diff options
Diffstat (limited to 'accel/tcg/cputlb.c')
-rw-r--r-- | accel/tcg/cputlb.c | 2619 |
1 files changed, 2619 insertions, 0 deletions
diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c new file mode 100644 index 000000000..b69a95344 --- /dev/null +++ b/accel/tcg/cputlb.c @@ -0,0 +1,2619 @@ +/* + * Common CPU TLB handling + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "qemu/main-loop.h" +#include "hw/core/tcg-cpu-ops.h" +#include "exec/exec-all.h" +#include "exec/memory.h" +#include "exec/cpu_ldst.h" +#include "exec/cputlb.h" +#include "exec/memory-internal.h" +#include "exec/ram_addr.h" +#include "tcg/tcg.h" +#include "qemu/error-report.h" +#include "exec/log.h" +#include "exec/helper-proto.h" +#include "qemu/atomic.h" +#include "qemu/atomic128.h" +#include "exec/translate-all.h" +#include "trace/trace-root.h" +#include "tb-hash.h" +#include "internal.h" +#ifdef CONFIG_PLUGIN +#include "qemu/plugin-memory.h" +#endif +#include "tcg/tcg-ldst.h" + +/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ +/* #define DEBUG_TLB */ +/* #define DEBUG_TLB_LOG */ + +#ifdef DEBUG_TLB +# define DEBUG_TLB_GATE 1 +# ifdef DEBUG_TLB_LOG +# define DEBUG_TLB_LOG_GATE 1 +# else +# define DEBUG_TLB_LOG_GATE 0 +# endif +#else +# define DEBUG_TLB_GATE 0 +# define DEBUG_TLB_LOG_GATE 0 +#endif + +#define tlb_debug(fmt, ...) do { \ + if (DEBUG_TLB_LOG_GATE) { \ + qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ + ## __VA_ARGS__); \ + } else if (DEBUG_TLB_GATE) { \ + fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ + } \ +} while (0) + +#define assert_cpu_is_self(cpu) do { \ + if (DEBUG_TLB_GATE) { \ + g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ + } \ + } while (0) + +/* run_on_cpu_data.target_ptr should always be big enough for a + * target_ulong even on 32 bit builds */ +QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); + +/* We currently can't handle more than 16 bits in the MMUIDX bitmask. + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); +#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) + +static inline size_t tlb_n_entries(CPUTLBDescFast *fast) +{ + return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; +} + +static inline size_t sizeof_tlb(CPUTLBDescFast *fast) +{ + return fast->mask + (1 << CPU_TLB_ENTRY_BITS); +} + +static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, + size_t max_entries) +{ + desc->window_begin_ns = ns; + desc->window_max_entries = max_entries; +} + +static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) +{ + unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); + + for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { + qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); + } +} + +static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) +{ + /* Discard jump cache entries for any tb which might potentially + overlap the flushed page. */ + tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); + tb_jmp_cache_clear_page(cpu, addr); +} + +/** + * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary + * @desc: The CPUTLBDesc portion of the TLB + * @fast: The CPUTLBDescFast portion of the same TLB + * + * Called with tlb_lock_held. + * + * We have two main constraints when resizing a TLB: (1) we only resize it + * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing + * the array or unnecessarily flushing it), which means we do not control how + * frequently the resizing can occur; (2) we don't have access to the guest's + * future scheduling decisions, and therefore have to decide the magnitude of + * the resize based on past observations. + * + * In general, a memory-hungry process can benefit greatly from an appropriately + * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that + * we just have to make the TLB as large as possible; while an oversized TLB + * results in minimal TLB miss rates, it also takes longer to be flushed + * (flushes can be _very_ frequent), and the reduced locality can also hurt + * performance. + * + * To achieve near-optimal performance for all kinds of workloads, we: + * + * 1. Aggressively increase the size of the TLB when the use rate of the + * TLB being flushed is high, since it is likely that in the near future this + * memory-hungry process will execute again, and its memory hungriness will + * probably be similar. + * + * 2. Slowly reduce the size of the TLB as the use rate declines over a + * reasonably large time window. The rationale is that if in such a time window + * we have not observed a high TLB use rate, it is likely that we won't observe + * it in the near future. In that case, once a time window expires we downsize + * the TLB to match the maximum use rate observed in the window. + * + * 3. Try to keep the maximum use rate in a time window in the 30-70% range, + * since in that range performance is likely near-optimal. Recall that the TLB + * is direct mapped, so we want the use rate to be low (or at least not too + * high), since otherwise we are likely to have a significant amount of + * conflict misses. + */ +static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, + int64_t now) +{ + size_t old_size = tlb_n_entries(fast); + size_t rate; + size_t new_size = old_size; + int64_t window_len_ms = 100; + int64_t window_len_ns = window_len_ms * 1000 * 1000; + bool window_expired = now > desc->window_begin_ns + window_len_ns; + + if (desc->n_used_entries > desc->window_max_entries) { + desc->window_max_entries = desc->n_used_entries; + } + rate = desc->window_max_entries * 100 / old_size; + + if (rate > 70) { + new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); + } else if (rate < 30 && window_expired) { + size_t ceil = pow2ceil(desc->window_max_entries); + size_t expected_rate = desc->window_max_entries * 100 / ceil; + + /* + * Avoid undersizing when the max number of entries seen is just below + * a pow2. For instance, if max_entries == 1025, the expected use rate + * would be 1025/2048==50%. However, if max_entries == 1023, we'd get + * 1023/1024==99.9% use rate, so we'd likely end up doubling the size + * later. Thus, make sure that the expected use rate remains below 70%. + * (and since we double the size, that means the lowest rate we'd + * expect to get is 35%, which is still in the 30-70% range where + * we consider that the size is appropriate.) + */ + if (expected_rate > 70) { + ceil *= 2; + } + new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); + } + + if (new_size == old_size) { + if (window_expired) { + tlb_window_reset(desc, now, desc->n_used_entries); + } + return; + } + + g_free(fast->table); + g_free(desc->iotlb); + + tlb_window_reset(desc, now, 0); + /* desc->n_used_entries is cleared by the caller */ + fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; + fast->table = g_try_new(CPUTLBEntry, new_size); + desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); + + /* + * If the allocations fail, try smaller sizes. We just freed some + * memory, so going back to half of new_size has a good chance of working. + * Increased memory pressure elsewhere in the system might cause the + * allocations to fail though, so we progressively reduce the allocation + * size, aborting if we cannot even allocate the smallest TLB we support. + */ + while (fast->table == NULL || desc->iotlb == NULL) { + if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { + error_report("%s: %s", __func__, strerror(errno)); + abort(); + } + new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); + fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; + + g_free(fast->table); + g_free(desc->iotlb); + fast->table = g_try_new(CPUTLBEntry, new_size); + desc->iotlb = g_try_new(CPUIOTLBEntry, new_size); + } +} + +static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) +{ + desc->n_used_entries = 0; + desc->large_page_addr = -1; + desc->large_page_mask = -1; + desc->vindex = 0; + memset(fast->table, -1, sizeof_tlb(fast)); + memset(desc->vtable, -1, sizeof(desc->vtable)); +} + +static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, + int64_t now) +{ + CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; + CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; + + tlb_mmu_resize_locked(desc, fast, now); + tlb_mmu_flush_locked(desc, fast); +} + +static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) +{ + size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; + + tlb_window_reset(desc, now, 0); + desc->n_used_entries = 0; + fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; + fast->table = g_new(CPUTLBEntry, n_entries); + desc->iotlb = g_new(CPUIOTLBEntry, n_entries); + tlb_mmu_flush_locked(desc, fast); +} + +static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) +{ + env_tlb(env)->d[mmu_idx].n_used_entries++; +} + +static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) +{ + env_tlb(env)->d[mmu_idx].n_used_entries--; +} + +void tlb_init(CPUState *cpu) +{ + CPUArchState *env = cpu->env_ptr; + int64_t now = get_clock_realtime(); + int i; + + qemu_spin_init(&env_tlb(env)->c.lock); + + /* All tlbs are initialized flushed. */ + env_tlb(env)->c.dirty = 0; + + for (i = 0; i < NB_MMU_MODES; i++) { + tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); + } +} + +void tlb_destroy(CPUState *cpu) +{ + CPUArchState *env = cpu->env_ptr; + int i; + + qemu_spin_destroy(&env_tlb(env)->c.lock); + for (i = 0; i < NB_MMU_MODES; i++) { + CPUTLBDesc *desc = &env_tlb(env)->d[i]; + CPUTLBDescFast *fast = &env_tlb(env)->f[i]; + + g_free(fast->table); + g_free(desc->iotlb); + } +} + +/* flush_all_helper: run fn across all cpus + * + * If the wait flag is set then the src cpu's helper will be queued as + * "safe" work and the loop exited creating a synchronisation point + * where all queued work will be finished before execution starts + * again. + */ +static void flush_all_helper(CPUState *src, run_on_cpu_func fn, + run_on_cpu_data d) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + if (cpu != src) { + async_run_on_cpu(cpu, fn, d); + } + } +} + +void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) +{ + CPUState *cpu; + size_t full = 0, part = 0, elide = 0; + + CPU_FOREACH(cpu) { + CPUArchState *env = cpu->env_ptr; + + full += qatomic_read(&env_tlb(env)->c.full_flush_count); + part += qatomic_read(&env_tlb(env)->c.part_flush_count); + elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); + } + *pfull = full; + *ppart = part; + *pelide = elide; +} + +static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + uint16_t asked = data.host_int; + uint16_t all_dirty, work, to_clean; + int64_t now = get_clock_realtime(); + + assert_cpu_is_self(cpu); + + tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); + + qemu_spin_lock(&env_tlb(env)->c.lock); + + all_dirty = env_tlb(env)->c.dirty; + to_clean = asked & all_dirty; + all_dirty &= ~to_clean; + env_tlb(env)->c.dirty = all_dirty; + + for (work = to_clean; work != 0; work &= work - 1) { + int mmu_idx = ctz32(work); + tlb_flush_one_mmuidx_locked(env, mmu_idx, now); + } + + qemu_spin_unlock(&env_tlb(env)->c.lock); + + cpu_tb_jmp_cache_clear(cpu); + + if (to_clean == ALL_MMUIDX_BITS) { + qatomic_set(&env_tlb(env)->c.full_flush_count, + env_tlb(env)->c.full_flush_count + 1); + } else { + qatomic_set(&env_tlb(env)->c.part_flush_count, + env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); + if (to_clean != asked) { + qatomic_set(&env_tlb(env)->c.elide_flush_count, + env_tlb(env)->c.elide_flush_count + + ctpop16(asked & ~to_clean)); + } + } +} + +void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) +{ + tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); + + if (cpu->created && !qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, + RUN_ON_CPU_HOST_INT(idxmap)); + } else { + tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); + } +} + +void tlb_flush(CPUState *cpu) +{ + tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); +} + +void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); +} + +void tlb_flush_all_cpus(CPUState *src_cpu) +{ + tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); +} + +void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); +} + +void tlb_flush_all_cpus_synced(CPUState *src_cpu) +{ + tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); +} + +static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, + target_ulong page, target_ulong mask) +{ + page &= mask; + mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; + + return (page == (tlb_entry->addr_read & mask) || + page == (tlb_addr_write(tlb_entry) & mask) || + page == (tlb_entry->addr_code & mask)); +} + +static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, + target_ulong page) +{ + return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); +} + +/** + * tlb_entry_is_empty - return true if the entry is not in use + * @te: pointer to CPUTLBEntry + */ +static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) +{ + return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; +} + +/* Called with tlb_c.lock held */ +static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, + target_ulong page, + target_ulong mask) +{ + if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { + memset(tlb_entry, -1, sizeof(*tlb_entry)); + return true; + } + return false; +} + +static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, + target_ulong page) +{ + return tlb_flush_entry_mask_locked(tlb_entry, page, -1); +} + +/* Called with tlb_c.lock held */ +static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, + target_ulong page, + target_ulong mask) +{ + CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; + int k; + + assert_cpu_is_self(env_cpu(env)); + for (k = 0; k < CPU_VTLB_SIZE; k++) { + if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { + tlb_n_used_entries_dec(env, mmu_idx); + } + } +} + +static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, + target_ulong page) +{ + tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); +} + +static void tlb_flush_page_locked(CPUArchState *env, int midx, + target_ulong page) +{ + target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; + target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; + + /* Check if we need to flush due to large pages. */ + if ((page & lp_mask) == lp_addr) { + tlb_debug("forcing full flush midx %d (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + midx, lp_addr, lp_mask); + tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); + } else { + if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { + tlb_n_used_entries_dec(env, midx); + } + tlb_flush_vtlb_page_locked(env, midx, page); + } +} + +/** + * tlb_flush_page_by_mmuidx_async_0: + * @cpu: cpu on which to flush + * @addr: page of virtual address to flush + * @idxmap: set of mmu_idx to flush + * + * Helper for tlb_flush_page_by_mmuidx and friends, flush one page + * at @addr from the tlbs indicated by @idxmap from @cpu. + */ +static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, + target_ulong addr, + uint16_t idxmap) +{ + CPUArchState *env = cpu->env_ptr; + int mmu_idx; + + assert_cpu_is_self(cpu); + + tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); + + qemu_spin_lock(&env_tlb(env)->c.lock); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + if ((idxmap >> mmu_idx) & 1) { + tlb_flush_page_locked(env, mmu_idx, addr); + } + } + qemu_spin_unlock(&env_tlb(env)->c.lock); + + tb_flush_jmp_cache(cpu, addr); +} + +/** + * tlb_flush_page_by_mmuidx_async_1: + * @cpu: cpu on which to flush + * @data: encoded addr + idxmap + * + * Helper for tlb_flush_page_by_mmuidx and friends, called through + * async_run_on_cpu. The idxmap parameter is encoded in the page + * offset of the target_ptr field. This limits the set of mmu_idx + * that can be passed via this method. + */ +static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, + run_on_cpu_data data) +{ + target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; + uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; + + tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); +} + +typedef struct { + target_ulong addr; + uint16_t idxmap; +} TLBFlushPageByMMUIdxData; + +/** + * tlb_flush_page_by_mmuidx_async_2: + * @cpu: cpu on which to flush + * @data: allocated addr + idxmap + * + * Helper for tlb_flush_page_by_mmuidx and friends, called through + * async_run_on_cpu. The addr+idxmap parameters are stored in a + * TLBFlushPageByMMUIdxData structure that has been allocated + * specifically for this helper. Free the structure when done. + */ +static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, + run_on_cpu_data data) +{ + TLBFlushPageByMMUIdxData *d = data.host_ptr; + + tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); + g_free(d); +} + +void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) +{ + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); + + /* This should already be page aligned */ + addr &= TARGET_PAGE_MASK; + + if (qemu_cpu_is_self(cpu)) { + tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); + } else if (idxmap < TARGET_PAGE_SIZE) { + /* + * Most targets have only a few mmu_idx. In the case where + * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid + * allocating memory for this operation. + */ + async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, + RUN_ON_CPU_TARGET_PTR(addr | idxmap)); + } else { + TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); + + /* Otherwise allocate a structure, freed by the worker. */ + d->addr = addr; + d->idxmap = idxmap; + async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, + RUN_ON_CPU_HOST_PTR(d)); + } +} + +void