1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
from __future__ import division, unicode_literals
import json
from builtins import str
from collections import Counter
from copy import deepcopy
from future.utils import iteritems, itervalues
from snips_inference_agl.common.dataset_utils import (validate_key, validate_keys,
validate_type)
from snips_inference_agl.constants import (
AUTOMATICALLY_EXTENSIBLE, CAPITALIZE, DATA, ENTITIES, ENTITY, INTENTS,
LANGUAGE, MATCHING_STRICTNESS, SLOT_NAME, SYNONYMS, TEXT, USE_SYNONYMS,
UTTERANCES, VALIDATED, VALUE, LICENSE_INFO)
from snips_inference_agl.dataset import extract_utterance_entities, Dataset
from snips_inference_agl.entity_parser.builtin_entity_parser import (
BuiltinEntityParser, is_builtin_entity)
from snips_inference_agl.exceptions import DatasetFormatError
from snips_inference_agl.preprocessing import tokenize_light
from snips_inference_agl.string_variations import get_string_variations
NUMBER_VARIATIONS_THRESHOLD = 1e3
VARIATIONS_GENERATION_THRESHOLD = 1e4
def validate_and_format_dataset(dataset):
"""Checks that the dataset is valid and format it
Raise:
DatasetFormatError: When the dataset format is wrong
"""
from snips_nlu_parsers import get_all_languages
if isinstance(dataset, Dataset):
dataset = dataset.json
# Make this function idempotent
if dataset.get(VALIDATED, False):
return dataset
dataset = deepcopy(dataset)
dataset = json.loads(json.dumps(dataset))
validate_type(dataset, dict, object_label="dataset")
mandatory_keys = [INTENTS, ENTITIES, LANGUAGE]
for key in mandatory_keys:
validate_key(dataset, key, object_label="dataset")
validate_type(dataset[ENTITIES], dict, object_label="entities")
validate_type(dataset[INTENTS], dict, object_label="intents")
language = dataset[LANGUAGE]
validate_type(language, str, object_label="language")
if language not in get_all_languages():
raise DatasetFormatError("Unknown language: '%s'" % language)
dataset[INTENTS] = {
intent_name: intent_data
for intent_name, intent_data in sorted(iteritems(dataset[INTENTS]))}
for intent in itervalues(dataset[INTENTS]):
_validate_and_format_intent(intent, dataset[ENTITIES])
utterance_entities_values = extract_utterance_entities(dataset)
builtin_entity_parser = BuiltinEntityParser.build(dataset=dataset)
dataset[ENTITIES] = {
intent_name: entity_data
for intent_name, entity_data in sorted(iteritems(dataset[ENTITIES]))}
for entity_name, entity in iteritems(dataset[ENTITIES]):
uterrance_entities = utterance_entities_values[entity_name]
if is_builtin_entity(entity_name):
dataset[ENTITIES][entity_name] = \
_validate_and_format_builtin_entity(entity, uterrance_entities)
else:
dataset[ENTITIES][entity_name] = \
_validate_and_format_custom_entity(
entity, uterrance_entities, language,
builtin_entity_parser)
dataset[VALIDATED] = True
return dataset
def _validate_and_format_intent(intent, entities):
validate_type(intent, dict, "intent")
validate_key(intent, UTTERANCES, object_label="intent dict")
validate_type(intent[UTTERANCES], list, object_label="utterances")
for utterance in intent[UTTERANCES]:
validate_type(utterance, dict, object_label="utterance")
validate_key(utterance, DATA, object_label="utterance")
validate_type(utterance[DATA], list, object_label="utterance data")
for chunk in utterance[DATA]:
validate_type(chunk, dict, object_label="utterance chunk")
validate_key(chunk, TEXT, object_label="chunk")
if ENTITY in chunk or SLOT_NAME in chunk:
mandatory_keys = [ENTITY, SLOT_NAME]
validate_keys(chunk, mandatory_keys, object_label="chunk")
if is_builtin_entity(chunk[ENTITY]):
continue
else:
validate_key(entities, chunk[ENTITY],
object_label=ENTITIES)
return intent
def _has_any_capitalization(entity_utterances, language):
for utterance in entity_utterances:
tokens = tokenize_light(utterance, language)
if any(t.isupper() or t.istitle() for t in tokens):
return True
return False
def _add_entity_variations(utterances, entity_variations, entity_value):
utterances[entity_value] = entity_value
for variation in entity_variations[entity_value]:
if variation:
utterances[variation] = entity_value
return utterances
def _extract_entity_values(entity):
values = set()
for ent in entity[DATA]:
values.add(ent[VALUE])
if entity[USE_SYNONYMS]:
values.update(set(ent[SYNONYMS]))
