aboutsummaryrefslogtreecommitdiffstats
path: root/accel/tcg/cputlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'accel/tcg/cputlb.c')
-rw-r--r--accel/tcg/cputlb.c2619
1 files changed, 2619 insertions, 0 deletions
diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c
new file mode 100644
index 000000000..b69a95344
--- /dev/null
+++ b/accel/tcg/cputlb.c
@@ -0,0 +1,2619 @@
+/*
+ * Common CPU TLB handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/main-loop.h"
+#include "hw/core/tcg-cpu-ops.h"
+#include "exec/exec-all.h"
+#include "exec/memory.h"
+#include "exec/cpu_ldst.h"
+#include "exec/cputlb.h"
+#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+#include "tcg/tcg.h"
+#include "qemu/error-report.h"
+#include "exec/log.h"
+#include "exec/helper-proto.h"
+#include "qemu/atomic.h"
+#include "qemu/atomic128.h"
+#include "exec/translate-all.h"
+#include "trace/trace-root.h"
+#include "tb-hash.h"
+#include "internal.h"
+#ifdef CONFIG_PLUGIN
+#include "qemu/plugin-memory.h"
+#endif
+#include "tcg/tcg-ldst.h"
+
+/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
+/* #define DEBUG_TLB */
+/* #define DEBUG_TLB_LOG */
+
+#ifdef DEBUG_TLB
+# define DEBUG_TLB_GATE 1
+# ifdef DEBUG_TLB_LOG
+# define DEBUG_TLB_LOG_GATE 1
+# else
+# define DEBUG_TLB_LOG_GATE 0
+# endif
+#else
+# define DEBUG_TLB_GATE 0
+# define DEBUG_TLB_LOG_GATE 0
+#endif
+
+#define tlb_debug(fmt, ...) do { \
+ if (DEBUG_TLB_LOG_GATE) { \
+ qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
+ ## __VA_ARGS__); \
+ } else if (DEBUG_TLB_GATE) { \
+ fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
+ } \
+} while (0)
+
+#define assert_cpu_is_self(cpu) do { \
+ if (DEBUG_TLB_GATE) { \
+ g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
+ } \
+ } while (0)
+
+/* run_on_cpu_data.target_ptr should always be big enough for a
+ * target_ulong even on 32 bit builds */
+QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
+
+/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
+ */
+QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
+#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
+
+static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
+{
+ return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
+}
+
+static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
+{
+ return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
+}
+
+static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
+ size_t max_entries)
+{
+ desc->window_begin_ns = ns;
+ desc->window_max_entries = max_entries;
+}
+
+static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
+{
+ unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
+
+ for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
+ qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
+ }
+}
+
+static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
+{
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
+ tb_jmp_cache_clear_page(cpu, addr);
+}
+
+/**
+ * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
+ * @desc: The CPUTLBDesc portion of the TLB
+ * @fast: The CPUTLBDescFast portion of the same TLB
+ *
+ * Called with tlb_lock_held.
+ *
+ * We have two main constraints when resizing a TLB: (1) we only resize it
+ * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
+ * the array or unnecessarily flushing it), which means we do not control how
+ * frequently the resizing can occur; (2) we don't have access to the guest's
+ * future scheduling decisions, and therefore have to decide the magnitude of
+ * the resize based on past observations.
+ *
+ * In general, a memory-hungry process can benefit greatly from an appropriately
+ * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
+ * we just have to make the TLB as large as possible; while an oversized TLB
+ * results in minimal TLB miss rates, it also takes longer to be flushed
+ * (flushes can be _very_ frequent), and the reduced locality can also hurt
+ * performance.
+ *
+ * To achieve near-optimal performance for all kinds of workloads, we:
+ *
+ * 1. Aggressively increase the size of the TLB when the use rate of the
+ * TLB being flushed is high, since it is likely that in the near future this
+ * memory-hungry process will execute again, and its memory hungriness will
+ * probably be similar.
+ *
+ * 2. Slowly reduce the size of the TLB as the use rate declines over a
+ * reasonably large time window. The rationale is that if in such a time window
+ * we have not observed a high TLB use rate, it is likely that we won't observe
+ * it in the near future. In that case, once a time window expires we downsize
+ * the TLB to match the maximum use rate observed in the window.
+ *
+ * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
+ * since in that range performance is likely near-optimal. Recall that the TLB
+ * is direct mapped, so we want the use rate to be low (or at least not too
+ * high), since otherwise we are likely to have a significant amount of
+ * conflict misses.
+ */
+static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
+ int64_t now)
+{
+ size_t old_size = tlb_n_entries(fast);
+ size_t rate;
+ size_t new_size = old_size;
+ int64_t window_len_ms = 100;
+ int64_t window_len_ns = window_len_ms * 1000 * 1000;
+ bool window_expired = now > desc->window_begin_ns + window_len_ns;
+
+ if (desc->n_used_entries > desc->window_max_entries) {
+ desc->window_max_entries = desc->n_used_entries;
+ }
+ rate = desc->window_max_entries * 100 / old_size;
+
+ if (rate > 70) {
+ new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
+ } else if (rate < 30 && window_expired) {
+ size_t ceil = pow2ceil(desc->window_max_entries);
+ size_t expected_rate = desc->window_max_entries * 100 / ceil;
+
+ /*
+ * Avoid undersizing when the max number of entries seen is just below
+ * a pow2. For instance, if max_entries == 1025, the expected use rate
+ * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
+ * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
+ * later. Thus, make sure that the expected use rate remains below 70%.
+ * (and since we double the size, that means the lowest rate we'd
+ * expect to get is 35%, which is still in the 30-70% range where
+ * we consider that the size is appropriate.)
+ */
+ if (expected_rate > 70) {
+ ceil *= 2;
+ }
+ new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
+ }
+
+ if (new_size == old_size) {
+ if (window_expired) {
+ tlb_window_reset(desc, now, desc->n_used_entries);
+ }
+ return;
+ }
+
+ g_free(fast->table);
+ g_free(desc->iotlb);
+
+ tlb_window_reset(desc, now, 0);
+ /* desc->n_used_entries is cleared by the caller */
+ fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
+ fast->table = g_try_new(CPUTLBEntry, new_size);
+ desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
+
+ /*
+ * If the allocations fail, try smaller sizes. We just freed some
+ * memory, so going back to half of new_size has a good chance of working.
+ * Increased memory pressure elsewhere in the system might cause the
+ * allocations to fail though, so we progressively reduce the allocation
+ * size, aborting if we cannot even allocate the smallest TLB we support.
+ */
+ while (fast->table == NULL || desc->iotlb == NULL) {
+ if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
+ error_report("%s: %s", __func__, strerror(errno));
+ abort();
+ }
+ new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
+ fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
+
+ g_free(fast->table);
+ g_free(desc->iotlb);
+ fast->table = g_try_new(CPUTLBEntry, new_size);
+ desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
+ }
+}
+
+static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
+{
+ desc->n_used_entries = 0;
+ desc->large_page_addr = -1;
+ desc->large_page_mask = -1;
+ desc->vindex = 0;
+ memset(fast->table, -1, sizeof_tlb(fast));
+ memset(desc->vtable, -1, sizeof(desc->vtable));
+}
+
+static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
+ int64_t now)
+{
+ CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
+ CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
+
+ tlb_mmu_resize_locked(desc, fast, now);
+ tlb_mmu_flush_locked(desc, fast);
+}
+
+static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
+{
+ size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
+
+ tlb_window_reset(desc, now, 0);
+ desc->n_used_entries = 0;
+ fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
+ fast->table = g_new(CPUTLBEntry, n_entries);
+ desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
+ tlb_mmu_flush_locked(desc, fast);
+}
+
+static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
+{
+ env_tlb(env)->d[mmu_idx].n_used_entries++;
+}
+
+static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
+{
+ env_tlb(env)->d[mmu_idx].n_used_entries--;
+}
+
+void tlb_init(CPUState *cpu)
+{
+ CPUArchState *env = cpu->env_ptr;
+ int64_t now = get_clock_realtime();
+ int i;
+
+ qemu_spin_init(&env_tlb(env)->c.lock);
+
+ /* All tlbs are initialized flushed. */
+ env_tlb(env)->c.dirty = 0;
+
+ for (i = 0; i < NB_MMU_MODES; i++) {
+ tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
+ }
+}
+
+void tlb_destroy(CPUState *cpu)
+{
+ CPUArchState *env = cpu->env_ptr;
+ int i;
+
+ qemu_spin_destroy(&env_tlb(env)->c.lock);
+ for (i = 0; i < NB_MMU_MODES; i++) {
+ CPUTLBDesc *desc = &env_tlb(env)->d[i];
+ CPUTLBDescFast *fast = &env_tlb(env)->f[i];
+
+ g_free(fast->table);
+ g_free(desc->iotlb);
+ }
+}
+
+/* flush_all_helper: run fn across all cpus
+ *
+ * If the wait flag is set then the src cpu's helper will be queued as
+ * "safe" work and the loop exited creating a synchronisation point
+ * where all queued work will be finished before execution starts
+ * again.
