diff options
Diffstat (limited to 'hw/mips/malta.c')
-rw-r--r-- | hw/mips/malta.c | 1464 |
1 files changed, 1464 insertions, 0 deletions
diff --git a/hw/mips/malta.c b/hw/mips/malta.c new file mode 100644 index 000000000..b770b8d36 --- /dev/null +++ b/hw/mips/malta.c @@ -0,0 +1,1464 @@ +/* + * QEMU Malta board support + * + * Copyright (c) 2006 Aurelien Jarno + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include "qemu/osdep.h" +#include "qemu/units.h" +#include "qemu/bitops.h" +#include "qemu-common.h" +#include "qemu/datadir.h" +#include "hw/clock.h" +#include "hw/southbridge/piix.h" +#include "hw/isa/superio.h" +#include "hw/char/serial.h" +#include "net/net.h" +#include "hw/boards.h" +#include "hw/i2c/smbus_eeprom.h" +#include "hw/block/flash.h" +#include "hw/mips/mips.h" +#include "hw/mips/cpudevs.h" +#include "hw/pci/pci.h" +#include "qemu/log.h" +#include "hw/mips/bios.h" +#include "hw/ide.h" +#include "hw/irq.h" +#include "hw/loader.h" +#include "elf.h" +#include "qom/object.h" +#include "hw/sysbus.h" /* SysBusDevice */ +#include "qemu/host-utils.h" +#include "sysemu/qtest.h" +#include "sysemu/reset.h" +#include "sysemu/runstate.h" +#include "qapi/error.h" +#include "qemu/error-report.h" +#include "hw/misc/empty_slot.h" +#include "sysemu/kvm.h" +#include "semihosting/semihost.h" +#include "hw/mips/cps.h" +#include "hw/qdev-clock.h" + +#define ENVP_PADDR 0x2000 +#define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR) +#define ENVP_NB_ENTRIES 16 +#define ENVP_ENTRY_SIZE 256 + +/* Hardware addresses */ +#define FLASH_ADDRESS 0x1e000000ULL +#define FPGA_ADDRESS 0x1f000000ULL +#define RESET_ADDRESS 0x1fc00000ULL + +#define FLASH_SIZE 0x400000 + +#define MAX_IDE_BUS 2 + +typedef struct { + MemoryRegion iomem; + MemoryRegion iomem_lo; /* 0 - 0x900 */ + MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ + uint32_t leds; + uint32_t brk; + uint32_t gpout; + uint32_t i2cin; + uint32_t i2coe; + uint32_t i2cout; + uint32_t i2csel; + CharBackend display; + char display_text[9]; + SerialMM *uart; + bool display_inited; +} MaltaFPGAState; + +#define TYPE_MIPS_MALTA "mips-malta" +OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA) + +struct MaltaState { + SysBusDevice parent_obj; + + Clock *cpuclk; + MIPSCPSState cps; + qemu_irq i8259[ISA_NUM_IRQS]; +}; + +static struct _loaderparams { + int ram_size, ram_low_size; + const char *kernel_filename; + const char *kernel_cmdline; + const char *initrd_filename; +} loaderparams; + +/* Malta FPGA */ +static void malta_fpga_update_display(void *opaque) +{ + char leds_text[9]; + int i; + MaltaFPGAState *s = opaque; + + for (i = 7 ; i >= 0 ; i--) { + if (s->leds & (1 << i)) { + leds_text[i] = '#'; + } else { + leds_text[i] = ' '; + } + } + leds_text[8] = '\0'; + + qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", + leds_text); + qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", + s->display_text); +} + +/* + * EEPROM 24C01 / 24C02 emulation. + * + * Emulation for serial EEPROMs: + * 24C01 - 1024 bit (128 x 8) + * 24C02 - 2048 bit (256 x 8) + * + * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. + */ + +#if defined(DEBUG) +# define logout(fmt, ...) \ + fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) +#else +# define logout(fmt, ...) ((void)0) +#endif + +struct _eeprom24c0x_t { + uint8_t tick; + uint8_t address; + uint8_t command; + uint8_t ack; + uint8_t scl; + uint8_t sda; + uint8_t data; + /* uint16_t size; */ + uint8_t contents[256]; +}; + +typedef struct _eeprom24c0x_t eeprom24c0x_t; + +static eeprom24c0x_t spd_eeprom = { + .contents = { + /* 00000000: */ + 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, + /* 00000008: */ + 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, + /* 00000010: */ + 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, + /* 00000018: */ + 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, + /* 00000020: */ + 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, + /* 00000028: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000030: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000038: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, + /* 00000040: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000048: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000050: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000058: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000060: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000068: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000070: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + /* 00000078: */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, + }, +}; + +static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) +{ + enum { SDR = 0x4, DDR2 = 0x8 } type; + uint8_t *spd = spd_eeprom.contents; + uint8_t nbanks = 0; + uint16_t density = 0; + int i; + + /* work in terms of MB */ + ram_size /= MiB; + + while ((ram_size >= 4) && (nbanks <= 2)) { + int sz_log2 = MIN(31 - clz32(ram_size), 14); + nbanks++; + density |= 1 << (sz_log2 - 2); + ram_size -= 1 << sz_log2; + } + + /* split to 2 banks if possible */ + if ((nbanks == 1) && (density > 1)) { + nbanks++; + density >>= 1; + } + + if (density & 0xff00) { + density = (density & 0xe0) | ((density >> 8) & 0x1f); + type = DDR2; + } else if (!