** +** n integer +** the order of the matrix a . +** +** on return +** +** a an upper triangular matrix and the multipliers +** which were used to obtain it. +** the factorization can be written a = l*u where +** l is a product of permutation and unit lower +** triangular matrices and u is upper triangular. +** +** ipvt integer[n] +** an integer vector of pivot indices. +** +** info integer +** = 0 normal value. +** = k if u[k][k] .eq. 0.0 . this is not an error +** condition for this subroutine, but it does +** indicate that dgesl or dgedi will divide by zero +** if called. use rcond in dgeco for a reliable +** indication of singularity. +** +** linpack. this version dated 08/14/78 . +** cleve moler, university of New Mexico, argonne national lab. +** +** functions +** +** blas daxpy,dscal,idamax +** +*/ +static void dgefa(REAL *a,int lda,int n,int *ipvt,int *info,int roll) + + { + REAL t; + int idamax(),j,k,kp1,l,nm1; + + /* gaussian elimination with partial pivoting */ + + if (roll) + { + *info = 0; + nm1 = n - 1; + if (nm1 >= 0) + for (k = 0; k < nm1; k++) + { + kp1 = k + 1; + + /* find l = pivot index */ + + l = idamax(n-k,&a[lda*k+k],1) + k; + ipvt[k] = l; + + /* zero pivot implies this column already + triangularized */ + + if (a[lda*k+l] != ZERO) + { + + /* interchange if necessary */ + + if (l != k) + { + t = a[lda*k+l]; + a[lda*k+l] = a[lda*k+k]; + a[lda*k+k] = t; + } + + /* compute multipliers */ + + t = -ONE/a[lda*k+k]; + dscal_r(n-(k+1),t,&a[lda*k+k+1],1); + + /* row elimination with column indexing */ + + for (j = kp1; j < n; j++) + { + t = a[lda*j+l]; + if (l != k) + { + a[lda*j+l] = a[lda*j+k]; + a[lda*j+k] = t; + } + daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&a[lda*j+k+1],1); + } + } + else + (*info) = k; + } + ipvt[n-1] = n-1; + if (a[lda*(n-1)+(n-1)] == ZERO) + (*info) = n-1; + } + else + { + *info = 0; + nm1 = n - 1; + if (nm1 >= 0) + for (k = 0; k < nm1; k++) + { + kp1 = k + 1; + + /* find l = pivot index */ + + l = idamax(n-k,&a[lda*k+k],1) + k; + ipvt[k] = l; + + /* zero pivot implies this column already + triangularized */ + + if (a[lda*k+l] != ZERO) + { + + /* interchange if necessary */ + + if (l != k) + { + t = a[lda*k+l]; + a[lda*k+l] = a[lda*k+k]; + a[lda*k+k] = t; + } + + /* compute multipliers */ + + t = -ONE/a[lda*k+k]; + dscal_ur(n-(k+1),t,&a[lda*k+k+1],1); + + /* row elimination with column indexing */ + + for (j = kp1; j < n; j++) + { + t = a[lda*j+l]; + if (l != k) + { + a[lda*j+l] = a[lda*j+k]; + a[lda*j+k] = t; + } + daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&a[lda*j+k+1],1); + } + } + else + (*info) = k; + } + ipvt[n-1] = n-1; + if (a[lda*(n-1)+(n-1)] == ZERO) + (*info) = n-1; + } + } + + +/* +** +** DGESL benchmark +** +** We would like to declare a[][lda], but c does not allow it. In this +** function, references to a[i][j] are written a[lda*i+j]. +** +** dgesl solves the double precision system +** a * x = b or trans(a) * x = b +** using the factors computed by dgeco or dgefa. +** +** on entry +** +** a double precision[n][lda] +** the output from dgeco or dgefa. +** +** lda integer +** the leading dimension of the array a . +** +** n integer +** the order of the matrix a . +** +** ipvt integer[n] +** the pivot vector from dgeco or dgefa. +** +** b double precision[n] +** the right hand side vector. +** +** job integer +** = 0 to solve a*x = b , +** = nonzero to solve trans(a)*x = b where +** trans(a) is the transpose. +** +** on return +** +** b the solution vector x . +** +** error condition +** +** a division by zero will occur if the input factor contains a +** zero on the diagonal. technically this indicates singularity +** but it is often caused by improper arguments or improper +** setting of lda . it will not occur if the subroutines are +** called correctly