tlb_flush_page(CPUState *cpu, target_ulong addr) +{ + tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); +} + +void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, + uint16_t idxmap) +{ + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr &= TARGET_PAGE_MASK; + + /* + * Allocate memory to hold addr+idxmap only when needed. + * See tlb_flush_page_by_mmuidx for details. + */ + if (idxmap < TARGET_PAGE_SIZE) { + flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, + RUN_ON_CPU_TARGET_PTR(addr | idxmap)); + } else { + CPUState *dst_cpu; + + /* Allocate a separate data block for each destination cpu. */ + CPU_FOREACH(dst_cpu) { + if (dst_cpu != src_cpu) { + TLBFlushPageByMMUIdxData *d + = g_new(TLBFlushPageByMMUIdxData, 1); + + d->addr = addr; + d->idxmap = idxmap; + async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, + RUN_ON_CPU_HOST_PTR(d)); + } + } + } + + tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); +} + +void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) +{ + tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); +} + +void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + target_ulong addr, + uint16_t idxmap) +{ + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr &= TARGET_PAGE_MASK; + + /* + * Allocate memory to hold addr+idxmap only when needed. + * See tlb_flush_page_by_mmuidx for details. + */ + if (idxmap < TARGET_PAGE_SIZE) { + flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, + RUN_ON_CPU_TARGET_PTR(addr | idxmap)); + async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, + RUN_ON_CPU_TARGET_PTR(addr | idxmap)); + } else { + CPUState *dst_cpu; + TLBFlushPageByMMUIdxData *d; + + /* Allocate a separate data block for each destination cpu. */ + CPU_FOREACH(dst_cpu) { + if (dst_cpu != src_cpu) { + d = g_new(TLBFlushPageByMMUIdxData, 1); + d->addr = addr; + d->idxmap = idxmap; + async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, + RUN_ON_CPU_HOST_PTR(d)); + } + } + + d = g_new(TLBFlushPageByMMUIdxData, 1); + d->addr = addr; + d->idxmap = idxmap; + async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, + RUN_ON_CPU_HOST_PTR(d)); + } +} + +void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) +{ + tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); +} + +static void tlb_flush_range_locked(CPUArchState *env, int midx, + target_ulong addr, target_ulong len, + unsigned bits) +{ + CPUTLBDesc *d = &env_tlb(env)->d[midx]; + CPUTLBDescFast *f = &env_tlb(env)->f[midx]; + target_ulong mask = MAKE_64BIT_MASK(0, bits); + + /* + * If @bits is smaller than the tlb size, there may be multiple entries + * within the TLB; otherwise all addresses that match under @mask hit + * the same TLB entry. + * TODO: Perhaps allow bits to be a few bits less than the size. + * For now, just flush the entire TLB. + * + * If @len is larger than the tlb size, then it will take longer to + * test all of the entries in the TLB than it will to flush it all. + */ + if (mask < f->mask || len > f->mask) { + tlb_debug("forcing full flush midx %d (" + TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", + midx, addr, mask, len); + tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); + return; + } + + /* + * Check if we need to flush due to large pages. + * Because large_page_mask contains all 1's from the msb, + * we only need to test the end of the range. + */ + if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { + tlb_debug("forcing full flush midx %d (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + midx, d->large_page_addr, d->large_page_mask); + tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); + return; + } + + for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { + target_ulong page = addr + i; + CPUTLBEntry *entry = tlb_entry(env, midx, page); + + if (tlb_flush_entry_mask_locked(entry, page, mask)) { + tlb_n_used_entries_dec(env, midx); + } + tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); + } +} + +typedef struct { + target_ulong addr; + target_ulong len; + uint16_t idxmap; + uint16_t bits; +} TLBFlushRangeData; + +static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, + TLBFlushRangeData d) +{ + CPUArchState *env = cpu->env_ptr; + int mmu_idx; + + assert_cpu_is_self(cpu); + + tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", + d.addr, d.bits, d.len, d.idxmap); + + qemu_spin_lock(&env_tlb(env)->c.lock); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + if ((d.idxmap >> mmu_idx) & 1) { + tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); + } + } + qemu_spin_unlock(&env_tlb(env)->c.lock); + + for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) { + tb_flush_jmp_cache(cpu, d.addr + i); + } +} + +static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, + run_on_cpu_data data) +{ + TLBFlushRangeData *d = data.host_ptr; + tlb_flush_range_by_mmuidx_async_0(cpu, *d); + g_free(d); +} + +void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, + target_ulong len, uint16_t idxmap, + unsigned bits) +{ + TLBFlushRangeData d; + + /* + * If all bits are significant, and len is small, + * this devolves to tlb_flush_page. + */ + if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { + tlb_flush_page_by_mmuidx(cpu, addr, idxmap); + return; + } + /* If no page bits are significant, this devolves to tlb_flush. */ + if (bits < TARGET_PAGE_BITS) { + tlb_flush_by_mmuidx(cpu, idxmap); + return; + } + + /* This should already be page aligned */ + d.addr = addr & TARGET_PAGE_MASK; + d.len = len; + d.idxmap = idxmap; + d.bits = bits; + + if (qemu_cpu_is_self(cpu)) { + tlb_flush_range_by_mmuidx_async_0(cpu, d); + } else { + /* Otherwise allocate a structure, freed by the worker. */ + TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); + async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, + RUN_ON_CPU_HOST_PTR(p)); + } +} + +void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, + uint16_t idxmap, unsigned bits) +{ + tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); +} + +void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, + target_ulong addr, target_ulong len, + uint16_t idxmap, unsigned bits) +{ + TLBFlushRangeData d; + CPUState *dst_cpu; + + /* + * If all bits are significant, and len is small, + * this devolves to tlb_flush_page. + */ + if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { + tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); + return; + } + /* If no page bits are significant, this devolves to tlb_flush. */ + if (bits < TARGET_PAGE_BITS) { + tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); + return; + } + + /* This should already be page aligned */ + d.addr = addr & TARGET_PAGE_MASK; + d.len = len; + d.idxmap = idxmap; + d.bits = bits; + + /* Allocate a separate data block for each destination cpu. */ + CPU_FOREACH(dst_cpu) { + if (dst_cpu != src_cpu) { + TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); + async_run_on_cpu(dst_cpu, + tlb_flush_range_by_mmuidx_async_1, + RUN_ON_CPU_HOST_PTR(p)); + } + } + + tlb_flush_range_by_mmuidx_async_0(src_cpu, d); +} + +void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, + target_ulong addr, + uint16_t idxmap, unsigned bits) +{ + tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, + idxmap, bits); +} + +void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + target_ulong addr, + target_ulong len, + uint16_t idxmap, + unsigned bits) +{ + TLBFlushRangeData d, *p; + CPUState *dst_cpu; + + /* + * If all bits are significant, and len is small, + * this devolves to tlb_flush_page. + */ + if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { + tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); + return; + } + /* If no page bits are significant, this devolves to tlb_flush. */ + if (bits < TARGET_PAGE_BITS) { + tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); + return; + } + + /* This should already be page aligned */ + d.addr = addr & TARGET_PAGE_MASK; + d.len = len; + d.idxmap = idxmap; + d.bits = bits; + + /* Allocate a separate data block for each destination cpu. */ + CPU_FOREACH(dst_cpu) { + if (dst_cpu != src_cpu) { + p = g_memdup(&d, sizeof(d)); + async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, + RUN_ON_CPU_HOST_PTR(p)); + } + } + + p = g_memdup(&d, sizeof(d)); + async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, + RUN_ON_CPU_HOST_PTR(p)); +} + +void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + target_ulong addr, + uint16_t idxmap, + unsigned bits) +{ + tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, + idxmap, bits); +} + +/* update the TLBs so that writes to code in the virtual page 'addr' + can be detected */ +void tlb_protect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, + DIRTY_MEMORY_CODE); +} + +/* update