+ */
+static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
+ run_on_cpu_data d)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (cpu != src) {
+ async_run_on_cpu(cpu, fn, d);
+ }
+ }
+}
+
+void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
+{
+ CPUState *cpu;
+ size_t full = 0, part = 0, elide = 0;
+
+ CPU_FOREACH(cpu) {
+ CPUArchState *env = cpu->env_ptr;
+
+ full += qatomic_read(&env_tlb(env)->c.full_flush_count);
+ part += qatomic_read(&env_tlb(env)->c.part_flush_count);
+ elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
+ }
+ *pfull = full;
+ *ppart = part;
+ *pelide = elide;
+}
+
+static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
+{
+ CPUArchState *env = cpu->env_ptr;
+ uint16_t asked = data.host_int;
+ uint16_t all_dirty, work, to_clean;
+ int64_t now = get_clock_realtime();
+
+ assert_cpu_is_self(cpu);
+
+ tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
+
+ qemu_spin_lock(&env_tlb(env)->c.lock);
+
+ all_dirty = env_tlb(env)->c.dirty;
+ to_clean = asked & all_dirty;
+ all_dirty &= ~to_clean;
+ env_tlb(env)->c.dirty = all_dirty;
+
+ for (work = to_clean; work != 0; work &= work - 1) {
+ int mmu_idx = ctz32(work);
+ tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
+ }
+
+ qemu_spin_unlock(&env_tlb(env)->c.lock);
+
+ cpu_tb_jmp_cache_clear(cpu);
+
+ if (to_clean == ALL_MMUIDX_BITS) {
+ qatomic_set(&env_tlb(env)->c.full_flush_count,
+ env_tlb(env)->c.full_flush_count + 1);
+ } else {
+ qatomic_set(&env_tlb(env)->c.part_flush_count,
+ env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
+ if (to_clean != asked) {
+ qatomic_set(&env_tlb(env)->c.elide_flush_count,
+ env_tlb(env)->c.elide_flush_count +
+ ctpop16(asked & ~to_clean));
+ }
+ }
+}
+
+void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
+{
+ tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
+
+ if (cpu->created && !qemu_cpu_is_self(cpu)) {
+ async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
+ RUN_ON_CPU_HOST_INT(idxmap));
+ } else {
+ tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
+ }
+}
+
+void tlb_flush(CPUState *cpu)
+{
+ tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
+}
+
+void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
+{
+ const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
+
+ tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
+
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
+ fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
+}
+
+void tlb_flush_all_cpus(CPUState *src_cpu)
+{
+ tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
+}
+
+void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
+{
+ const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
+
+ tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
+
+ flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
+ async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
+}
+
+void tlb_flush_all_cpus_synced(CPUState *src_cpu)
+{
+ tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
+}
+
+static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
+ target_ulong page, target_ulong mask)
+{
+ page &= mask;
+ mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
+
+ return (page == (tlb_entry->addr_read & mask) ||
+ page == (tlb_addr_write(tlb_entry) & mask) ||
+ page == (tlb_entry->addr_code & mask));
+}
+
+static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
+ target_ulong page)
+{
+ return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
+}
+
+/**
+ * tlb_entry_is_empty - return true if the entry is not in use
+ * @te: pointer to CPUTLBEntry
+ */
+static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
+{
+ return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
+}
+
+/* Called with tlb_c.lock held */
+static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
+ target_ulong page,
+ target_ulong mask)
+{
+ if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
+ memset(tlb_entry, -1, sizeof(*tlb_entry));
+ return true;
+ }
+ return false;
+}
+
+static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
+ target_ulong page)
+{
+ return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
+}
+
+/* Called with tlb_c.lock held */
+static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
+ target_ulong page,
+ target_ulong mask)
+{
+ CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
+ int k;
+
+ assert_cpu_is_self(env_cpu(env));
+ for (k = 0; k < CPU_VTLB_SIZE; k++) {
+ if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
+ tlb_n_used_entries_dec(env, mmu_idx);
+ }
+ }
+}
+
+static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
+ target_ulong page)
+{
+ tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
+}
+
+static void tlb_flush_page_locked(CPUArchState *env, int midx,
+ target_ulong page)
+{
+ target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
+ target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
+
+ /* Check if we need to flush due to large pages. */
+ if ((page & lp_mask) == lp_addr) {
+ tlb_debug("forcing full flush midx %d ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+ midx, lp_addr, lp_mask);
+ tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
+ } else {
+ if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
+ tlb_n_used_entries_dec(env, midx);
+ }
+ tlb_flush_vtlb_page_locked(env, midx, page);
+ }
+}
+
+/**
+ * tlb_flush_page_by_mmuidx_async_0:
+ * @cpu: cpu on which to flush
+ * @addr: page of virtual address to flush
+ * @idxmap: set of mmu_idx to flush
+ *
+ * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
+ * at @addr from the tlbs indicated by @idxmap from @cpu.
+ */
+static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
+ target_ulong addr,
+ uint16_t idxmap)
+{
+ CPUArchState *env = cpu->env_ptr;
+ int mmu_idx;
+
+ assert_cpu_is_self(cpu);
+
+ tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
+
+ qemu_spin_lock(&env_tlb(env)->c.lock);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ if ((idxmap >> mmu_idx) & 1) {
+ tlb_flush_page_locked(env, mmu_idx, addr);
+ }
+ }
+ qemu_spin_unlock(&env_tlb(env)->c.lock);
+
+ tb_flush_jmp_cache(cpu, addr);
+}
+
+/**
+ * tlb_flush_page_by_mmuidx_async_1:
+ * @cpu: cpu on which to flush
+ * @data: encoded addr + idxmap
+ *
+ * Helper for tlb_flush_page_by_mmuidx and friends, called through
+ * async_run_on_cpu. The idxmap parameter is encoded in the page
+ * offset of the target_ptr field. This limits the set of mmu_idx
+ * that can be passed via this method.
+ */
+static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
+ run_on_cpu_data data)
+{
+ target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
+ target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
+ uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
+
+ tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
+}
+
+typedef struct {
+ target_ulong addr;
+ uint16_t idxmap;
+} TLBFlushPageByMMUIdxData;
+
+/**
+ * tlb_flush_page_by_mmuidx_async_2:
+ * @cpu: cpu on which to flush
+ * @data: allocated addr + idxmap
+ *
+ * Helper for tlb_flush_page_by_mmuidx and friends, called through
+ * async_run_on_cpu. The addr+idxmap parameters are stored in a
+ * TLBFlushPageByMMUIdxData structure that has been allocated
+ * specifically for this helper. Free the structure when done.
+ */
+static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
+ run_on_cpu_data data)
+{
+ TLBFlushPageByMMUIdxData *d = data.host_ptr;
+
+ tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
+ g_free(d);
+}
+
+void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
+{
+ tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
+
+ /* This should already be page aligned */
+ addr &= TARGET_PAGE_MASK;
+
+ if (qemu_cpu_is_self(cpu)) {
+ tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
+ } else if (idxmap < TARGET_PAGE_SIZE) {
+ /*
+ * Most targets have only a few mmu_idx. In the case where
+ * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
+ * allocating memory for this operation.
