diff options
author | Malik Talha <talhamalik727x@gmail.com> | 2023-10-22 21:06:23 +0500 |
---|---|---|
committer | Jan-Simon Moeller <jsmoeller@linuxfoundation.org> | 2023-10-23 14:38:13 +0000 |
commit | 697a1adce1e463079e640b55d6386cf82d7bd6bc (patch) | |
tree | 86e299cc7fe12b10c2e549f640924b61c7d07a95 /snips_inference_agl/string_variations.py | |
parent | 97029ab8141e654a170a2282106f854037da294f (diff) |
Add Snips Inference Module
Add slightly modified version of the original Snips NLU
library. This module adds support for Python upto version
3.10.
Bug-AGL: SPEC-4856
Signed-off-by: Malik Talha <talhamalik727x@gmail.com>
Change-Id: I6d7e9eb181e6ff4aed9b6291027877ccb9f0d846
Diffstat (limited to 'snips_inference_agl/string_variations.py')
-rw-r--r-- | snips_inference_agl/string_variations.py | 195 |
1 files changed, 195 insertions, 0 deletions
diff --git a/snips_inference_agl/string_variations.py b/snips_inference_agl/string_variations.py new file mode 100644 index 0000000..f65e34e --- /dev/null +++ b/snips_inference_agl/string_variations.py @@ -0,0 +1,195 @@ +# coding=utf-8 +from __future__ import unicode_literals + +import itertools +import re +from builtins import range, str, zip + +from future.utils import iteritems + +from snips_inference_agl.constants import ( + END, LANGUAGE_DE, LANGUAGE_EN, LANGUAGE_ES, LANGUAGE_FR, RESOLVED_VALUE, + RES_MATCH_RANGE, SNIPS_NUMBER, START, VALUE) +from snips_inference_agl.languages import ( + get_default_sep, get_punctuation_regex, supports_num2words) +from snips_inference_agl.preprocessing import tokenize_light + +AND_UTTERANCES = { + LANGUAGE_EN: ["and", "&"], + LANGUAGE_FR: ["et", "&"], + LANGUAGE_ES: ["y", "&"], + LANGUAGE_DE: ["und", "&"], +} + +AND_REGEXES = { + language: re.compile( + r"|".join(r"(?<=\s)%s(?=\s)" % re.escape(u) for u in utterances), + re.IGNORECASE) + for language, utterances in iteritems(AND_UTTERANCES) +} + +MAX_ENTITY_VARIATIONS = 10 + + +def build_variated_query(string, ranges_and_utterances): + variated_string = "" + current_ix = 0 + for rng, u in ranges_and_utterances: + start = rng[START] + end = rng[END] + variated_string += string[current_ix:start] + variated_string += u + current_ix = end + variated_string += string[current_ix:] + return variated_string + + +def and_variations(string, language): + and_regex = AND_REGEXES.get(language, None) + if and_regex is None: + return set() + + matches = [m for m in and_regex.finditer(string)] + if not matches: + return set() + + matches = sorted(matches, key=lambda x: x.start()) + and_utterances = AND_UTTERANCES[language] + values = [({START: m.start(), END: m.end()}, and_utterances) + for m in matches] + + n_values = len(values) + n_and_utterances = len(and_utterances) + if n_and_utterances ** n_values > MAX_ENTITY_VARIATIONS: + return set() + + combinations = itertools.product(range(n_and_utterances), repeat=n_values) + variations = set() + for c in combinations: + ranges_and_utterances = [(values[i][0], values[i][1][ix]) + for i, ix in enumerate(c)] + variations.add(build_variated_query(string, ranges_and_utterances)) + return variations + + +def punctuation_variations(string, language): + matches = [m for m in get_punctuation_regex(language).finditer(string)] + if not matches: + return set() + + matches = sorted(matches, key=lambda x: x.start()) + values = [({START: m.start(), END: m.end()}, (m.group(0), "")) + for m in matches] + + n_values = len(values) + if 2 ** n_values > MAX_ENTITY_VARIATIONS: + return set() + + combinations = itertools.product(range(2), repeat=n_values) + variations = set() + for c in combinations: + ranges_and_utterances = [(values[i][0], values[i][1][ix]) + for i, ix in enumerate(c)] + variations.add(build_variated_query(string, ranges_and_utterances)) + return variations + + +def digit_value(number_entity): + value = number_entity[RESOLVED_VALUE][VALUE] + if value == int(value): + # Convert 24.0 into "24" instead of "24.0" + value = int(value) + return str(value) + + +def alphabetic_value(number_entity, language): + from num2words import num2words + + value = number_entity[RESOLVED_VALUE][VALUE] + if value != int(value): # num2words does not handle floats correctly + return None + return num2words(int(value), lang=language) + + +def numbers_variations(string, language, builtin_entity_parser): + if not supports_num2words(language): + return set() + + number_entities = builtin_entity_parser.parse( + string, scope=[SNIPS_NUMBER], use_cache=True) + + number_entities = sorted(number_entities, + key=lambda x: x[RES_MATCH_RANGE][START]) + if not number_entities: + return set() + + digit_values = [digit_value(e) for e in number_entities] + alpha_values = [alphabetic_value(e, language) for e in number_entities] + + values = [(n[RES_MATCH_RANGE], (d, a)) for (n, d, a) in + zip(number_entities, digit_values, alpha_values) + if a is not None] + + n_values = len(values) + if 2 ** n_values > MAX_ENTITY_VARIATIONS: + return set() + + combinations = itertools.product(range(2), repeat=n_values) + variations = set() + for c in combinations: + ranges_and_utterances = [(values[i][0], values[i][1][ix]) + for i, ix in enumerate(c)] + variations.add(build_variated_query(string, ranges_and_utterances)) + return variations + + +def case_variations(string): + return {string.lower(), string.title()} + + +def normalization_variations(string): + from snips_nlu_utils import normalize + + return {normalize(string)} + + +def flatten(results): + return set(i for r in results for i in r) + + +def get_string_variations(string, language, builtin_entity_parser, + numbers=True, case=True, and_=True, + punctuation=True): + variations = {string} + if case: + variations.update(flatten(case_variations(v) for v in variations)) + + variations.update(flatten(normalization_variations(v) for v in variations)) + # We re-generate case variations as normalization can produce new + # variations + if case: + variations.update(flatten(case_variations(v) for v in variations)) + if and_: + variations.update( + flatten(and_variations(v, language) for v in variations)) + if punctuation: + variations.update( + flatten(punctuation_variations(v, language) for v in variations)) + + # Special case of number variation which are long to generate due to the + # BuilinEntityParser running on each variation + if numbers: + variations.update( + flatten(numbers_variations(v, language, builtin_entity_parser) + for v in variations) + ) + + # Add single space variations + single_space_variations = set(" ".join(v.split()) for v in variations) + variations.update(single_space_variations) + # Add tokenized variations + tokenized_variations = set( + get_default_sep(language).join(tokenize_light(v, language)) for v in + variations) + variations.update(tokenized_variations) + return variations |