and if dgeco has set rcond .gt. 0.0 +** or dgefa has set info .eq. 0 . +** +** to compute inverse(a) * c where c is a matrix +** with p columns +** dgeco(a,lda,n,ipvt,rcond,z) +** if (!rcond is too small){ +** for (j=0,j<p,j++) +** dgesl(a,lda,n,ipvt,c[j][0],0); +** } +** +** linpack. this version dated 08/14/78 . +** cleve moler, university of new mexico, argonne national lab. +** +** functions +** +** blas daxpy,ddot +*/ +static void dgesl(REAL *a,int lda,int n,int *ipvt,REAL *b,int job,int roll) + + { + REAL t; + int k,kb,l,nm1; + + if (roll) + { + nm1 = n - 1; + if (job == 0) + { + + /* job = 0 , solve a * x = b */ + /* first solve l*y = b */ + + if (nm1 >= 1) + for (k = 0; k < nm1; k++) + { + l = ipvt[k]; + t = b[l]; + if (l != k) + { + b[l] = b[k]; + b[k] = t; + } + daxpy_r(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); + } + + /* now solve u*x = y */ + + for (kb = 0; kb < n; kb++) + { + k = n - (kb + 1); + b[k] = b[k]/a[lda*k+k]; + t = -b[k]; + daxpy_r(k,t,&a[lda*k+0],1,&b[0],1); + } + } + else + { + + /* job = nonzero, solve trans(a) * x = b */ + /* first solve trans(u)*y = b */ + + for (k = 0; k < n; k++) + { + t = ddot_r(k,&a[lda*k+0],1,&b[0],1); + b[k] = (b[k] - t)/a[lda*k+k]; + } + + /* now solve trans(l)*x = y */ + + if (nm1 >= 1) + for (kb = 1; kb < nm1; kb++) + { + k = n - (kb+1); + b[k] = b[k] + ddot_r(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); + l = ipvt[k]; + if (l != k) + { + t = b[l]; + b[l] = b[k]; + b[k] = t; + } + } + } + } + else + { + nm1 = n - 1; + if (job == 0) + { + + /* job = 0 , solve a * x = b */ + /* first solve l*y = b */ + + if (nm1 >= 1) + for (k = 0; k < nm1; k++) + { + l = ipvt[k]; + t = b[l]; + if (l != k) + { + b[l] = b[k]; + b[k] = t; + } + daxpy_ur(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); + } + + /* now solve u*x = y */ + + for (kb = 0; kb < n; kb++) + { + k = n - (kb + 1); + b[k] = b[k]/a[lda*k+k]; + t = -b[k]; + daxpy_ur(k,t,&a[lda*k+0],1,&b[0],1); + } + } + else + { + + /* job = nonzero, solve trans(a) * x = b */ + /* first solve trans(u)*y = b */ + + for (k = 0; k < n; k++) + { + t = ddot_ur(k,&a[lda*k+0],1,&b[0],1); + b[k] = (b[k] - t)/a[lda*k+k]; + } + + /* now solve trans(l)*x = y */ + + if (nm1 >= 1) + for (kb = 1; kb < nm1; kb++) + { + k = n - (kb+1); + b[k] = b[k] + ddot_ur(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); + l = ipvt[k]; + if (l != k) + { + t = b[l]; + b[l] = b[k]; + b[k] = t; + } + } + } + } + } + + + +/* +** Constant times a vector plus a vector. +** Jack Dongarra, linpack, 3/11/78. +** ROLLED version +*/ +static void daxpy_r(int n,REAL da,REAL *dx,int incx,REAL *dy,int incy) + + { + int i,ix,iy; + + if (n <= 0) + return; + if (da == ZERO) + return; + + if (incx != 1 || incy != 1) + { + + /* code for unequal increments or equal increments != 1 */ + + ix = 1; + iy = 1; + if(incx < 0) ix = (-n+1)*incx + 1; + if(incy < 0)iy = (-n+1)*incy + 1; + for (i = 0;i < n; i++) + { + dy[iy] = dy[iy] + da*dx[ix]; + ix = ix + incx; + iy = iy + incy; + } + return; + } + + /* code for both increments equal to 1 */ + + for (i = 0;i < n; i++) + dy[i] = dy[i] + da*dx[i]; + } + + +/* +** Forms the dot product of two vectors. +** Jack Dongarra, linpack, 3/11/78. +** ROLLED version +*/ +static REAL ddot_r(int n,REAL *dx,int incx,REAL *dy,int incy) + + { + REAL dtemp; + int i,ix,iy; + + dtemp = ZERO; + + if (n <= 0) + return(ZERO); + + if (incx != 1 || incy != 1) + { + + /* code for unequal increments or equal increments != 1 */ + + ix = 0; + iy = 0; + if (incx < 0) ix = (-n+1)*incx; + if (incy < 0) iy = (-n+1)*incy; + for (i = 0;i < n; i++) + { + dtemp = dtemp + dx[ix]*dy[iy]; + ix = ix + incx; + iy = iy + incy; + } + return(dtemp); + } + + /* code for both increments equal to 1 */ + + for (i=0;i < n; i++) + dtemp = dtemp + dx[i]*dy[i]; + return(dtemp); + } + + +/* +** Scales a vector by a constant. +** Jack Dongarra, linpack, 3/11/78. +** ROLLED version +*/ +static void dscal_r(int n,REAL da,REAL *dx,int incx) + + { + int i,nincx; + + if (n <= 0) + return; + if (incx != 1) + { + + /* code for increment not equal to 1 */ + + nincx = n*incx; + for (i = 0; i < nincx; i = i + incx) + dx[i] = da*dx[i]; + return; + } + + /* code for increment equal to 1 */ + + for (i = 0; i < n; i++) + dx[i] = da*dx[i]; + } + + +/* +** constant times a vector plus a vector. +** Jack Dongarra, linpack, 3/11/78. +** UNROLLED version +*/ +static void daxpy_ur(int n,REAL da,REAL *dx,int incx,REAL *dy,int incy) + + { + int i,ix,iy,m; + + if (n <= 0) + return; + if (da == ZERO) + return; + + if (incx != 1 || incy != 1) + { + + /* code for unequal increments or equal increments != 1 */ + + ix = 1; + iy = 1; + if(incx < 0) ix = (-n+1)*incx + 1; + if(incy < 0)iy = (-n+1)*incy + 1; + for (i = 0;i < n; i++) + { + dy[iy] = dy[iy] + da*dx[ix]; + ix = ix + incx; + iy = iy + incy; + } + return; + } + + /* code for both increments equal to 1 */ + + m = n % 4; + if ( m != 0) + { + for (i = 0; i < m; i++) + dy[i] = dy[i] + da*dx[i]; + if (n < 4) + return; + } + for (i = m; i < n; i = i + 4) + { + dy[i] = dy[i] + da*dx[i]; + dy[i+1] = dy[i+1] + da*dx[i+1]; + dy[i+2] = dy[i+2] + da*dx[i+2]; + dy[i+3] = dy[i+3] + da*dx[i+3]; + } + } + + +/* +** Forms the dot product of two vectors. +** Jack Dongarra, linpack, 3/11/78. +** UNROLLED version +*/ +static REAL ddot_ur(int n,REAL *dx,int incx,REAL *dy,int incy) + + { + REAL dtemp; + int i,ix,iy,m; + + dtemp = ZERO; + + if (n <= 0) + return(ZERO); + + if (incx != 1 || incy != 1) + { + + /* code for unequal increments or equal increments != 1 */ + + ix = 0; + iy = 0; + if (incx < 0) ix = (-n+1)*incx; + if (incy < 0) iy = (-n+1)*incy; + for (i = 0;i < n; i++) + { + dtemp = dtemp + dx[ix]*dy[iy]; + ix = ix + incx; + iy = iy + incy; + } + return(dtemp); + } + + /* code for both increments equal to 1 */ + + m = n % 5; + if (m != 0) + { + for (i = 0; i < m; i++) + dtemp = dtemp + dx[i]*dy[i]; + if (n < 5) + return(dtemp); + } + for (i = m; i < n; i = i + 5) + { + dtemp = dtemp + dx[i]*dy[i] + + dx[i+1]*dy[i+1] + dx[i+2]*dy[i+2] + + dx[i+3]*dy[i+3] + dx[i+4]*dy[i+4]; + } + return(dtemp); + } + + +/* +** Scales a vector by a constant. +** Jack Dongarra, linpack, 3/11/78. +** UNROLLED version +*/ +static void dscal_ur(int n,REAL da,REAL *dx,int incx) + + { + int i,m,nincx; + + if (n <= 0) + return; + if (incx != 1) + { + + /* code for increment not equal to 1 */ + + nincx = n*incx; + for (i = 0; i < nincx; i = i + incx) + dx[i] = da*dx[i]; + return; + } + + /* code for increment equal to 1 */ + + m = n % 5; + if (m != 0) + { + for (i = 0; i < m; i++) + dx[i] = da*dx[i]; + if (n < 5) + return; + } + for (i = m; i < n; i = i + 5) + { + dx[i] = da*dx[i]; + dx[i+1] = da*dx[i+1]; + dx[i+2] = da*dx[i+2]; + dx[i+3] = da*dx[i+3]; + dx[i+4] = da*dx[i+4]; + } + } + + +/* +** Finds the index of element having max. absolute value. +** Jack Dongarra, linpack, 3/11/78. +*/ +static int idamax(int n,REAL *dx,int incx) + + { + REAL dmax; + int i, ix, itemp; + + if (n < 1) + return(-1); + if (n ==1 ) + return(0); + if(incx != 1) + { + + /* code for increment not equal to 1 */ + + ix = 1; + dmax = fabs((double)dx[0]); + ix = ix + incx; + for (i = 1; i < n; i++) + { + if(fabs((double)dx[ix]) > dmax) + { + itemp = i; + dmax = fabs((double)dx[ix]); + } + ix = ix + incx; + } + } + else + { + + /* code for increment equal to 1 */ + + itemp = 0; + dmax = fabs((double)dx[0]); + for (i = 1; i < n; i++) + if(fabs((double)dx[i]) > dmax) + { + itemp = i; + dmax = fabs((double)dx[i]); + } + } + return (itemp); + } + + +static REAL second(void) + + { + return ((REAL)((REAL)clock()/(REAL)CLOCKS_PER_SEC)); + } + + |