summaryrefslogtreecommitdiffstats
path: root/snips_inference_agl/intent_classifier/featurizer.py
blob: 116837f2bec6c6704c8bf53ded376991b622e154 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
from __future__ import division, unicode_literals

import json
from builtins import str, zip
from copy import deepcopy
from pathlib import Path

from future.utils import iteritems

from snips_inference_agl.common.utils import (
    fitted_required, replace_entities_with_placeholders)
from snips_inference_agl.constants import (
    DATA, ENTITY, ENTITY_KIND, NGRAM, TEXT)
from snips_inference_agl.dataset import get_text_from_chunks
from snips_inference_agl.entity_parser.builtin_entity_parser import (
    is_builtin_entity)
from snips_inference_agl.exceptions import (LoadingError)
from snips_inference_agl.languages import get_default_sep
from snips_inference_agl.pipeline.configs import FeaturizerConfig
from snips_inference_agl.pipeline.configs.intent_classifier import (
    CooccurrenceVectorizerConfig, TfidfVectorizerConfig)
from snips_inference_agl.pipeline.processing_unit import ProcessingUnit
from snips_inference_agl.preprocessing import stem, tokenize_light
from snips_inference_agl.resources import get_stop_words, get_word_cluster
from snips_inference_agl.slot_filler.features_utils import get_all_ngrams


@ProcessingUnit.register("featurizer")
class Featurizer(ProcessingUnit):
    """Feature extractor for text classification relying on ngrams tfidf and
    optionally word cooccurrences features"""

    config_type = FeaturizerConfig

    def __init__(self, config=None, **shared):
        super(Featurizer, self).__init__(config, **shared)
        self.language = None
        self.tfidf_vectorizer = None
        self.cooccurrence_vectorizer = None

    @property
    def fitted(self):
        if not self.tfidf_vectorizer or not self.tfidf_vectorizer.vocabulary:
            return False
        return True
    
    def transform(self, utterances):
        import scipy.sparse as sp

        x = self.tfidf_vectorizer.transform(utterances)
        if self.cooccurrence_vectorizer:
            x_cooccurrence = self.cooccurrence_vectorizer.transform(utterances)
            x = sp.hstack((x, x_cooccurrence))
        return x

    @classmethod
    def from_path(cls, path, **shared):
        path = Path(path)

        model_path = path / "featurizer.json"
        if not model_path.exists():
            raise LoadingError("Missing featurizer model file: %s"
                               % model_path.name)
        with model_path.open("r", encoding="utf-8") as f:
            featurizer_dict = json.load(f)

        featurizer_config = featurizer_dict["config"]
        featurizer = cls(featurizer_config, **shared)

        featurizer.language = featurizer_dict["language_code"]

        tfidf_vectorizer = featurizer_dict["tfidf_vectorizer"]
        if tfidf_vectorizer:
            vectorizer_path = path / featurizer_dict["tfidf_vectorizer"]
            tfidf_vectorizer = TfidfVectorizer.from_path(
                vectorizer_path, **shared)
        featurizer.tfidf_vectorizer = tfidf_vectorizer

        cooccurrence_vectorizer = featurizer_dict["cooccurrence_vectorizer"]
        if cooccurrence_vectorizer:
            vectorizer_path = path / featurizer_dict["cooccurrence_vectorizer"]
            cooccurrence_vectorizer = CooccurrenceVectorizer.from_path(
                vectorizer_path, **shared)
        featurizer.cooccurrence_vectorizer = cooccurrence_vectorizer

        return featurizer


@ProcessingUnit.register("tfidf_vectorizer")
class TfidfVectorizer(ProcessingUnit):
    """Wrapper of the scikit-learn TfidfVectorizer"""

    config_type = TfidfVectorizerConfig

    def __init__(self, config=None, **shared):
        super(TfidfVectorizer, self).__init__(config, **shared)
        self._tfidf_vectorizer = None
        self._language = None
        self.builtin_entity_scope = None