the TLB so that writes in physical page 'phys_addr' are no longer + tested for self modifying code */ +void tlb_unprotect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); +} + + +/* + * Dirty write flag handling + * + * When the TCG code writes to a location it looks up the address in + * the TLB and uses that data to compute the final address. If any of + * the lower bits of the address are set then the slow path is forced. + * There are a number of reasons to do this but for normal RAM the + * most usual is detecting writes to code regions which may invalidate + * generated code. + * + * Other vCPUs might be reading their TLBs during guest execution, so we update + * te->addr_write with qatomic_set. We don't need to worry about this for + * oversized guests as MTTCG is disabled for them. + * + * Called with tlb_c.lock held. + */ +static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, + uintptr_t start, uintptr_t length) +{ + uintptr_t addr = tlb_entry->addr_write; + + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | + TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += tlb_entry->addend; + if ((addr - start) < length) { +#if TCG_OVERSIZED_GUEST + tlb_entry->addr_write |= TLB_NOTDIRTY; +#else + qatomic_set(&tlb_entry->addr_write, + tlb_entry->addr_write | TLB_NOTDIRTY); +#endif + } + } +} + +/* + * Called with tlb_c.lock held. + * Called only from the vCPU context, i.e. the TLB's owner thread. + */ +static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) +{ + *d = *s; +} + +/* This is a cross vCPU call (i.e. another vCPU resetting the flags of + * the target vCPU). + * We must take tlb_c.lock to avoid racing with another vCPU update. The only + * thing actually updated is the target TLB entry ->addr_write flags. + */ +void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) +{ + CPUArchState *env; + + int mmu_idx; + + env = cpu->env_ptr; + qemu_spin_lock(&env_tlb(env)->c.lock); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + unsigned int i; + unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); + + for (i = 0; i < n; i++) { + tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], + start1, length); + } + + for (i = 0; i < CPU_VTLB_SIZE; i++) { + tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], + start1, length); + } + } + qemu_spin_unlock(&env_tlb(env)->c.lock); +} + +/* Called with tlb_c.lock held */ +static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, + target_ulong vaddr) +{ + if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { + tlb_entry->addr_write = vaddr; + } +} + +/* update the TLB corresponding to virtual page vaddr + so that it is no longer dirty */ +void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) +{ + CPUArchState *env = cpu->env_ptr; + int mmu_idx; + + assert_cpu_is_self(cpu); + + vaddr &= TARGET_PAGE_MASK; + qemu_spin_lock(&env_tlb(env)->c.lock); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); + } + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + int k; + for (k = 0; k < CPU_VTLB_SIZE; k++) { + tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); + } + } + qemu_spin_unlock(&env_tlb(env)->c.lock); +} + +/* Our TLB does not support large pages, so remember the area covered by + large pages and trigger a full TLB flush if these are invalidated. */ +static void tlb_add_large_page(CPUArchState *env, int mmu_idx, + target_ulong vaddr, target_ulong size) +{ + target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; + target_ulong lp_mask = ~(size - 1); + + if (lp_addr == (target_ulong)-1) { + /* No previous large page. */ + lp_addr = vaddr; + } else { + /* Extend the existing region to include the new page. + This is a compromise between unnecessary flushes and + the cost of maintaining a full variable size TLB. */ + lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; + while (((lp_addr ^ vaddr) & lp_mask) != 0) { + lp_mask <<= 1; + } + } + env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; + env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; +} + +/* Add a new TLB entry. At most one entry for a given virtual address + * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the + * supplied size is only used by tlb_flush_page. + * + * Called from TCG-generated code, which is under an RCU read-side + * critical section. + */ +void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, + hwaddr paddr, MemTxAttrs attrs, int prot, + int mmu_idx, target_ulong size) +{ + CPUArchState *env = cpu->env_ptr; + CPUTLB *tlb = env_tlb(env); + CPUTLBDesc *desc = &tlb->d[mmu_idx]; + MemoryRegionSection *section; + unsigned int index; + target_ulong address; + target_ulong write_address; + uintptr_t addend; + CPUTLBEntry *te, tn; + hwaddr iotlb, xlat, sz, paddr_page; + target_ulong vaddr_page; + int asidx = cpu_asidx_from_attrs(cpu, attrs); + int wp_flags; + bool is_ram, is_romd; + + assert_cpu_is_self(cpu); + + if (size <= TARGET_PAGE_SIZE) { + sz = TARGET_PAGE_SIZE; + } else { + tlb_add_large_page(env, mmu_idx, vaddr, size); + sz = size; + } + vaddr_page = vaddr & TARGET_PAGE_MASK; + paddr_page = paddr & TARGET_PAGE_MASK; + + section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, + &xlat, &sz, attrs, &prot); + assert(sz >= TARGET_PAGE_SIZE); + + tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx + " prot=%x idx=%d\n", + vaddr, paddr, prot, mmu_idx); + + address = vaddr_page; + if (size < TARGET_PAGE_SIZE) { + /* Repeat the MMU check and TLB fill on every access. */ + address |= TLB_INVALID_MASK; + } + if (attrs.byte_swap) { + address |= TLB_BSWAP; + } + + is_ram = memory_region_is_ram(section->mr); + is_romd = memory_region_is_romd(section->mr); + + if (is_ram || is_romd) { + /* RAM and ROMD both have associated host memory. */ + addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; + } else { + /* I/O does not; force the host address to NULL. */ + addend = 0; + } + + write_address = address; + if (is_ram) { + iotlb = memory_region_get_ram_addr(section->mr) + xlat; + /* + * Computing is_clean is expensive; avoid all that unless + * the page is actually writable. + */ + if (prot & PAGE_WRITE) { + if (section->readonly) { + write_address |= TLB_DISCARD_WRITE; + } else if (cpu_physical_memory_is_clean(iotlb)) { + write_address |= TLB_NOTDIRTY; + } + } + } else { + /* I/O or ROMD */ + iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; + /* + * Writes to romd devices must go through MMIO to enable write. + * Reads to romd devices go through the ram_ptr found above, + * but of course reads to I/O must go through MMIO. + */ + write_address |= TLB_MMIO; + if (!is_romd) { + address = write_address; + } + } + + wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, + TARGET_PAGE_SIZE); + + index = tlb_index(env, mmu_idx, vaddr_page); + te = tlb_entry(env, mmu_idx, vaddr_page); + + /* + * Hold the TLB lock for the rest of the function. We could acquire/release + * the lock several times in the function, but it is faster to amortize the + * acquisition cost by acquiring it just once. Note that this leads to + * a longer critical section, but this is not a concern since the TLB lock + * is unlikely to be contended. + */ + qemu_spin_lock(&tlb->c.lock); + + /* Note that the tlb is no longer clean. */ + tlb->c.dirty |= 1 << mmu_idx; + + /* Make sure there's no cached translation for the new page. */ + tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); + + /* + * Only evict the old entry to the victim tlb if it's for a + * different page; otherwise just overwrite the stale data. + */ + if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { + unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; + CPUTLBEntry *tv = &desc->vtable[vidx]; + + /* Evict the old entry into the victim tlb. */ + copy_tlb_helper_locked(tv, te); + desc->viotlb[vidx] = desc->iotlb[index]; + tlb_n_used_entries_dec(env, mmu_idx); + } + + /* refill the tlb */ + /* + * At this point iotlb contains a physical section number in the lower + * TARGET_PAGE_BITS, and either + * + the ram_addr_t of the page base of the target RAM (RAM) + * + the offset within section->mr of the page base (I/O, ROMD) + * We subtract the vaddr_page (which is page aligned and thus won't + * disturb the low bits) to give an offset which can be added to the + * (non-page-aligned) vaddr of the eventual memory access to get + * the MemoryRegion offset for the access. Note that the vaddr we + * subtract here is that of the page base, and not the same as the + * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). + */ + desc->iotlb[index].addr = iotlb - vaddr_page; + desc->iotlb[index].attrs = attrs; + + /* Now calculate the new entry */ + tn.addend = addend - vaddr_page; + if (prot & PAGE_READ) { + tn.addr_read = address; + if (wp_flags & BP_MEM_READ) { + tn.addr_read |= TLB_WATCHPOINT; + } + } else { + tn.addr_read = -1; + } + + if (prot & PAGE_EXEC) { + tn.addr_code = address; + } else { + tn.addr_code = -1; + } + + tn.addr_write = -1; + if (prot & PAGE_WRITE) { + tn.addr_write = write_address; + if (prot & PAGE_WRITE_INV) { + tn.addr_write |= TLB_INVALID_MASK; + } + if (wp_flags & BP_MEM_WRITE) { + tn.addr_write |= TLB_WATCHPOINT; + } + } + + copy_tlb_helper_locked(te, &tn); + tlb_n_used_entries_inc(env, mmu_idx); + qemu_spin_unlock(&tlb->c.lock); +} + +/* Add a new TLB entry, but without specifying the memory + * transaction attributes to be used. + */ +void tlb_set_page(CPUState *cpu, target_ulong vaddr, + hwaddr paddr, int prot, + int mmu_idx, target_ulong size) +{ + tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, + prot, mmu_idx, size); +} + +static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) +{ + ram_addr_t ram_addr; + + ram_addr = qemu_ram_addr_from_host(ptr); + if (ram_addr == RAM_ADDR_INVALID) { + error_report("Bad ram pointer %p", ptr); + abort(); + } + return ram_addr; +} + +/* + * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the + * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must + * be discarded and looked up again (e.g. via tlb_entry()). + */ +static void tlb_fill(CPUState *cpu, target_ulong addr, int size, + MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + bool ok; + + /* + * This is not a probe, so only valid return is success; failure + * should result in exception + longjmp to the cpu loop. + */ + ok = cc->tcg_ops->tlb_fill(cpu, addr, size, + access_type, mmu_idx, false, retaddr); + assert(ok); +} + +static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, + MMUAccessType access_type, + int mmu_idx, uintptr_t retaddr) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + + cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); +} + +static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, + vaddr addr, unsigned size, + MMUAccessType access_type, + int mmu_idx, MemTxAttrs attrs, + MemTxResult response, + uintptr_t retaddr) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + + if (!cpu->ignore_memory_transaction_failures && + cc->tcg_ops->do_transaction_failed) { + cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, + access_type, mmu_idx, attrs, + response, retaddr); + } +} + +static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, + int mmu_idx, target_ulong addr, uintptr_t retaddr, + MMUAccessType access_type, MemOp op) +{ + CPUState *cpu = env_cpu(env); + hwaddr mr_offset; + MemoryRegionSection *section; + MemoryRegion *mr; + uint64_t val; + bool locked = false; + MemTxResult r; + + section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); + mr = section->mr; + mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; + cpu->mem_io_pc = retaddr; + if (!cpu->can_do_io) { + cpu_io_recompile(cpu, retaddr); + } + + if (!qemu_mutex_iothread_locked()) { + qemu_mutex_lock_iothread(); + locked = true; + } + r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs); + if (r != MEMTX_OK) { + hwaddr physaddr = mr_offset + + section->offset_within_address_space - + section->offset_within_region; + + cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, + mmu_idx, iotlbentry->attrs, r, retaddr); + } + if (locked) { + qemu_mutex_unlock_iothread(); + } + + return val; +} + +/* + * Save a potentially trashed IOTLB entry for later lookup by plugin. + * This is read by tlb_plugin_lookup if the iotlb entry doesn't match + * because of the side effect of io_writex changing memory layout. + */ +static void save_iotlb_data(CPUState *cs, hwaddr addr, + MemoryRegionSection *section, hwaddr mr_offset) +{ +#ifdef CONFIG_PLUGIN + SavedIOTLB *saved = &cs->saved_iotlb; + saved->addr = addr; + saved->section = section; + saved->mr_offset = mr_offset; +#endif +} + +static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, + int mmu_idx, uint64_t val, target_ulong addr, + uintptr_t retaddr, MemOp op) +{ + CPUState *cpu = env_cpu(env); + hwaddr mr_offset; + MemoryRegionSection *section; + MemoryRegion *mr; + bool locked = false; + MemTxResult r; + + section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); + mr = section->mr; + mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; + if (!cpu->can_do_io) { + cpu_io_recompile(cpu, retaddr); + } + cpu->mem_io_pc = retaddr; + + /* + * The memory_region_dispatch may trigger a flush/resize + * so for plugins we save the iotlb_data just in case. + */ + save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset); + + if (!qemu_mutex_iothread_locked()) { + qemu_mutex_lock_iothread(); + locked = true; + } + r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs); + if (r != MEMTX_OK) { + hwaddr physaddr = mr_offset + + section->offset_within_address_space - + section->offset_within_region; + + cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), + MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r, + retaddr); + } + if (locked) { + qemu_mutex_unlock_iothread(); + } +} + +static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) +{ +#if TCG_OVERSIZED_GUEST + return *(target_ulong *)((uintptr_t)entry + ofs); +#else + /* ofs might correspond to .addr_write, so use qatomic_read */ + return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); +#endif +} + +/* Return true if ADDR is present in the victim tlb, and has been copied + back to the main tlb. */ +static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, + size_t elt_ofs, target_ulong page) +{ + size_t vidx; + + assert_cpu_is_self(env_cpu(env)); + for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { + CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; + target_ulong cmp; + + /* elt_ofs might correspond to .addr_write, so use qatomic_read */ +#if TCG_OVERSIZED_GUEST + cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); +#else + cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); +#endif + + if (cmp == page) { + /* Found entry in victim tlb, swap tlb and iotlb. */ + CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; + + qemu_spin_lock(&env_tlb(env)->c.lock); + copy_tlb_helper_locked(&tmptlb, tlb); + copy_tlb_helper_locked(tlb, vtlb); + copy_tlb_helper_locked(vtlb, &tmptlb); + qemu_spin_unlock(&env_tlb(env)->c.lock); + + CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; + CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; + tmpio = *io; *io = *vio; *vio = tmpio; + return true; + } + } + return false; +} + +/* Macro to call the above, with local variables from the use context. */ +#define VICTIM_TLB_HIT(TY, ADDR) \ + victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ + (ADDR) & TARGET_PAGE_MASK) + +/* + * Return a ram_addr_t for the virtual address for execution. + * + * Return -1 if we can't translate and execute from an entire page + * of RAM. This will force us to execute by loading and translating + * one insn at a time, without caching. + * + * NOTE: This function will trigger an exception if the page is + * not executable. + */ +tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, + void **hostp) +{ + uintptr_t mmu_idx = cpu_mmu_index(env, true); + uintptr_t index = tlb_index(env, mmu_idx, addr); + CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); + void *p; + + if (unlikely(!tlb_hit(entry->addr_code, addr))) { + if (!VICTIM_TLB_HIT(addr_code, addr)) { + tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); + index = tlb_index(env, mmu_idx, addr); + entry = tlb_entry(env, mmu_idx, addr); + + if (unlikely(entry->addr_code & TLB_INVALID_MASK)) { + /* + * The MMU protection covers a smaller range than a target + * page, so we must redo the MMU check for every insn. + */ + return -1; + } + } + assert(tlb_hit(entry->addr_code, addr)); + } + + if (unlikely(entry->addr_code & TLB_MMIO)) { + /* The region is not backed by RAM. */ + if (hostp) { + *hostp = NULL; + } + return -1; + } + + p = (void *)((uintptr_t)addr + entry->addend); + if (hostp) { + *hostp = p; + } + return qemu_ram_addr_from_host_nofail(p); +} + +tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) +{ + return get_page_addr_code_hostp(env, addr, NULL); +} + +static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, + CPUIOTLBEntry *iotlbentry, uintptr_t retaddr) +{ + ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr; + + trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); + + if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { + struct page_collection *pages + = page_collection_lock(ram_addr, ram_addr + size); + tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr); + page_collection_unlock(pages); + } + + /* + * Set both VGA and migration bits for simplicity and to remove + * the notdirty callback faster. + */ + cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); + + /* We remove the notdirty callback only if the code has been flushed. */ + if (!cpu_physical_memory_is_clean(ram_addr)) { + trace_memory_notdirty_set_dirty(mem_vaddr); + tlb_set_dirty(cpu, mem_vaddr); + } +} + +static int probe_access_internal(CPUArchState *env, target_ulong addr, + int fault_size, MMUAccessType access_type, + int mmu_idx, bool nonfault, + void **phost, uintptr_t retaddr) +{ + uintptr_t index = tlb_index(env, mmu_idx, addr); + CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); + target_ulong tlb_addr, page_addr; + size_t elt_ofs; + int flags; + + switch (access_type) { + case MMU_DATA_LOAD: + elt_ofs = offsetof(CPUTLBEntry, addr_read); + break; + case MMU_DATA_STORE: + elt_ofs = offsetof(CPUTLBEntry, addr_write); + break; + case MMU_INST_FETCH: + elt_ofs = offsetof(CPUTLBEntry, addr_code); + break; + default: + g_assert_not_reached(); + } + tlb_addr = tlb_read_ofs(entry, elt_ofs); + + page_addr = addr & TARGET_PAGE_MASK; + if (!tlb_hit_page(tlb_addr, page_addr)) { + if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { + CPUState *cs = env_cpu(env); + CPUClass *cc = CPU_GET_CLASS(cs); + + if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, + mmu_idx, nonfault, retaddr)) { + /* Non-faulting page table read failed. */ + *phost = NULL; + return TLB_INVALID_MASK; + } + + /* TLB resize via tlb_fill may have moved the entry. */ + entry = tlb_entry(env, mmu_idx, addr); + } + tlb_addr = tlb_read_ofs(entry, elt_ofs); + } + flags = tlb_addr & TLB_FLAGS_MASK; + + /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ + if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { + *phost = NULL; + return TLB_MMIO; + } + + /* Everything else is RAM. */ + *phost = (void *)((uintptr_t)addr + entry->addend); + return flags; +} + +int probe_access_flags(CPUArchState *env, target_ulong addr, + MMUAccessType access_type, int mmu_idx, + bool nonfault, void **phost, uintptr_t retaddr) +{ + int flags; + + flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, + nonfault, phost, retaddr); + + /* Handle clean RAM pages. */ + if (unlikely(flags & TLB_NOTDIRTY)) { + uintptr_t index = tlb_index(env, mmu_idx, addr); + CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; + + notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); + flags &= ~TLB_NOTDIRTY; + } + + return flags; +} + +void *probe_access(CPUArchState *env, target_ulong addr, int size, + MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) +{ + void *host; + int flags; + + g_assert(-(addr | TARGET_PAGE_MASK) >= size); + + flags = probe_access_internal(env, addr, size, access_type, mmu_idx, + false, &host, retaddr); + + /* Per the interface, size == 0 merely faults the access. */ + if (size == 0) { + return NULL; + } + + if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { + uintptr_t index = tlb_index(env, mmu_idx, addr); + CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; + + /* Handle watchpoints. */ + if (flags & TLB_WATCHPOINT) { + int wp_access = (access_type == MMU_DATA_STORE + ? BP_MEM_WRITE : BP_MEM_READ); + cpu_check_watchpoint(env_cpu(env), addr, size, + iotlbentry->attrs, wp_access, retaddr); + } + + /* Handle clean RAM pages. */ + if (flags & TLB_NOTDIRTY) { + notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr); + } + } + + return host; +} + +void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, + MMUAccessType access_type, int mmu_idx) +{ + void *host; + int flags; + + flags = probe_access_internal(env, addr, 0, access_type, + mmu_idx, true, &host, 0); + + /* No combination of flags are expected by the caller. */ + return flags ? NULL : host; +} + +#ifdef CONFIG_PLUGIN +/* + * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. + * This should be a hot path as we will have just looked this path up + * in the softmmu lookup code (or helper). We don't handle re-fills or + * checking the victim table. This is purely informational. + * + * This almost never fails as the memory access being instrumented + * should have just filled the TLB. The one corner case is io_writex + * which can cause TLB flushes and potential resizing of the TLBs + * losing the information we need. In those cases we need to recover + * data from a copy of the iotlbentry. As long as this always occurs + * from the same thread (which a mem callback will be) this is safe. + */ + +bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, + bool is_store, struct qemu_plugin_hwaddr *data) +{ + CPUArchState *env = cpu->env_ptr; + CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); + uintptr_t index = tlb_index(env, mmu_idx, addr); + target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; + + if (likely(tlb_hit(tlb_addr, addr))) { + /* We must have an iotlb entry for MMIO */ + if (tlb_addr & TLB_MMIO) { + CPUIOTLBEntry *iotlbentry; + iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; + data->is_io = true; + data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); + data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; + } else { + data->is_io = false; + data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); + } + return true; + } else { + SavedIOTLB *saved = &cpu->saved_iotlb; + data->is_io = true; + data->v.io.section = saved->section; + data->v.io.offset = saved->mr_offset; + return true; + } +} + +#endif + +/* + * Probe for an atomic operation. Do not allow unaligned operations, + * or io operations to proceed. Return the host address. + * + * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. + */ +static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, + MemOpIdx oi, int size, int prot, + uintptr_t retaddr) +{ + size_t mmu_idx = get_mmuidx(oi); + MemOp mop = get_memop(oi); + int a_bits = get_alignment_bits(mop); + uintptr_t index; + CPUTLBEntry *tlbe; + target_ulong tlb_addr; + void *hostaddr; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* Enforce guest required alignment. */ + if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { + /* ??? Maybe indicate atomic op to cpu_unaligned_access */ + cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + + /* Enforce qemu required alignment. */ + if (unlikely(addr & (size - 1))) { + /* We get here if guest alignment was not requested, + or was not enforced by cpu_unaligned_access above. + We might widen the access and emulate, but for now + mark an exception and exit the cpu loop. */ + goto stop_the_world; + } + + index = tlb_index(env, mmu_idx, addr); + tlbe = tlb_entry(env, mmu_idx, addr); + + /* Check TLB entry and enforce page permissions. */ + if (prot & PAGE_WRITE) { + tlb_addr = tlb_addr_write(tlbe); + if (!tlb_hit(tlb_addr, addr)) { + if (!VICTIM_TLB_HIT(addr_write, addr)) { + tlb_fill(env_cpu(env), addr, size, + MMU_DATA_STORE, mmu_idx, retaddr); + index = tlb_index(env, mmu_idx, addr); + tlbe = tlb_entry(env, mmu_idx, addr); + } + tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; + } + + /* Let the guest notice RMW on a write-only page. */ + if ((prot & PAGE_READ) && + unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { + tlb_fill(env_cpu(env), addr, size, + MMU_DATA_LOAD, mmu_idx, retaddr); + /* + * Since we don't support reads and writes to different addresses, + * and we do have the proper page loaded for write, this shouldn't + * ever return. But just in case, handle via stop-the-world. + */ + goto stop_the_world; + } + } else /* if (prot & PAGE_READ) */ { + tlb_addr = tlbe->addr_read; + if (!tlb_hit(tlb_addr, addr)) { + if (!VICTIM_TLB_HIT(addr_write, addr)) { + tlb_fill(env_cpu(env), addr, size, + MMU_DATA_LOAD, mmu_idx, retaddr); + index = tlb_index(env, mmu_idx, addr); + tlbe = tlb_entry(env, mmu_idx, addr); + } + tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; + } + } + + /* Notice an IO access or a needs-MMU-lookup access */ + if (unlikely(tlb_addr & TLB_MMIO)) { + /* There's really nothing that can be done to + support this apart from stop-the-world. */ + goto stop_the_world; + } + + hostaddr = (void *)((uintptr_t)addr + tlbe->addend); + + if (unlikely(tlb_addr & TLB_NOTDIRTY)) { + notdirty_write(env_cpu(env), addr, size, + &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr); + } + + return hostaddr; + + stop_the_world: + cpu_loop_exit_atomic(env_cpu(env), retaddr); +} + +/* + * Verify that we have passed the correct MemOp to the correct function. + * + * In the case of the helper_*_mmu functions, we will have done this by + * using the MemOp to look up the helper during code generation. + * + * In the case of the cpu_*_mmu functions, this is up to the caller. + * We could present one function to target code, and dispatch based on + * the MemOp, but so far we have worked hard to avoid an indirect function + * call along the memory path. + */ +static void validate_memop(MemOpIdx oi, MemOp