+ */
+ async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
+ RUN_ON_CPU_TARGET_PTR(addr | idxmap));
+ } else {
+ TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
+
+ /* Otherwise allocate a structure, freed by the worker. */
+ d->addr = addr;
+ d->idxmap = idxmap;
+ async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
+ RUN_ON_CPU_HOST_PTR(d));
+ }
+}
+
+void tlb_flush_page(CPUState *cpu, target_ulong addr)
+{
+ tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
+}
+
+void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
+ uint16_t idxmap)
+{
+ tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
+
+ /* This should already be page aligned */
+ addr &= TARGET_PAGE_MASK;
+
+ /*
+ * Allocate memory to hold addr+idxmap only when needed.
+ * See tlb_flush_page_by_mmuidx for details.
+ */
+ if (idxmap < TARGET_PAGE_SIZE) {
+ flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
+ RUN_ON_CPU_TARGET_PTR(addr | idxmap));
+ } else {
+ CPUState *dst_cpu;
+
+ /* Allocate a separate data block for each destination cpu. */
+ CPU_FOREACH(dst_cpu) {
+ if (dst_cpu != src_cpu) {
+ TLBFlushPageByMMUIdxData *d
+ = g_new(TLBFlushPageByMMUIdxData, 1);
+
+ d->addr = addr;
+ d->idxmap = idxmap;
+ async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
+ RUN_ON_CPU_HOST_PTR(d));
+ }
+ }
+ }
+
+ tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
+}
+
+void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
+{
+ tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
+}
+
+void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
+ target_ulong addr,
+ uint16_t idxmap)
+{
+ tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
+
+ /* This should already be page aligned */
+ addr &= TARGET_PAGE_MASK;
+
+ /*
+ * Allocate memory to hold addr+idxmap only when needed.
+ * See tlb_flush_page_by_mmuidx for details.
+ */
+ if (idxmap < TARGET_PAGE_SIZE) {
+ flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
+ RUN_ON_CPU_TARGET_PTR(addr | idxmap));
+ async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
+ RUN_ON_CPU_TARGET_PTR(addr | idxmap));
+ } else {
+ CPUState *dst_cpu;
+ TLBFlushPageByMMUIdxData *d;
+
+ /* Allocate a separate data block for each destination cpu. */
+ CPU_FOREACH(dst_cpu) {
+ if (dst_cpu != src_cpu) {
+ d = g_new(TLBFlushPageByMMUIdxData, 1);
+ d->addr = addr;
+ d->idxmap = idxmap;
+ async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
+ RUN_ON_CPU_HOST_PTR(d));
+ }
+ }
+
+ d = g_new(TLBFlushPageByMMUIdxData, 1);
+ d->addr = addr;
+ d->idxmap = idxmap;
+ async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
+ RUN_ON_CPU_HOST_PTR(d));
+ }
+}
+
+void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
+{
+ tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
+}
+
+static void tlb_flush_range_locked(CPUArchState *env, int midx,
+ target_ulong addr, target_ulong len,
+ unsigned bits)
+{
+ CPUTLBDesc *d = &env_tlb(env)->d[midx];
+ CPUTLBDescFast *f = &env_tlb(env)->f[midx];
+ target_ulong mask = MAKE_64BIT_MASK(0, bits);
+
+ /*
+ * If @bits is smaller than the tlb size, there may be multiple entries
+ * within the TLB; otherwise all addresses that match under @mask hit
+ * the same TLB entry.
+ * TODO: Perhaps allow bits to be a few bits less than the size.
+ * For now, just flush the entire TLB.
+ *
+ * If @len is larger than the tlb size, then it will take longer to
+ * test all of the entries in the TLB than it will to flush it all.
+ */
+ if (mask < f->mask || len > f->mask) {
+ tlb_debug("forcing full flush midx %d ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
+ midx, addr, mask, len);
+ tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
+ return;
+ }
+
+ /*
+ * Check if we need to flush due to large pages.
+ * Because large_page_mask contains all 1's from the msb,
+ * we only need to test the end of the range.
+ */
+ if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
+ tlb_debug("forcing full flush midx %d ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+ midx, d->large_page_addr, d->large_page_mask);
+ tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
+ return;
+ }
+
+ for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
+ target_ulong page = addr + i;
+ CPUTLBEntry *entry = tlb_entry(env, midx, page);
+
+ if (tlb_flush_entry_mask_locked(entry, page, mask)) {
+ tlb_n_used_entries_dec(env, midx);
+ }
+ tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
+ }
+}
+
+typedef struct {
+ target_ulong addr;
+ target_ulong len;
+ uint16_t idxmap;
+ uint16_t bits;
+} TLBFlushRangeData;
+
+static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
+ TLBFlushRangeData d)
+{
+ CPUArchState *env = cpu->env_ptr;
+ int mmu_idx;
+
+ assert_cpu_is_self(cpu);
+
+ tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
+ d.addr, d.bits, d.len, d.idxmap);
+
+ qemu_spin_lock(&env_tlb(env)->c.lock);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ if ((d.idxmap >> mmu_idx) & 1) {
+ tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
+ }
+ }
+ qemu_spin_unlock(&env_tlb(env)->c.lock);
+
+ for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
+ tb_flush_jmp_cache(cpu, d.addr + i);
+ }
+}
+
+static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
+ run_on_cpu_data data)
+{
+ TLBFlushRangeData *d = data.host_ptr;
+ tlb_flush_range_by_mmuidx_async_0(cpu, *d);
+ g_free(d);
+}
+
+void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
+ target_ulong len, uint16_t idxmap,
+ unsigned bits)
+{
+ TLBFlushRangeData d;
+
+ /*
+ * If all bits are significant, and len is small,
+ * this devolves to tlb_flush_page.
+ */
+ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
+ tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
+ return;
+ }
+ /* If no page bits are significant, this devolves to tlb_flush. */
+ if (bits < TARGET_PAGE_BITS) {
+ tlb_flush_by_mmuidx(cpu, idxmap);
+ return;
+ }
+
+ /* This should already be page aligned */
+ d.addr = addr & TARGET_PAGE_MASK;
+ d.len = len;
+ d.idxmap = idxmap;
+ d.bits = bits;
+
+ if (qemu_cpu_is_self(cpu)) {
+ tlb_flush_range_by_mmuidx_async_0(cpu, d);
+ } else {
+ /* Otherwise allocate a structure, freed by the worker. */
+ TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
+ async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
+ RUN_ON_CPU_HOST_PTR(p));
+ }
+}
+
+void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
+ uint16_t idxmap, unsigned bits)
+{
+ tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
+}
+
+void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
+ target_ulong addr, target_ulong len,
+ uint16_t idxmap, unsigned bits)
+{
+ TLBFlushRangeData d;
+ CPUState *dst_cpu;
+
+ /*
+ * If all bits are significant, and len is small,
+ * this devolves to tlb_flush_page.
+ */
+ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
+ tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
+ return;
+ }
+ /* If no page bits are significant, this devolves to tlb_flush. */
+ if (bits < TARGET_PAGE_BITS) {
+ tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
+ return;
+ }
+
+ /* This should already be page aligned */
+ d.addr = addr & TARGET_PAGE_MASK;
+ d.len = len;
+ d.idxmap = idxmap;
+ d.bits = bits;
+
+ /* Allocate a separate data block for each destination cpu. */
+ CPU_FOREACH(dst_cpu) {
+ if (dst_cpu != src_cpu) {
+ TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
+ async_run_on_cpu(dst_cpu,
+ tlb_flush_range_by_mmuidx_async_1,
+ RUN_ON_CPU_HOST_PTR(p));
+ }
+ }
+
+ tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
+}
+
+void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
+ target_ulong addr,
+ uint16_t idxmap, unsigned bits)
+{
+ tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
+ idxmap, bits);
+}
+
+void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
+ target_ulong addr,
+ target_ulong len,
+ uint16_t idxmap,
+ unsigned bits)
+{
+ TLBFlushRangeData d, *p;
+ CPUState *dst_cpu;
+
+ /*
+ * If all bits are significant, and len is small,
+ * this devolves to tlb_flush_page.