    @property
    def fitted(self):
        return self._tfidf_vectorizer is not None and hasattr(
            self._tfidf_vectorizer, "vocabulary_")
    
    @fitted_required
    def transform(self, x):
        """Featurizes the given utterances after enriching them with builtin
        entities matches, custom entities matches and the potential word
        clusters matches

        Args:
            x (list of dict): list of utterances

        Returns:
            :class:`.scipy.sparse.csr_matrix`: A sparse matrix X of shape
            (len(x), len(self.vocabulary)) where X[i, j] contains tfdif of
            the ngram of index j of the vocabulary in the utterance i

        Raises:
            NotTrained: when the vectorizer is not fitted:
        """
        utterances = [self._enrich_utterance(*data)
                      for data in zip(*self._preprocess(x))]
        return self._tfidf_vectorizer.transform(utterances)

    def _preprocess(self, utterances):
        normalized_utterances = deepcopy(utterances)
        for u in normalized_utterances:
            nb_chunks = len(u[DATA])
            for i, chunk in enumerate(u[DATA]):
                chunk[TEXT] = _normalize_stem(
                    chunk[TEXT], self.language, self.resources,
                    self.config.use_stemming)
                if i < nb_chunks - 1:
                    chunk[TEXT] += " "

        # Extract builtin entities on unormalized utterances
        builtin_ents = [
            self.builtin_entity_parser.parse(
                get_text_from_chunks(u[DATA]),
                self.builtin_entity_scope, use_cache=True)
            for u in utterances
        ]
        # Extract builtin entities on normalized utterances
        custom_ents = [
            self.custom_entity_parser.parse(
                get_text_from_chunks(u[DATA]), use_cache=True)
            for u in normalized_utterances
        ]
        if self.config.word_clusters_name:
            # Extract world clusters on unormalized utterances
            original_utterances_text = [get_text_from_chunks(u[DATA])
                                        for u in utterances]
            w_clusters = [
                _get_word_cluster_features(
                    tokenize_light(u.lower(), self.language),
                    self.config.word_clusters_name,
                    self.resources)
                for u in original_utterances_text
            ]
        else:
            w_clusters = [None for _ in normalized_utterances]

        return normalized_utterances, builtin_ents, custom_ents, w_clusters

    def _enrich_utterance(self, utterance, builtin_entities, custom_entities,
                          word_clusters):
        custom_entities_features = [
            _entity_name_to_feature(e[ENTITY_KIND], self.language)
            for e in custom_entities]

        builtin_entities_features = [
            _builtin_entity_to_feature(ent[ENTITY_KIND], self.language)
            for ent in builtin_entities
        ]

        # We remove values of builtin slots from the utterance to avoid
        # learning specific samples such as '42' or 'tomorrow'
        filtered_tokens = [
            chunk[TEXT] for chunk in utterance[DATA]
            if ENTITY not in chunk or not is_builtin_entity(chunk[ENTITY])
        ]

        features = get_default_sep(self.language).join(filtered_tokens)

        if builtin_entities_features:
            features += " " + " ".join(sorted(builtin_entities_features))
        if custom_entities_features:
            features += " " + " ".join(sorted(custom_entities_features))
        if word_clusters:
            features += " " + " ".join(sorted(word_clusters))

        return features

    @property
    def language(self):
        # Create this getter to prevent the language from being set elsewhere
        # than in the fit
        return self._language

    @property
    def vocabulary(self):
        if self._tfidf_vectorizer and hasattr(
                self._tfidf_vectorizer, "vocabulary_"):
            return self._tfidf_vectorizer.vocabulary_
        return None

    @property
    def idf_diag(self):
        if self._tfidf_vectorizer and hasattr(
                self._tfidf_vectorizer, "vocabulary_"):
            return self._tfidf_vectorizer.idf_
        return None