expected) +{ +#ifdef CONFIG_DEBUG_TCG + MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); + assert(have == expected); +#endif +} + +/* + * Load Helpers + * + * We support two different access types. SOFTMMU_CODE_ACCESS is + * specifically for reading instructions from system memory. It is + * called by the translation loop and in some helpers where the code + * is disassembled. It shouldn't be called directly by guest code. + */ + +typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr); + +static inline uint64_t QEMU_ALWAYS_INLINE +load_memop(const void *haddr, MemOp op) +{ + switch (op) { + case MO_UB: + return ldub_p(haddr); + case MO_BEUW: + return lduw_be_p(haddr); + case MO_LEUW: + return lduw_le_p(haddr); + case MO_BEUL: + return (uint32_t)ldl_be_p(haddr); + case MO_LEUL: + return (uint32_t)ldl_le_p(haddr); + case MO_BEQ: + return ldq_be_p(haddr); + case MO_LEQ: + return ldq_le_p(haddr); + default: + qemu_build_not_reached(); + } +} + +static inline uint64_t QEMU_ALWAYS_INLINE +load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, + uintptr_t retaddr, MemOp op, bool code_read, + FullLoadHelper *full_load) +{ + uintptr_t mmu_idx = get_mmuidx(oi); + uintptr_t index = tlb_index(env, mmu_idx, addr); + CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); + target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; + const size_t tlb_off = code_read ? + offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); + const MMUAccessType access_type = + code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; + unsigned a_bits = get_alignment_bits(get_memop(oi)); + void *haddr; + uint64_t res; + size_t size = memop_size(op); + + /* Handle CPU specific unaligned behaviour */ + if (addr & ((1 << a_bits) - 1)) { + cpu_unaligned_access(env_cpu(env), addr, access_type, + mmu_idx, retaddr); + } + + /* If the TLB entry is for a different page, reload and try again. */ + if (!tlb_hit(tlb_addr, addr)) { + if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, + addr & TARGET_PAGE_MASK)) { + tlb_fill(env_cpu(env), addr, size, + access_type, mmu_idx, retaddr); + index = tlb_index(env, mmu_idx, addr); + entry = tlb_entry(env, mmu_idx, addr); + } + tlb_addr = code_read ? entry->addr_code : entry->addr_read; + tlb_addr &= ~TLB_INVALID_MASK; + } + + /* Handle anything that isn't just a straight memory access. */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + CPUIOTLBEntry *iotlbentry; + bool need_swap; + + /* For anything that is unaligned, recurse through full_load. */ + if ((addr & (size - 1)) != 0) { + goto do_unaligned_access; + } + + iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; + + /* Handle watchpoints. */ + if (unlikely(tlb_addr & TLB_WATCHPOINT)) { + /* On watchpoint hit, this will longjmp out. */ + cpu_check_watchpoint(env_cpu(env), addr, size, + iotlbentry->attrs, BP_MEM_READ, retaddr); + } + + need_swap = size > 1 && (tlb_addr & TLB_BSWAP); + + /* Handle I/O access. */ + if (likely(tlb_addr & TLB_MMIO)) { + return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, + access_type, op ^ (need_swap * MO_BSWAP)); + } + + haddr = (void *)((uintptr_t)addr + entry->addend); + + /* + * Keep these two load_memop separate to ensure that the compiler + * is able to fold the entire function to a single instruction. + * There is a build-time assert inside to remind you of this. ;-) + */ + if (unlikely(need_swap)) { + return load_memop(haddr, op ^ MO_BSWAP); + } + return load_memop(haddr, op); + } + + /* Handle slow unaligned access (it spans two pages or IO). */ + if (size > 1 + && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 + >= TARGET_PAGE_SIZE)) { + target_ulong addr1, addr2; + uint64_t r1, r2; + unsigned shift; + do_unaligned_access: + addr1 = addr & ~((target_ulong)size - 1); + addr2 = addr1 + size; + r1 = full_load(env, addr1, oi, retaddr); + r2 = full_load(env, addr2, oi, retaddr); + shift = (addr & (size - 1)) * 8; + + if (memop_big_endian(op)) { + /* Big-endian combine. */ + res = (r1 << shift) | (r2 >> ((size * 8) - shift)); + } else { + /* Little-endian combine. */ + res = (r1 >> shift) | (r2 << ((size * 8) - shift)); + } + return res & MAKE_64BIT_MASK(0, size * 8); + } + + haddr = (void *)((uintptr_t)addr + entry->addend); + return load_memop(haddr, op); +} + +/* + * For the benefit of TCG generated code, we want to avoid the + * complication of ABI-specific return type promotion and always + * return a value extended to the register size of the host. This is + * tcg_target_long, except in the case of a 32-bit host and 64-bit + * data, and for that we always have uint64_t. + * + * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. + */ + +static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_UB); + return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); +} + +tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return full_ldub_mmu(env, addr, oi, retaddr); +} + +static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_LEUW); + return load_helper(env, addr, oi, retaddr, MO_LEUW, false, + full_le_lduw_mmu); +} + +tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return full_le_lduw_mmu(env, addr, oi, retaddr); +} + +static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_BEUW); + return load_helper(env, addr, oi, retaddr, MO_BEUW, false, + full_be_lduw_mmu); +} + +tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return full_be_lduw_mmu(env, addr, oi, retaddr); +} + +static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_LEUL); + return load_helper(env, addr, oi, retaddr, MO_LEUL, false, + full_le_ldul_mmu); +} + +tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return full_le_ldul_mmu(env, addr, oi, retaddr); +} + +static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_BEUL); + return load_helper(env, addr, oi, retaddr, MO_BEUL, false, + full_be_ldul_mmu); +} + +tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return full_be_ldul_mmu(env, addr, oi, retaddr); +} + +uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_LEQ); + return load_helper(env, addr, oi, retaddr, MO_LEQ, false, + helper_le_ldq_mmu); +} + +uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_BEQ); + return load_helper(env, addr, oi, retaddr, MO_BEQ, false, + helper_be_ldq_mmu); +} + +/* + * Provide signed versions of the load routines as well. We can of course + * avoid this for 64-bit data, or for 32-bit data on 32-bit host. + */ + + +tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); +} + +tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); +} + +tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); +} + +tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); +} + +tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); +} + +/* + * Load helpers for cpu_ldst.h. + */ + +static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t retaddr, + FullLoadHelper *full_load) +{ + uint64_t ret; + + trace_guest_ld_before_exec(env_cpu(env), addr, oi); + ret = full_load(env, addr, oi, retaddr); + qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); + return ret; +} + +uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); +} + +uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); +} + +uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); +} + +uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, MO_BEQ, helper_be_ldq_mmu); +} + +uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); +} + +uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); +} + +uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, + MemOpIdx oi, uintptr_t ra) +{ + return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); +} + +/* + * Store Helpers + */ + +static inline void QEMU_ALWAYS_INLINE +store_memop(void *haddr, uint64_t val, MemOp op) +{ + switch (op) { + case MO_UB: + stb_p(haddr, val); + break; + case MO_BEUW: + stw_be_p(haddr, val); + break; + case MO_LEUW: + stw_le_p(haddr, val); + break; + case MO_BEUL: + stl_be_p(haddr, val); + break; + case MO_LEUL: + stl_le_p(haddr, val); + break; + case MO_BEQ: + stq_be_p(haddr, val); + break; + case MO_LEQ: + stq_le_p(haddr, val); + break; + default: + qemu_build_not_reached(); + } +} + +static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr); + +static void __attribute__((noinline)) +store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, + uintptr_t retaddr, size_t size, uintptr_t mmu_idx, + bool big_endian) +{ + const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); + uintptr_t index, index2; + CPUTLBEntry *entry, *entry2; + target_ulong page2, tlb_addr, tlb_addr2; + MemOpIdx oi; + size_t size2; + int i; + + /* + * Ensure the second page is in the TLB. Note that the first page + * is already guaranteed to be filled, and that the second page + * cannot evict the first. + */ + page2 = (addr + size) & TARGET_PAGE_MASK; + size2 = (addr + size) & ~TARGET_PAGE_MASK; + index2 = tlb_index(env, mmu_idx, page2); + entry2 = tlb_entry(env, mmu_idx, page2); + + tlb_addr2 = tlb_addr_write(entry2); + if (!tlb_hit_page(tlb_addr2, page2)) { + if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { + tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, + mmu_idx, retaddr); + index2 = tlb_index(env, mmu_idx, page2); + entry2 = tlb_entry(env, mmu_idx, page2); + } + tlb_addr2 = tlb_addr_write(entry2); + } + + index = tlb_index(env, mmu_idx, addr); + entry = tlb_entry(env, mmu_idx, addr); + tlb_addr = tlb_addr_write(entry); + + /* + * Handle watchpoints. Since this may trap, all checks + * must happen before any store. + */ + if (unlikely(tlb_addr & TLB_WATCHPOINT)) { + cpu_check_watchpoint(env_cpu(env), addr, size - size2, + env_tlb(env)->d[mmu_idx].iotlb[index].attrs, + BP_MEM_WRITE, retaddr); + } + if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { + cpu_check_watchpoint(env_cpu(env), page2, size2, + env_tlb(env)->d[mmu_idx].iotlb[index2].attrs, + BP_MEM_WRITE, retaddr); + } + + /* + * XXX: not efficient, but simple. + * This loop must go in the forward direction to avoid issues + * with self-modifying code in Windows 64-bit. + */ + oi = make_memop_idx(MO_UB, mmu_idx); + if (big_endian) { + for (i = 0; i < size; ++i) { + /* Big-endian extract. */ + uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); + full_stb_mmu(env, addr + i, val8, oi, retaddr); + } + } else { + for (i = 0; i < size; ++i) { + /* Little-endian extract. */ + uint8_t val8 = val >> (i * 8); + full_stb_mmu(env, addr + i, val8, oi, retaddr); + } + } +} + +static inline void QEMU_ALWAYS_INLINE +store_helper(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr, MemOp op) +{ + uintptr_t mmu_idx = get_mmuidx(oi); + uintptr_t index = tlb_index(env, mmu_idx, addr); + CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); + target_ulong tlb_addr = tlb_addr_write(entry); + const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); + unsigned a_bits = get_alignment_bits(get_memop(oi)); + void *haddr; + size_t size = memop_size(op); + + /* Handle CPU specific unaligned behaviour */ + if (addr & ((1 << a_bits) - 1)) { + cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + + /* If the TLB entry is for a different page, reload and try again. */ + if (!tlb_hit(tlb_addr, addr)) { + if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, + addr & TARGET_PAGE_MASK)) { + tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, + mmu_idx, retaddr); + index = tlb_index(env, mmu_idx, addr); + entry = tlb_entry(env, mmu_idx, addr); + } + tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; + } + + /* Handle anything that isn't just a straight memory access. */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + CPUIOTLBEntry *iotlbentry; + bool need_swap; + + /* For anything that is unaligned, recurse through byte stores. */ + if ((addr & (size - 1)) != 0) { + goto do_unaligned_access; + } + + iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index]; + + /* Handle watchpoints. */ + if (unlikely(tlb_addr & TLB_WATCHPOINT)) { + /* On watchpoint hit, this will longjmp out. */ + cpu_check_watchpoint(env_cpu(env), addr, size, + iotlbentry->attrs, BP_MEM_WRITE, retaddr); + } + + need_swap = size > 1 && (tlb_addr & TLB_BSWAP); + + /* Handle I/O access. */ + if (tlb_addr & TLB_MMIO) { + io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, + op ^ (need_swap * MO_BSWAP)); + return; + } + + /* Ignore writes to ROM. */ + if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { + return; + } + + /* Handle clean RAM pages. */ + if (tlb_addr & TLB_NOTDIRTY) { + notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr); + } + + haddr = (void *)((uintptr_t)addr + entry->addend); + + /* + * Keep these two store_memop separate to ensure that the compiler + * is able to fold the entire function to a single instruction. + * There is a build-time assert inside to remind you of this. ;-) + */ + if (unlikely(need_swap)) { + store_memop(haddr, val, op ^ MO_BSWAP); + } else { + store_memop(haddr, val, op); + } + return; + } + + /* Handle slow unaligned access (it spans two pages or IO). */ + if (size > 1 + && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 + >= TARGET_PAGE_SIZE)) { + do_unaligned_access: + store_helper_unaligned(env, addr, val, retaddr, size, + mmu_idx, memop_big_endian(op)); + return; + } + + haddr = (void *)((uintptr_t)addr + entry->addend); + store_memop(haddr, val, op); +} + +static void __attribute__((noinline)) +full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_UB); + store_helper(env, addr, val, oi, retaddr, MO_UB); +} + +void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + full_stb_mmu(env, addr, val, oi, retaddr); +} + +static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_LEUW); + store_helper(env, addr, val, oi, retaddr, MO_LEUW); +} + +void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + full_le_stw_mmu(env, addr, val, oi, retaddr); +} + +static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_BEUW); + store_helper(env, addr, val, oi, retaddr, MO_BEUW); +} + +void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + full_be_stw_mmu(env, addr, val, oi, retaddr); +} + +static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_LEUL); + store_helper(env, addr, val, oi, retaddr, MO_LEUL); +} + +void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + full_le_stl_mmu(env, addr, val, oi, retaddr); +} + +static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_BEUL); + store_helper(env, addr, val, oi, retaddr, MO_BEUL); +} + +void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + full_be_stl_mmu(env, addr, val, oi, retaddr); +} + +void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_LEQ); + store_helper(env, addr, val, oi, retaddr, MO_LEQ); +} + +void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + validate_memop(oi, MO_BEQ); + store_helper(env, addr, val, oi, retaddr, MO_BEQ); +} + +/* + * Store Helpers for cpu_ldst.h + */ + +typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, + uint64_t val, MemOpIdx oi, uintptr_t retaddr); + +static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, + uint64_t val, MemOpIdx oi, uintptr_t ra, + FullStoreHelper *full_store) +{ + trace_guest_st_before_exec(env_cpu(env), addr, oi); + full_store(env, addr, val, oi, ra); + qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); +} + +void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); +} + +void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); +} + +void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); +} + +void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); +} + +void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); +} + +void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); +} + +void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, + MemOpIdx oi, uintptr_t retaddr) +{ + cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); +} + +#include "ldst_common.c.inc" + +/* + * First set of functions passes in OI and RETADDR. + * This makes them callable from other helpers. + */ + +#define ATOMIC_NAME(X) \ + glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) + +#define ATOMIC_MMU_CLEANUP +#define ATOMIC_MMU_IDX get_mmuidx(oi) + +#include "atomic_common.c.inc" + +#define DATA_SIZE 1 +#include "atomic_template.h" + +#define DATA_SIZE 2 +#include "atomic_template.h" + +#define DATA_SIZE 4 +#include "atomic_template.h" + +#ifdef CONFIG_ATOMIC64 +#define DATA_SIZE 8 +#include "atomic_template.h" +#endif + +#if HAVE_CMPXCHG128 || HAVE_ATOMIC128 +#define DATA_SIZE 16 +#include "atomic_template.h" +#endif + +/* Code access functions. */ + +static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); +} + +uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) +{ + MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); + return full_ldub_code(env, addr, oi, 0); +} + +static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); +} + +uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) +{ + MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); + return full_lduw_code(env, addr, oi, 0); +} + +static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); +} + +uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) +{ + MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); + return full_ldl_code(env, addr, oi, 0); +} + +static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, + MemOpIdx oi, uintptr_t retaddr) +{ + return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code); +} + +uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) +{ + MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true)); + return full_ldq_code(env, addr, oi, 0); +} |