+ */
+ if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
+ tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
+ return;
+ }
+ /* If no page bits are significant, this devolves to tlb_flush. */
+ if (bits < TARGET_PAGE_BITS) {
+ tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
+ return;
+ }
+
+ /* This should already be page aligned */
+ d.addr = addr & TARGET_PAGE_MASK;
+ d.len = len;
+ d.idxmap = idxmap;
+ d.bits = bits;
+
+ /* Allocate a separate data block for each destination cpu. */
+ CPU_FOREACH(dst_cpu) {
+ if (dst_cpu != src_cpu) {
+ p = g_memdup(&d, sizeof(d));
+ async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
+ RUN_ON_CPU_HOST_PTR(p));
+ }
+ }
+
+ p = g_memdup(&d, sizeof(d));
+ async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
+ RUN_ON_CPU_HOST_PTR(p));
+}
+
+void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
+ target_ulong addr,
+ uint16_t idxmap,
+ unsigned bits)
+{
+ tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
+ idxmap, bits);
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+ can be detected */
+void tlb_protect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
+ DIRTY_MEMORY_CODE);
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+ tested for self modifying code */
+void tlb_unprotect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
+}
+
+
+/*
+ * Dirty write flag handling
+ *
+ * When the TCG code writes to a location it looks up the address in
+ * the TLB and uses that data to compute the final address. If any of
+ * the lower bits of the address are set then the slow path is forced.
+ * There are a number of reasons to do this but for normal RAM the
+ * most usual is detecting writes to code regions which may invalidate
+ * generated code.
+ *
+ * Other vCPUs might be reading their TLBs during guest execution, so we update
+ * te->addr_write with qatomic_set. We don't need to worry about this for
+ * oversized guests as MTTCG is disabled for them.
+ *
+ * Called with tlb_c.lock held.
+ */
+static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
+ uintptr_t start, uintptr_t length)
+{
+ uintptr_t addr = tlb_entry->addr_write;
+
+ if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
+ TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
+ addr &= TARGET_PAGE_MASK;
+ addr += tlb_entry->addend;
+ if ((addr - start) < length) {
+#if TCG_OVERSIZED_GUEST
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
+#else
+ qatomic_set(&tlb_entry->addr_write,
+ tlb_entry->addr_write | TLB_NOTDIRTY);
+#endif
+ }
+ }
+}
+
+/*
+ * Called with tlb_c.lock held.
+ * Called only from the vCPU context, i.e. the TLB's owner thread.
+ */
+static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
+{
+ *d = *s;
+}
+
+/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
+ * the target vCPU).
+ * We must take tlb_c.lock to avoid racing with another vCPU update. The only
+ * thing actually updated is the target TLB entry ->addr_write flags.
+ */
+void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
+{
+ CPUArchState *env;
+
+ int mmu_idx;
+
+ env = cpu->env_ptr;
+ qemu_spin_lock(&env_tlb(env)->c.lock);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ unsigned int i;
+ unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
+
+ for (i = 0; i < n; i++) {
+ tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
+ start1, length);
+ }
+
+ for (i = 0; i < CPU_VTLB_SIZE; i++) {
+ tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
+ start1, length);
+ }
+ }
+ qemu_spin_unlock(&env_tlb(env)->c.lock);
+}
+
+/* Called with tlb_c.lock held */
+static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
+ target_ulong vaddr)
+{
+ if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
+ tlb_entry->addr_write = vaddr;
+ }
+}
+
+/* update the TLB corresponding to virtual page vaddr
+ so that it is no longer dirty */
+void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
+{
+ CPUArchState *env = cpu->env_ptr;
+ int mmu_idx;
+
+ assert_cpu_is_self(cpu);
+
+ vaddr &= TARGET_PAGE_MASK;
+ qemu_spin_lock(&env_tlb(env)->c.lock);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
+ }
+
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ int k;
+ for (k = 0; k < CPU_VTLB_SIZE; k++) {
+ tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
+ }
+ }
+ qemu_spin_unlock(&env_tlb(env)->c.lock);
+}
+
+/* Our TLB does not support large pages, so remember the area covered by
+ large pages and trigger a full TLB flush if these are invalidated. */
+static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
+ target_ulong vaddr, target_ulong size)
+{
+ target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
+ target_ulong lp_mask = ~(size - 1);
+
+ if (lp_addr == (target_ulong)-1) {
+ /* No previous large page. */
+ lp_addr = vaddr;
+ } else {
+ /* Extend the existing region to include the new page.
+ This is a compromise between unnecessary flushes and
+ the cost of maintaining a full variable size TLB. */
+ lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
+ while (((lp_addr ^ vaddr) & lp_mask) != 0) {
+ lp_mask <<= 1;
+ }
+ }
+ env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
+ env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
+}
+
+/* Add a new TLB entry. At most one entry for a given virtual address
+ * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
+ * supplied size is only used by tlb_flush_page.
+ *
+ * Called from TCG-generated code, which is under an RCU read-side
+ * critical section.
+ */
+void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
+ hwaddr paddr, MemTxAttrs attrs, int prot,
+ int mmu_idx, target_ulong size)
+{
+ CPUArchState *env = cpu->env_ptr;
+ CPUTLB *tlb = env_tlb(env);
+ CPUTLBDesc *desc = &tlb->d[mmu_idx];
+ MemoryRegionSection *section;
+ unsigned int index;
+ target_ulong address;
+ target_ulong write_address;
+ uintptr_t addend;
+ CPUTLBEntry *te, tn;
+ hwaddr iotlb, xlat, sz, paddr_page;
+ target_ulong vaddr_page;
+ int asidx = cpu_asidx_from_attrs(cpu, attrs);
+ int wp_flags;
+ bool is_ram, is_romd;
+
+ assert_cpu_is_self(cpu);
+
+ if (size <= TARGET_PAGE_SIZE) {
+ sz = TARGET_PAGE_SIZE;
+ } else {
+ tlb_add_large_page(env, mmu_idx, vaddr, size);
+ sz = size;
+ }
+ vaddr_page = vaddr & TARGET_PAGE_MASK;
+ paddr_page = paddr & TARGET_PAGE_MASK;
+
+ section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
+ &xlat, &sz, attrs, &prot);
+ assert(sz >= TARGET_PAGE_SIZE);
+
+ tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
+ " prot=%x idx=%d\n",
+ vaddr, paddr, prot, mmu_idx);
+
+ address = vaddr_page;
+ if (size < TARGET_PAGE_SIZE) {
+ /* Repeat the MMU check and TLB fill on every access. */
+ address |= TLB_INVALID_MASK;
+ }
+ if (attrs.byte_swap) {
+ address |= TLB_BSWAP;
+ }
+
+ is_ram = memory_region_is_ram(section->mr);
+ is_romd = memory_region_is_romd(section->mr);
+
+ if (is_ram || is_romd) {
+ /* RAM and ROMD both have associated host memory. */
+ addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
+ } else {
+ /* I/O does not; force the host address to NULL. */
+ addend = 0;
+ }
+
+ write_address = address;
+ if (is_ram) {
+ iotlb = memory_region_get_ram_addr(section->mr) + xlat;
+ /*
+ * Computing is_clean is expensive; avoid all that unless
+ * the page is actually writable.
+ */
+ if (prot & PAGE_WRITE) {
+ if (section->readonly) {
+ write_address |= TLB_DISCARD_WRITE;
+ } else if (cpu_physical_memory_is_clean(iotlb)) {
+ write_address |= TLB_NOTDIRTY;
+ }
+ }
+ } else {
+ /* I/O or ROMD */
+ iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
+ /*
+ * Writes to romd devices must go through MMIO to enable write.
+ * Reads to romd devices go through the ram_ptr found above,
+ * but of course reads to I/O must go through MMIO.
+ */
+ write_address |= TLB_MMIO;
+ if (!is_romd) {
+ address = write_address;
+ }
+ }
+
+ wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
+ TARGET_PAGE_SIZE);
+
+ index = tlb_index(env, mmu_idx, vaddr_page);
+ te = tlb_entry(env, mmu_idx, vaddr_page);
+
+ /*
+ * Hold the TLB lock for the rest of the function. We could acquire/release
+ * the lock several times in the function, but it is faster to amortize the
+ * acquisition cost by acquiring it just once. Note that this leads to
+ * a longer critical section, but this is not a concern since the TLB lock
+ * is unlikely to be contended.
+ */
+ qemu_spin_lock(&tlb->c.lock);
+
+ /* Note that the tlb is no longer clean. */
+ tlb->c.dirty |= 1 << mmu_idx;
+
+ /* Make sure there's no cached translation for the new page. */
+ tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
+
+ /*
+ * Only evict the old entry to the victim tlb if it's for a
+ * different page; otherwise just overwrite the stale data.