    @classmethod
    # pylint: disable=W0212
    def from_path(cls, path, **shared):
        import numpy as np
        import scipy.sparse as sp
        from sklearn.feature_extraction.text import (
            TfidfTransformer, TfidfVectorizer as SklearnTfidfVectorizer)

        path = Path(path)

        model_path = path / "vectorizer.json"
        if not model_path.exists():
            raise LoadingError("Missing vectorizer model file: %s"
                               % model_path.name)
        with model_path.open("r", encoding="utf-8") as f:
            vectorizer_dict = json.load(f)

        vectorizer = cls(vectorizer_dict["config"], **shared)
        vectorizer._language = vectorizer_dict["language_code"]

        builtin_entity_scope = vectorizer_dict["builtin_entity_scope"]
        if builtin_entity_scope is not None:
            builtin_entity_scope = set(builtin_entity_scope)
        vectorizer.builtin_entity_scope = builtin_entity_scope

        vectorizer_ = vectorizer_dict["vectorizer"]
        if vectorizer_:
            vocab = vectorizer_["vocab"]
            idf_diag_data = vectorizer_["idf_diag"]
            idf_diag_data = np.array(idf_diag_data)

            idf_diag_shape = (len(idf_diag_data), len(idf_diag_data))
            row = list(range(idf_diag_shape[0]))
            col = list(range(idf_diag_shape[0]))
            idf_diag = sp.csr_matrix(
                (idf_diag_data, (row, col)), shape=idf_diag_shape)

            tfidf_transformer = TfidfTransformer()
            tfidf_transformer._idf_diag = idf_diag

            vectorizer_ = SklearnTfidfVectorizer(
                tokenizer=lambda x: tokenize_light(x, vectorizer._language))
            vectorizer_.vocabulary_ = vocab

            vectorizer_._tfidf = tfidf_transformer

        vectorizer._tfidf_vectorizer = vectorizer_
        return vectorizer


@ProcessingUnit.register("cooccurrence_vectorizer")
class CooccurrenceVectorizer(ProcessingUnit):
    """Featurizer that takes utterances and extracts ordered word cooccurrence
     features matrix from them"""

    config_type = CooccurrenceVectorizerConfig

    def __init__(self, config=None, **shared):
        super(CooccurrenceVectorizer, self).__init__(config, **shared)
        self._word_pairs = None
        self._language = None
        self.builtin_entity_scope = None

    @property
    def language(self):
        # Create this getter to prevent the language from being set elsewhere
        # than in the fit
        return self._language

    @property
    def word_pairs(self):
        return self._word_pairs

    @property
    def fitted(self):
        """Whether or not the vectorizer is fitted"""
        return self.word_pairs is not None
    
    @fitted_required
    def transform(self, x):
        """Computes the cooccurrence feature matrix.

        Args:
            x (list of dict): list of utterances

        Returns:
            :class:`.scipy.sparse.csr_matrix`: A sparse matrix X of shape
            (len(x), len(self.word_pairs)) where X[i, j] = 1.0 if
            x[i][0] contains the words cooccurrence (w1, w2) and if
            self.word_pairs[(w1, w2)] = j

        Raises:
            NotTrained: when the vectorizer is not fitted
        """
        import numpy as np
        import scipy.sparse as sp

        preprocessed = self._preprocess(x)
        utterances = [
            self._enrich_utterance(utterance, builtin_ents, custom_ent)
            for utterance, builtin_ents, custom_ent in zip(*preprocessed)]

        x_coo = sp.dok_matrix((len(x), len(self.word_pairs)), dtype=np.int32)
        for i, u in enumerate(utterances):
            for p in self._extract_word_pairs(u):
                if p in self.word_pairs:
                    x_coo[i, self.word_pairs[p]] = 1

        return x_coo.tocsr()

    def _preprocess(self, x):
        # Extract all entities on unnormalized data
        builtin_ents = [
            self.builtin_entity_parser.parse(
                get_text_from_chunks(u[DATA]),
                self.builtin_entity_scope,
                use_cache=True
            ) for u in x
        ]
        custom_ents = [
            self.custom_entity_parser.parse(
                get_text_from_chunks(u[DATA]), use_cache=True)
            for u in x
        ]
        return x, builtin_ents, custom_ents