return values
def _validate_and_format_custom_entity(entity, utterance_entities, language,
builtin_entity_parser):
validate_type(entity, dict, object_label="entity")
# TODO: this is here temporarily, only to allow backward compatibility
if MATCHING_STRICTNESS not in entity:
strictness = entity.get("parser_threshold", 1.0)
entity[MATCHING_STRICTNESS] = strictness
mandatory_keys = [USE_SYNONYMS, AUTOMATICALLY_EXTENSIBLE, DATA,
MATCHING_STRICTNESS]
validate_keys(entity, mandatory_keys, object_label="custom entity")
validate_type(entity[USE_SYNONYMS], bool, object_label="use_synonyms")
validate_type(entity[AUTOMATICALLY_EXTENSIBLE], bool,
object_label="automatically_extensible")
validate_type(entity[DATA], list, object_label="entity data")
validate_type(entity[MATCHING_STRICTNESS], (float, int),
object_label="matching_strictness")
formatted_entity = dict()
formatted_entity[AUTOMATICALLY_EXTENSIBLE] = entity[
AUTOMATICALLY_EXTENSIBLE]
formatted_entity[MATCHING_STRICTNESS] = entity[MATCHING_STRICTNESS]
if LICENSE_INFO in entity:
formatted_entity[LICENSE_INFO] = entity[LICENSE_INFO]
use_synonyms = entity[USE_SYNONYMS]
# Validate format and filter out unused data
valid_entity_data = []
for entry in entity[DATA]:
validate_type(entry, dict, object_label="entity entry")
validate_keys(entry, [VALUE, SYNONYMS], object_label="entity entry")
entry[VALUE] = entry[VALUE].strip()
if not entry[VALUE]:
continue
validate_type(entry[SYNONYMS], list, object_label="entity synonyms")
entry[SYNONYMS] = [s.strip() for s in entry[SYNONYMS] if s.strip()]
valid_entity_data.append(entry)
entity[DATA] = valid_entity_data
# Compute capitalization before normalizing
# Normalization lowercase and hence lead to bad capitalization calculation
formatted_entity[CAPITALIZE] = _has_any_capitalization(utterance_entities,
language)
validated_utterances = dict()
# Map original values an synonyms
for data in entity[DATA]:
ent_value = data[VALUE]
validated_utterances[ent_value] = ent_value
if use_synonyms:
for s in data[SYNONYMS]:
if s not in validated_utterances:
validated_utterances[s] = ent_value
# Number variations in entities values are expensive since each entity
# value is parsed with the builtin entity parser before creating the
# variations. We avoid generating these variations if there's enough entity
# values
# Add variations if not colliding
all_original_values = _extract_entity_values(entity)
if len(entity[DATA]) < VARIATIONS_GENERATION_THRESHOLD:
variations_args = {
"case": True,
"and_": True,
"punctuation": True
}
else:
variations_args = {
"case": False,
"and_": False,
"punctuation": False
}
variations_args["numbers"] = len(
entity[DATA]) < NUMBER_VARIATIONS_THRESHOLD
variations = dict()
for data in entity[DATA]:
ent_value = data[VALUE]
values_to_variate = {ent_value}
if use_synonyms:
values_to_variate.update(set(data[SYNONYMS]))
variations[ent_value] = set(
v for value in values_to_variate
for v in get_string_variations(
value, language, builtin_entity_parser, **variations_args)
)
variation_counter = Counter(
[v for variations_ in itervalues(variations) for v in variations_])
non_colliding_variations = {
value: [
v for v in variations if
v not in all_original_values and variation_counter[v] == 1
]
for value, variations in iteritems(variations)
}
for entry in entity[DATA]:
entry_value = entry[VALUE]
validated_utterances = _add_entity_variations(
validated_utterances, non_colliding_variations, entry_value)
# Merge utterances entities
utterance_entities_variations = {
ent: get_string_variations(
ent, language, builtin_entity_parser, **variations_args)
for ent in utterance_entities
}
for original_ent, variations in iteritems(utterance_entities_variations):
if not original_ent or original_ent in validated_utterances:
continue
validated_utterances[original_ent] = original_ent
for variation in variations:
if variation and variation not in validated_utterances \
and variation not in utterance_entities:
validated_utterances[variation] = original_ent
formatted_entity[UTTERANCES] = validated_utterances
return formatted_entity
def _validate_and_format_builtin_entity(entity, utterance_entities):
validate_type(entity, dict, object_label="builtin entity")
return {UTTERANCES: set(utterance_entities)}
|