+ */
+ if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
+ unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
+ CPUTLBEntry *tv = &desc->vtable[vidx];
+
+ /* Evict the old entry into the victim tlb. */
+ copy_tlb_helper_locked(tv, te);
+ desc->viotlb[vidx] = desc->iotlb[index];
+ tlb_n_used_entries_dec(env, mmu_idx);
+ }
+
+ /* refill the tlb */
+ /*
+ * At this point iotlb contains a physical section number in the lower
+ * TARGET_PAGE_BITS, and either
+ * + the ram_addr_t of the page base of the target RAM (RAM)
+ * + the offset within section->mr of the page base (I/O, ROMD)
+ * We subtract the vaddr_page (which is page aligned and thus won't
+ * disturb the low bits) to give an offset which can be added to the
+ * (non-page-aligned) vaddr of the eventual memory access to get
+ * the MemoryRegion offset for the access. Note that the vaddr we
+ * subtract here is that of the page base, and not the same as the
+ * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
+ */
+ desc->iotlb[index].addr = iotlb - vaddr_page;
+ desc->iotlb[index].attrs = attrs;
+
+ /* Now calculate the new entry */
+ tn.addend = addend - vaddr_page;
+ if (prot & PAGE_READ) {
+ tn.addr_read = address;
+ if (wp_flags & BP_MEM_READ) {
+ tn.addr_read |= TLB_WATCHPOINT;
+ }
+ } else {
+ tn.addr_read = -1;
+ }
+
+ if (prot & PAGE_EXEC) {
+ tn.addr_code = address;
+ } else {
+ tn.addr_code = -1;
+ }
+
+ tn.addr_write = -1;
+ if (prot & PAGE_WRITE) {
+ tn.addr_write = write_address;
+ if (prot & PAGE_WRITE_INV) {
+ tn.addr_write |= TLB_INVALID_MASK;
+ }
+ if (wp_flags & BP_MEM_WRITE) {
+ tn.addr_write |= TLB_WATCHPOINT;
+ }
+ }
+
+ copy_tlb_helper_locked(te, &tn);
+ tlb_n_used_entries_inc(env, mmu_idx);
+ qemu_spin_unlock(&tlb->c.lock);
+}
+
+/* Add a new TLB entry, but without specifying the memory
+ * transaction attributes to be used.
+ */
+void tlb_set_page(CPUState *cpu, target_ulong vaddr,
+ hwaddr paddr, int prot,
+ int mmu_idx, target_ulong size)
+{
+ tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
+ prot, mmu_idx, size);
+}
+
+static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
+{
+ ram_addr_t ram_addr;
+
+ ram_addr = qemu_ram_addr_from_host(ptr);
+ if (ram_addr == RAM_ADDR_INVALID) {
+ error_report("Bad ram pointer %p", ptr);
+ abort();
+ }
+ return ram_addr;
+}
+
+/*
+ * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
+ * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
+ * be discarded and looked up again (e.g. via tlb_entry()).
+ */
+static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
+ MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ bool ok;
+
+ /*
+ * This is not a probe, so only valid return is success; failure
+ * should result in exception + longjmp to the cpu loop.
+ */
+ ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
+ access_type, mmu_idx, false, retaddr);
+ assert(ok);
+}
+
+static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
+ MMUAccessType access_type,
+ int mmu_idx, uintptr_t retaddr)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+
+ cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
+}
+
+static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
+ vaddr addr, unsigned size,
+ MMUAccessType access_type,
+ int mmu_idx, MemTxAttrs attrs,
+ MemTxResult response,
+ uintptr_t retaddr)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+
+ if (!cpu->ignore_memory_transaction_failures &&
+ cc->tcg_ops->do_transaction_failed) {
+ cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
+ access_type, mmu_idx, attrs,
+ response, retaddr);
+ }
+}
+
+static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
+ int mmu_idx, target_ulong addr, uintptr_t retaddr,
+ MMUAccessType access_type, MemOp op)
+{
+ CPUState *cpu = env_cpu(env);
+ hwaddr mr_offset;
+ MemoryRegionSection *section;
+ MemoryRegion *mr;
+ uint64_t val;
+ bool locked = false;
+ MemTxResult r;
+
+ section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
+ mr = section->mr;
+ mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
+ cpu->mem_io_pc = retaddr;
+ if (!cpu->can_do_io) {
+ cpu_io_recompile(cpu, retaddr);
+ }
+
+ if (!qemu_mutex_iothread_locked()) {
+ qemu_mutex_lock_iothread();
+ locked = true;
+ }
+ r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
+ if (r != MEMTX_OK) {
+ hwaddr physaddr = mr_offset +
+ section->offset_within_address_space -
+ section->offset_within_region;
+
+ cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
+ mmu_idx, iotlbentry->attrs, r, retaddr);
+ }
+ if (locked) {
+ qemu_mutex_unlock_iothread();
+ }
+
+ return val;
+}
+
+/*
+ * Save a potentially trashed IOTLB entry for later lookup by plugin.
+ * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
+ * because of the side effect of io_writex changing memory layout.
+ */
+static void save_iotlb_data(CPUState *cs, hwaddr addr,
+ MemoryRegionSection *section, hwaddr mr_offset)
+{
+#ifdef CONFIG_PLUGIN
+ SavedIOTLB *saved = &cs->saved_iotlb;
+ saved->addr = addr;
+ saved->section = section;
+ saved->mr_offset = mr_offset;
+#endif
+}
+
+static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
+ int mmu_idx, uint64_t val, target_ulong addr,
+ uintptr_t retaddr, MemOp op)
+{
+ CPUState *cpu = env_cpu(env);
+ hwaddr mr_offset;
+ MemoryRegionSection *section;
+ MemoryRegion *mr;
+ bool locked = false;
+ MemTxResult r;
+
+ section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
+ mr = section->mr;
+ mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
+ if (!cpu->can_do_io) {
+ cpu_io_recompile(cpu, retaddr);
+ }
+ cpu->mem_io_pc = retaddr;
+
+ /*
+ * The memory_region_dispatch may trigger a flush/resize
+ * so for plugins we save the iotlb_data just in case.
+ */
+ save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
+
+ if (!qemu_mutex_iothread_locked()) {
+ qemu_mutex_lock_iothread();
+ locked = true;
+ }
+ r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
+ if (r != MEMTX_OK) {
+ hwaddr physaddr = mr_offset +
+ section->offset_within_address_space -
+ section->offset_within_region;
+
+ cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
+ MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
+ retaddr);
+ }
+ if (locked) {
+ qemu_mutex_unlock_iothread();
+ }
+}
+
+static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
+{
+#if TCG_OVERSIZED_GUEST
+ return *(target_ulong *)((uintptr_t)entry + ofs);
+#else
+ /* ofs might correspond to .addr_write, so use qatomic_read */
+ return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
+#endif
+}
+
+/* Return true if ADDR is present in the victim tlb, and has been copied
+ back to the main tlb. */
+static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
+ size_t elt_ofs, target_ulong page)
+{
+ size_t vidx;
+
+ assert_cpu_is_self(env_cpu(env));
+ for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
+ CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
+ target_ulong cmp;
+
+ /* elt_ofs might correspond to .addr_write, so use qatomic_read */
+#if TCG_OVERSIZED_GUEST
+ cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
+#else
+ cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
+#endif
+
+ if (cmp == page) {
+ /* Found entry in victim tlb, swap tlb and iotlb. */
+ CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
+
+ qemu_spin_lock(&env_tlb(env)->c.lock);
+ copy_tlb_helper_locked(&tmptlb, tlb);
+ copy_tlb_helper_locked(tlb, vtlb);
+ copy_tlb_helper_locked(vtlb, &tmptlb);
+ qemu_spin_unlock(&env_tlb(env)->c.lock);
+
+ CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
+ CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
+ tmpio = *io; *io = *vio; *vio = tmpio;
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Macro to call the above, with local variables from the use context. */
+#define VICTIM_TLB_HIT(TY, ADDR) \
+ victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
+ (ADDR) & TARGET_PAGE_MASK)
+
+/*
+ * Return a ram_addr_t for the virtual address for execution.
+ *
+ * Return -1 if we can't translate and execute from an entire page
+ * of RAM. This will force us to execute by loading and translating
+ * one insn at a time, without caching.
+ *
+ * NOTE: This function will trigger an exception if the page is
+ * not executable.