    def _extract_word_pairs(self, utterance):
        if self.config.filter_stop_words:
            stop_words = get_stop_words(self.resources)
            utterance = [t for t in utterance if t not in stop_words]
        pairs = set()
        for j, w1 in enumerate(utterance):
            max_index = None
            if self.config.window_size is not None:
                max_index = j + self.config.window_size + 1
            for w2 in utterance[j + 1:max_index]:
                key = (w1, w2)
                if not self.config.keep_order:
                    key = tuple(sorted(key))
                pairs.add(key)
        return pairs
    
    def _enrich_utterance(self, x, builtin_ents, custom_ents):
        utterance = get_text_from_chunks(x[DATA])
        all_entities = builtin_ents + custom_ents
        placeholder_fn = self._placeholder_fn
        # Replace entities with placeholders
        enriched_utterance = replace_entities_with_placeholders(
            utterance, all_entities, placeholder_fn)[1]
        # Tokenize
        enriched_utterance = tokenize_light(enriched_utterance, self.language)
        # Remove the unknownword strings if needed
        if self.config.unknown_words_replacement_string:
            enriched_utterance = [
                t for t in enriched_utterance
                if t != self.config.unknown_words_replacement_string
            ]
        return enriched_utterance

    def _extract_word_pairs(self, utterance):
        if self.config.filter_stop_words:
            stop_words = get_stop_words(self.resources)
            utterance = [t for t in utterance if t not in stop_words]
        pairs = set()
        for j, w1 in enumerate(utterance):
            max_index = None
            if self.config.window_size is not None:
                max_index = j + self.config.window_size + 1
            for w2 in utterance[j + 1:max_index]:
                key = (w1, w2)
                if not self.config.keep_order:
                    key = tuple(sorted(key))
                pairs.add(key)
        return pairs

    def _placeholder_fn(self, entity_name):
        return "".join(
            tokenize_light(str(entity_name), str(self.language))).upper()

    @classmethod
    # pylint: disable=protected-access
    def from_path(cls, path, **shared):
        path = Path(path)
        model_path = path / "vectorizer.json"
        if not model_path.exists():
            raise LoadingError("Missing vectorizer model file: %s"
                               % model_path.name)

        with model_path.open(encoding="utf8") as f:
            vectorizer_dict = json.load(f)
        config = vectorizer_dict.pop("config")

        self = cls(config, **shared)
        self._language = vectorizer_dict["language_code"]
        self._word_pairs = None

        builtin_entity_scope = vectorizer_dict["builtin_entity_scope"]
        if builtin_entity_scope is not None:
            builtin_entity_scope = set(builtin_entity_scope)
        self.builtin_entity_scope = builtin_entity_scope

        if vectorizer_dict["word_pairs"]:
            self._word_pairs = {
                tuple(p): int(i)
                for i, p in iteritems(vectorizer_dict["word_pairs"])
            }
        return self

def _entity_name_to_feature(entity_name, language):
    return "entityfeature%s" % "".join(tokenize_light(
        entity_name.lower(), language))


def _builtin_entity_to_feature(builtin_entity_label, language):
    return "builtinentityfeature%s" % "".join(tokenize_light(
        builtin_entity_label.lower(), language))


def _normalize_stem(text, language, resources, use_stemming):
    from snips_nlu_utils import normalize

    if use_stemming:
        return stem(text, language, resources)
    return normalize(text)


def _get_word_cluster_features(query_tokens, clusters_name, resources):
    if not clusters_name:
        return []
    ngrams = get_all_ngrams(query_tokens)
    cluster_features = []
    for ngram in ngrams:
        cluster = get_word_cluster(resources, clusters_name).get(
            ngram[NGRAM].lower(), None)
        if cluster is not None:
            cluster_features.append(cluster)
    return cluster_features