+ */
+tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
+ void **hostp)
+{
+ uintptr_t mmu_idx = cpu_mmu_index(env, true);
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
+ void *p;
+
+ if (unlikely(!tlb_hit(entry->addr_code, addr))) {
+ if (!VICTIM_TLB_HIT(addr_code, addr)) {
+ tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+
+ if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
+ /*
+ * The MMU protection covers a smaller range than a target
+ * page, so we must redo the MMU check for every insn.
+ */
+ return -1;
+ }
+ }
+ assert(tlb_hit(entry->addr_code, addr));
+ }
+
+ if (unlikely(entry->addr_code & TLB_MMIO)) {
+ /* The region is not backed by RAM. */
+ if (hostp) {
+ *hostp = NULL;
+ }
+ return -1;
+ }
+
+ p = (void *)((uintptr_t)addr + entry->addend);
+ if (hostp) {
+ *hostp = p;
+ }
+ return qemu_ram_addr_from_host_nofail(p);
+}
+
+tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
+{
+ return get_page_addr_code_hostp(env, addr, NULL);
+}
+
+static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
+ CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
+{
+ ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
+
+ trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
+
+ if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
+ struct page_collection *pages
+ = page_collection_lock(ram_addr, ram_addr + size);
+ tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
+ page_collection_unlock(pages);
+ }
+
+ /*
+ * Set both VGA and migration bits for simplicity and to remove
+ * the notdirty callback faster.
+ */
+ cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
+
+ /* We remove the notdirty callback only if the code has been flushed. */
+ if (!cpu_physical_memory_is_clean(ram_addr)) {
+ trace_memory_notdirty_set_dirty(mem_vaddr);
+ tlb_set_dirty(cpu, mem_vaddr);
+ }
+}
+
+static int probe_access_internal(CPUArchState *env, target_ulong addr,
+ int fault_size, MMUAccessType access_type,
+ int mmu_idx, bool nonfault,
+ void **phost, uintptr_t retaddr)
+{
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
+ target_ulong tlb_addr, page_addr;
+ size_t elt_ofs;
+ int flags;
+
+ switch (access_type) {
+ case MMU_DATA_LOAD:
+ elt_ofs = offsetof(CPUTLBEntry, addr_read);
+ break;
+ case MMU_DATA_STORE:
+ elt_ofs = offsetof(CPUTLBEntry, addr_write);
+ break;
+ case MMU_INST_FETCH:
+ elt_ofs = offsetof(CPUTLBEntry, addr_code);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tlb_addr = tlb_read_ofs(entry, elt_ofs);
+
+ page_addr = addr & TARGET_PAGE_MASK;
+ if (!tlb_hit_page(tlb_addr, page_addr)) {
+ if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
+ CPUState *cs = env_cpu(env);
+ CPUClass *cc = CPU_GET_CLASS(cs);
+
+ if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
+ mmu_idx, nonfault, retaddr)) {
+ /* Non-faulting page table read failed. */
+ *phost = NULL;
+ return TLB_INVALID_MASK;
+ }
+
+ /* TLB resize via tlb_fill may have moved the entry. */
+ entry = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = tlb_read_ofs(entry, elt_ofs);
+ }
+ flags = tlb_addr & TLB_FLAGS_MASK;
+
+ /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
+ if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
+ *phost = NULL;
+ return TLB_MMIO;
+ }
+
+ /* Everything else is RAM. */
+ *phost = (void *)((uintptr_t)addr + entry->addend);
+ return flags;
+}
+
+int probe_access_flags(CPUArchState *env, target_ulong addr,
+ MMUAccessType access_type, int mmu_idx,
+ bool nonfault, void **phost, uintptr_t retaddr)
+{
+ int flags;
+
+ flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
+ nonfault, phost, retaddr);
+
+ /* Handle clean RAM pages. */
+ if (unlikely(flags & TLB_NOTDIRTY)) {
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
+
+ notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
+ flags &= ~TLB_NOTDIRTY;
+ }
+
+ return flags;
+}
+
+void *probe_access(CPUArchState *env, target_ulong addr, int size,
+ MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
+{
+ void *host;
+ int flags;
+
+ g_assert(-(addr | TARGET_PAGE_MASK) >= size);
+
+ flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
+ false, &host, retaddr);
+
+ /* Per the interface, size == 0 merely faults the access. */
+ if (size == 0) {
+ return NULL;
+ }
+
+ if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
+
+ /* Handle watchpoints. */
+ if (flags & TLB_WATCHPOINT) {
+ int wp_access = (access_type == MMU_DATA_STORE
+ ? BP_MEM_WRITE : BP_MEM_READ);
+ cpu_check_watchpoint(env_cpu(env), addr, size,
+ iotlbentry->attrs, wp_access, retaddr);
+ }
+
+ /* Handle clean RAM pages. */
+ if (flags & TLB_NOTDIRTY) {
+ notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
+ }
+ }
+
+ return host;
+}
+
+void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
+ MMUAccessType access_type, int mmu_idx)
+{
+ void *host;
+ int flags;
+
+ flags = probe_access_internal(env, addr, 0, access_type,
+ mmu_idx, true, &host, 0);
+
+ /* No combination of flags are expected by the caller. */
+ return flags ? NULL : host;
+}
+
+#ifdef CONFIG_PLUGIN
+/*
+ * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
+ * This should be a hot path as we will have just looked this path up
+ * in the softmmu lookup code (or helper). We don't handle re-fills or
+ * checking the victim table. This is purely informational.
+ *
+ * This almost never fails as the memory access being instrumented
+ * should have just filled the TLB. The one corner case is io_writex
+ * which can cause TLB flushes and potential resizing of the TLBs
+ * losing the information we need. In those cases we need to recover
+ * data from a copy of the iotlbentry. As long as this always occurs
+ * from the same thread (which a mem callback will be) this is safe.
+ */
+
+bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
+ bool is_store, struct qemu_plugin_hwaddr *data)
+{
+ CPUArchState *env = cpu->env_ptr;
+ CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
+
+ if (likely(tlb_hit(tlb_addr, addr))) {
+ /* We must have an iotlb entry for MMIO */
+ if (tlb_addr & TLB_MMIO) {
+ CPUIOTLBEntry *iotlbentry;
+ iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
+ data->is_io = true;
+ data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
+ data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
+ } else {
+ data->is_io = false;
+ data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
+ }
+ return true;
+ } else {
+ SavedIOTLB *saved = &cpu->saved_iotlb;
+ data->is_io = true;
+ data->v.io.section = saved->section;
+ data->v.io.offset = saved->mr_offset;
+ return true;
+ }
+}
+
+#endif
+
+/*
+ * Probe for an atomic operation. Do not allow unaligned operations,
+ * or io operations to proceed. Return the host address.
+ *
+ * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
+ */
+static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, int size, int prot,
+ uintptr_t retaddr)
+{
+ size_t mmu_idx = get_mmuidx(oi);
+ MemOp mop = get_memop(oi);
+ int a_bits = get_alignment_bits(mop);
+ uintptr_t index;
+ CPUTLBEntry *tlbe;
+ target_ulong tlb_addr;
+ void *hostaddr;
+
+ /* Adjust the given return address. */
+ retaddr -= GETPC_ADJ;
+
+ /* Enforce guest required alignment. */
+ if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
+ /* ??? Maybe indicate atomic op to cpu_unaligned_access */
+ cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* Enforce qemu required alignment. */
+ if (unlikely(addr & (size - 1))) {
+ /* We get here if guest alignment was not requested,
+ or was not enforced by cpu_unaligned_access above.
+ We might widen the access and emulate, but for now
+ mark an exception and exit the cpu loop. */
+ goto stop_the_world;
+ }
+
+ index = tlb_index(env, mmu_idx, addr);
+ tlbe = tlb_entry(env, mmu_idx, addr);
+
+ /* Check TLB entry and enforce page permissions. */
+ if (prot & PAGE_WRITE) {
+ tlb_addr = tlb_addr_write(tlbe);
+ if (!tlb_hit(tlb_addr, addr)) {
+ if (!VICTIM_TLB_HIT(addr_write, addr)) {
+ tlb_fill(env_cpu(env), addr, size,
+ MMU_DATA_STORE, mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ tlbe = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
+ }
+
+ /* Let the guest notice RMW on a write-only page. */
+ if ((prot & PAGE_READ) &&
+ unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
+ tlb_fill(env_cpu(env), addr, size,
+ MMU_DATA_LOAD, mmu_idx, retaddr);
+ /*
+ * Since we don't support reads and writes to different addresses,
+ * and we do have the proper page loaded for write, this shouldn't
+ * ever return. But just in case, handle via stop-the-world.
+ */
+ goto stop_the_world;
+ }
+ } else /* if (prot & PAGE_READ) */ {
+ tlb_addr = tlbe->addr_read;
+ if (!tlb_hit(tlb_addr, addr)) {
+ if (!VICTIM_TLB_HIT(addr_write, addr)) {
+ tlb_fill(env_cpu(env), addr, size,
+ MMU_DATA_LOAD, mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ tlbe = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
+ }
+ }
+
+ /* Notice an IO access or a needs-MMU-lookup access */
+ if (unlikely(tlb_addr & TLB_MMIO)) {
+ /* There's really nothing that can be done to
+ support this apart from stop-the-world. */
+ goto stop_the_world;
+ }
+
+ hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
+
+ if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
+ notdirty_write(env_cpu(env), addr, size,
+ &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
+ }
+
+ return hostaddr;
+
+ stop_the_world:
+ cpu_loop_exit_atomic(env_cpu(env), retaddr);
+}
+
+/*
+ * Verify that we have passed the correct MemOp to the correct function.
+ *
+ * In the case of the helper_*_mmu functions, we will have done this by
+ * using the MemOp to look up the helper during code generation.
+ *
+ * In the case of the cpu_*_mmu functions, this is up to the caller.
+ * We could present one function to target code, and dispatch based on
+ * the MemOp, but so far we have worked hard to avoid an indirect function
+ * call along the memory path.
+ */
+static void validate_memop(MemOpIdx oi, MemOp expected)
+{
+#ifdef CONFIG_DEBUG_TCG
+ MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
+ assert(have == expected);
+#endif
+}
+
+/*
+ * Load Helpers
+ *
+ * We support two different access types. SOFTMMU_CODE_ACCESS is
+ * specifically for reading instructions from system memory. It is
+ * called by the translation loop and in some helpers where the code
+ * is disassembled. It shouldn't be called directly by guest code.
+ */
+
+typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr);
+
+static inline uint64_t QEMU_ALWAYS_INLINE
+load_memop(const void *haddr, MemOp op)
+{
+ switch (op) {
+ case MO_UB:
+ return ldub_p(haddr);
+ case MO_BEUW:
+ return lduw_be_p(haddr);
+ case MO_LEUW:
+ return lduw_le_p(haddr);
+ case MO_BEUL:
+ return (uint32_t)ldl_be_p(haddr);
+ case MO_LEUL:
+ return (uint32_t)ldl_le_p(haddr);
+ case MO_BEQ:
+ return ldq_be_p(haddr);
+ case MO_LEQ:
+ return ldq_le_p(haddr);
+ default:
+ qemu_build_not_reached();
+ }
+}
+
+static inline uint64_t QEMU_ALWAYS_INLINE
+load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
+ uintptr_t retaddr, MemOp op, bool code_read,
+ FullLoadHelper *full_load)
+{
+ uintptr_t mmu_idx = get_mmuidx(oi);
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
+ target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
+ const size_t tlb_off = code_read ?
+ offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
+ const MMUAccessType access_type =
+ code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ void *haddr;
+ uint64_t res;
+ size_t size = memop_size(op);
+
+ /* Handle CPU specific unaligned behaviour */
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(env_cpu(env), addr, access_type,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if (!tlb_hit(tlb_addr, addr)) {
+ if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
+ addr & TARGET_PAGE_MASK)) {
+ tlb_fill(env_cpu(env), addr, size,
+ access_type, mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = code_read ? entry->addr_code : entry->addr_read;
+ tlb_addr &= ~TLB_INVALID_MASK;
+ }
+
+ /* Handle anything that isn't just a straight memory access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ CPUIOTLBEntry *iotlbentry;
+ bool need_swap;
+
+ /* For anything that is unaligned, recurse through full_load. */
+ if ((addr & (size - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
+
+ /* Handle watchpoints. */
+ if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
+ /* On watchpoint hit, this will longjmp out. */
+ cpu_check_watchpoint(env_cpu(env), addr, size,
+ iotlbentry->attrs, BP_MEM_READ, retaddr);
+ }
+
+ need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
+
+ /* Handle I/O access. */
+ if (likely(tlb_addr & TLB_MMIO)) {
+ return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
+ access_type, op ^ (need_swap * MO_BSWAP));
+ }
+
+ haddr = (void *)((uintptr_t)addr + entry->addend);
+
+ /*
+ * Keep these two load_memop separate to ensure that the compiler
+ * is able to fold the entire function to a single instruction.
+ * There is a build-time assert inside to remind you of this. ;-)
+ */
+ if (unlikely(need_swap)) {
+ return load_memop(haddr, op ^ MO_BSWAP);
+ }
+ return load_memop(haddr, op);
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (size > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
+ >= TARGET_PAGE_SIZE)) {
+ target_ulong addr1, addr2;
+ uint64_t r1, r2;
+ unsigned shift;
+ do_unaligned_access:
+ addr1 = addr & ~((target_ulong)size - 1);
+ addr2 = addr1 + size;
+ r1 = full_load(env, addr1, oi, retaddr);
+ r2 = full_load(env, addr2, oi, retaddr);
+ shift = (addr & (size - 1)) * 8;
+
+ if (memop_big_endian(op)) {
+ /* Big-endian combine. */
+ res = (r1 << shift) | (r2 >> ((size * 8) - shift));
+ } else {
+ /* Little-endian combine. */
+ res = (r1 >> shift) | (r2 << ((size * 8) - shift));
+ }
+ return res & MAKE_64BIT_MASK(0, size * 8);
+ }
+
+ haddr = (void *)((uintptr_t)addr + entry->addend);
+ return load_memop(haddr, op);
+}
+
+/*
+ * For the benefit of TCG generated code, we want to avoid the
+ * complication of ABI-specific return type promotion and always
+ * return a value extended to the register size of the host. This is
+ * tcg_target_long, except in the case of a 32-bit host and 64-bit
+ * data, and for that we always have uint64_t.
+ *
+ * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
+ */
+
+static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_UB);
+ return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
+}
+
+tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return full_ldub_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_LEUW);
+ return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
+ full_le_lduw_mmu);
+}
+
+tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return full_le_lduw_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_BEUW);
+ return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
+ full_be_lduw_mmu);
+}
+
+tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return full_be_lduw_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_LEUL);
+ return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
+ full_le_ldul_mmu);
+}
+
+tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return full_le_ldul_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_BEUL);
+ return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
+ full_be_ldul_mmu);
+}
+
+tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return full_be_ldul_mmu(env, addr, oi, retaddr);
+}
+
+uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_LEQ);
+ return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
+ helper_le_ldq_mmu);
+}
+
+uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_BEQ);
+ return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
+ helper_be_ldq_mmu);
+}
+
+/*
+ * Provide signed versions of the load routines as well. We can of course
+ * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
+ */
+
+
+tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
+}
+
+/*
+ * Load helpers for cpu_ldst.h.
+ */
+
+static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t retaddr,
+ FullLoadHelper *full_load)
+{
+ uint64_t ret;
+
+ trace_guest_ld_before_exec(env_cpu(env), addr, oi);
+ ret = full_load(env, addr, oi, retaddr);
+ qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
+ return ret;
+}
+
+uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
+}
+
+uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
+}
+
+uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
+}
+
+uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, MO_BEQ, helper_be_ldq_mmu);
+}
+
+uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
+}
+
+uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
+}
+
+uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
+ MemOpIdx oi, uintptr_t ra)
+{
+ return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
+}
+
+/*
+ * Store Helpers
+ */
+
+static inline void QEMU_ALWAYS_INLINE
+store_memop(void *haddr, uint64_t val, MemOp op)
+{
+ switch (op) {
+ case MO_UB:
+ stb_p(haddr, val);
+ break;
+ case MO_BEUW:
+ stw_be_p(haddr, val);
+ break;
+ case MO_LEUW:
+ stw_le_p(haddr, val);
+ break;
+ case MO_BEUL:
+ stl_be_p(haddr, val);
+ break;
+ case MO_LEUL:
+ stl_le_p(haddr, val);
+ break;
+ case MO_BEQ:
+ stq_be_p(haddr, val);
+ break;
+ case MO_LEQ:
+ stq_le_p(haddr, val);
+ break;
+ default:
+ qemu_build_not_reached();
+ }
+}
+
+static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr);
+
+static void __attribute__((noinline))
+store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
+ uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
+ bool big_endian)
+{
+ const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
+ uintptr_t index, index2;
+ CPUTLBEntry *entry, *entry2;
+ target_ulong page2, tlb_addr, tlb_addr2;
+ MemOpIdx oi;
+ size_t size2;
+ int i;
+
+ /*
+ * Ensure the second page is in the TLB. Note that the first page
+ * is already guaranteed to be filled, and that the second page
+ * cannot evict the first.
+ */
+ page2 = (addr + size) & TARGET_PAGE_MASK;
+ size2 = (addr + size) & ~TARGET_PAGE_MASK;
+ index2 = tlb_index(env, mmu_idx, page2);
+ entry2 = tlb_entry(env, mmu_idx, page2);
+
+ tlb_addr2 = tlb_addr_write(entry2);
+ if (!tlb_hit_page(tlb_addr2, page2)) {
+ if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
+ tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ index2 = tlb_index(env, mmu_idx, page2);
+ entry2 = tlb_entry(env, mmu_idx, page2);
+ }
+ tlb_addr2 = tlb_addr_write(entry2);
+ }
+
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+ tlb_addr = tlb_addr_write(entry);
+
+ /*
+ * Handle watchpoints. Since this may trap, all checks
+ * must happen before any store.
+ */
+ if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
+ cpu_check_watchpoint(env_cpu(env), addr, size - size2,
+ env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
+ BP_MEM_WRITE, retaddr);
+ }
+ if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
+ cpu_check_watchpoint(env_cpu(env), page2, size2,
+ env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
+ BP_MEM_WRITE, retaddr);
+ }
+
+ /*
+ * XXX: not efficient, but simple.
+ * This loop must go in the forward direction to avoid issues
+ * with self-modifying code in Windows 64-bit.
+ */
+ oi = make_memop_idx(MO_UB, mmu_idx);
+ if (big_endian) {
+ for (i = 0; i < size; ++i) {
+ /* Big-endian extract. */
+ uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
+ full_stb_mmu(env, addr + i, val8, oi, retaddr);
+ }
+ } else {
+ for (i = 0; i < size; ++i) {
+ /* Little-endian extract. */
+ uint8_t val8 = val >> (i * 8);
+ full_stb_mmu(env, addr + i, val8, oi, retaddr);
+ }
+ }
+}
+
+static inline void QEMU_ALWAYS_INLINE
+store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr, MemOp op)
+{
+ uintptr_t mmu_idx = get_mmuidx(oi);
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
+ target_ulong tlb_addr = tlb_addr_write(entry);
+ const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ void *haddr;
+ size_t size = memop_size(op);
+
+ /* Handle CPU specific unaligned behaviour */
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if (!tlb_hit(tlb_addr, addr)) {
+ if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
+ addr & TARGET_PAGE_MASK)) {
+ tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
+ }
+
+ /* Handle anything that isn't just a straight memory access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ CPUIOTLBEntry *iotlbentry;
+ bool need_swap;
+
+ /* For anything that is unaligned, recurse through byte stores. */
+ if ((addr & (size - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
+
+ /* Handle watchpoints. */
+ if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
+ /* On watchpoint hit, this will longjmp out. */
+ cpu_check_watchpoint(env_cpu(env), addr, size,
+ iotlbentry->attrs, BP_MEM_WRITE, retaddr);
+ }
+
+ need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
+
+ /* Handle I/O access. */
+ if (tlb_addr & TLB_MMIO) {
+ io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
+ op ^ (need_swap * MO_BSWAP));
+ return;
+ }
+
+ /* Ignore writes to ROM. */
+ if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
+ return;
+ }
+
+ /* Handle clean RAM pages. */
+ if (tlb_addr & TLB_NOTDIRTY) {
+ notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
+ }
+
+ haddr = (void *)((uintptr_t)addr + entry->addend);
+
+ /*
+ * Keep these two store_memop separate to ensure that the compiler
+ * is able to fold the entire function to a single instruction.
+ * There is a build-time assert inside to remind you of this. ;-)
+ */
+ if (unlikely(need_swap)) {
+ store_memop(haddr, val, op ^ MO_BSWAP);
+ } else {
+ store_memop(haddr, val, op);
+ }
+ return;
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (size > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
+ >= TARGET_PAGE_SIZE)) {
+ do_unaligned_access:
+ store_helper_unaligned(env, addr, val, retaddr, size,
+ mmu_idx, memop_big_endian(op));
+ return;
+ }
+
+ haddr = (void *)((uintptr_t)addr + entry->addend);
+ store_memop(haddr, val, op);
+}
+
+static void __attribute__((noinline))
+full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_UB);
+ store_helper(env, addr, val, oi, retaddr, MO_UB);
+}
+
+void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ full_stb_mmu(env, addr, val, oi, retaddr);
+}
+
+static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_LEUW);
+ store_helper(env, addr, val, oi, retaddr, MO_LEUW);
+}
+
+void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ full_le_stw_mmu(env, addr, val, oi, retaddr);
+}
+
+static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_BEUW);
+ store_helper(env, addr, val, oi, retaddr, MO_BEUW);
+}
+
+void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ full_be_stw_mmu(env, addr, val, oi, retaddr);
+}
+
+static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_LEUL);
+ store_helper(env, addr, val, oi, retaddr, MO_LEUL);
+}
+
+void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ full_le_stl_mmu(env, addr, val, oi, retaddr);
+}
+
+static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_BEUL);
+ store_helper(env, addr, val, oi, retaddr, MO_BEUL);
+}
+
+void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ full_be_stl_mmu(env, addr, val, oi, retaddr);
+}
+
+void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_LEQ);
+ store_helper(env, addr, val, oi, retaddr, MO_LEQ);
+}
+
+void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ validate_memop(oi, MO_BEQ);
+ store_helper(env, addr, val, oi, retaddr, MO_BEQ);
+}
+
+/*
+ * Store Helpers for cpu_ldst.h
+ */
+
+typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
+ uint64_t val, MemOpIdx oi, uintptr_t retaddr);
+
+static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
+ uint64_t val, MemOpIdx oi, uintptr_t ra,
+ FullStoreHelper *full_store)
+{
+ trace_guest_st_before_exec(env_cpu(env), addr, oi);
+ full_store(env, addr, val, oi, ra);
+ qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
+}
+
+void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
+}
+
+void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
+}
+
+void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
+}
+
+void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
+}
+
+void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
+}
+
+void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
+}
+
+void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
+}
+
+#include "ldst_common.c.inc"
+
+/*
+ * First set of functions passes in OI and RETADDR.
+ * This makes them callable from other helpers.
+ */
+
+#define ATOMIC_NAME(X) \
+ glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
+
+#define ATOMIC_MMU_CLEANUP
+#define ATOMIC_MMU_IDX get_mmuidx(oi)
+
+#include "atomic_common.c.inc"
+
+#define DATA_SIZE 1
+#include "atomic_template.h"
+
+#define DATA_SIZE 2
+#include "atomic_template.h"
+
+#define DATA_SIZE 4
+#include "atomic_template.h"
+
+#ifdef CONFIG_ATOMIC64
+#define DATA_SIZE 8
+#include "atomic_template.h"
+#endif
+
+#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
+#define DATA_SIZE 16
+#include "atomic_template.h"
+#endif
+
+/* Code access functions. */
+
+static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
+}
+
+uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
+{
+ MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
+ return full_ldub_code(env, addr, oi, 0);
+}
+
+static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
+}
+
+uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
+{
+ MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
+ return full_lduw_code(env, addr, oi, 0);
+}
+
+static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
+}
+
+uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
+{
+ MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
+ return full_ldl_code(env, addr, oi, 0);
+}
+
+static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
+ MemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
+}
+
+uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
+{
+ MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
+ return full_ldq_code(env, addr, oi, 0);
+}