(density & 0x1f)) { + type = DDR2; + } else { + type = SDR; + } + + if (ram_size) { + warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" + " of SDRAM", ram_size); + } + + /* fill in SPD memory information */ + spd[2] = type; + spd[5] = nbanks; + spd[31] = density; + + /* checksum */ + spd[63] = 0; + for (i = 0; i < 63; i++) { + spd[63] += spd[i]; + } + + /* copy for SMBUS */ + memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); +} + +static void generate_eeprom_serial(uint8_t *eeprom) +{ + int i, pos = 0; + uint8_t mac[6] = { 0x00 }; + uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; + + /* version */ + eeprom[pos++] = 0x01; + + /* count */ + eeprom[pos++] = 0x02; + + /* MAC address */ + eeprom[pos++] = 0x01; /* MAC */ + eeprom[pos++] = 0x06; /* length */ + memcpy(&eeprom[pos], mac, sizeof(mac)); + pos += sizeof(mac); + + /* serial number */ + eeprom[pos++] = 0x02; /* serial */ + eeprom[pos++] = 0x05; /* length */ + memcpy(&eeprom[pos], sn, sizeof(sn)); + pos += sizeof(sn); + + /* checksum */ + eeprom[pos] = 0; + for (i = 0; i < pos; i++) { + eeprom[pos] += eeprom[i]; + } +} + +static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) +{ + logout("%u: scl = %u, sda = %u, data = 0x%02x\n", + eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); + return eeprom->sda; +} + +static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) +{ + if (eeprom->scl && scl && (eeprom->sda != sda)) { + logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", + eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, + sda ? "stop" : "start"); + if (!sda) { + eeprom->tick = 1; + eeprom->command = 0; + } + } else if (eeprom->tick == 0 && !eeprom->ack) { + /* Waiting for start. */ + logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", + eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); + } else if (!eeprom->scl && scl) { + logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", + eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); + if (eeprom->ack) { + logout("\ti2c ack bit = 0\n"); + sda = 0; + eeprom->ack = 0; + } else if (eeprom->sda == sda) { + uint8_t bit = (sda != 0); + logout("\ti2c bit = %d\n", bit); + if (eeprom->tick < 9) { + eeprom->command <<= 1; + eeprom->command += bit; + eeprom->tick++; + if (eeprom->tick == 9) { + logout("\tcommand 0x%04x, %s\n", eeprom->command, + bit ? "read" : "write"); + eeprom->ack = 1; + } + } else if (eeprom->tick < 17) { + if (eeprom->command & 1) { + sda = ((eeprom->data & 0x80) != 0); + } + eeprom->address <<= 1; + eeprom->address += bit; + eeprom->tick++; + eeprom->data <<= 1; + if (eeprom->tick == 17) { + eeprom->data = eeprom->contents[eeprom->address]; + logout("\taddress 0x%04x, data 0x%02x\n", + eeprom->address, eeprom->data); + eeprom->ack = 1; + eeprom->tick = 0; + } + } else if (eeprom->tick >= 17) { + sda = 0; + } + } else { + logout("\tsda changed with raising scl\n"); + } + } else { + logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, + scl, eeprom->sda, sda); + } + eeprom->scl = scl; + eeprom->sda = sda; +} + +static uint64_t malta_fpga_read(void *opaque, hwaddr addr, + unsigned size) +{ + MaltaFPGAState *s = opaque; + uint32_t val = 0; + uint32_t saddr; + + saddr = (addr & 0xfffff); + + switch (saddr) { + + /* SWITCH Register */ + case 0x00200: + val = 0x00000000; + break; + + /* STATUS Register */ + case 0x00208: +#ifdef TARGET_WORDS_BIGENDIAN + val = 0x00000012; +#else + val = 0x00000010; +#endif + break; + + /* JMPRS Register */ + case 0x00210: + val = 0x00; + break; + + /* LEDBAR Register */ + case 0x00408: + val = s->leds; + break; + + /* BRKRES Register */ + case 0x00508: + val = s->brk; + break; + + /* UART Registers are handled directly by the serial device */ + + /* GPOUT Register */ + case 0x00a00: + val = s->gpout; + break; + + /* XXX: implement a real I2C controller */ + + /* GPINP Register */ + case 0x00a08: + /* IN = OUT until a real I2C control is implemented */ + if (s->i2csel) { + val = s->i2cout; + } else { + val = 0x00; + } + break; + + /* I2CINP Register */ + case 0x00b00: + val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); + break; + + /* I2COE Register */ + case 0x00b08: + val = s->i2coe; + break; + + /* I2COUT Register */ + case 0x00b10: + val = s->i2cout; + break; + + /* I2CSEL Register */ + case 0x00b18: + val = s->i2csel; + break; + + default: + qemu_log_mask(LOG_GUEST_ERROR, + "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n", + addr); + break; + } + return val; +} + +static void malta_fpga_write(void *opaque, hwaddr addr, + uint64_t val, unsigned size) +{ + MaltaFPGAState *s = opaque; + uint32_t saddr; + + saddr = (addr & 0xfffff); + + switch (saddr) { + + /* SWITCH Register */ + case 0x00200: + break; + + /* JMPRS Register */ + case 0x00210: + break; + + /* LEDBAR Register */ + case 0x00408: + s->leds = val & 0xff; + malta_fpga_update_display(s); + break; + + /* ASCIIWORD Register */ + case 0x00410: + snprintf(s->display_text, 9, "%08X", (uint32_t)val); + malta_fpga_update_display(s); + break; + + /* ASCIIPOS0 to ASCIIPOS7 Registers */ + case 0x00418: + case 0x00420: + case 0x00428: + case 0x00430: + case 0x00438: + case 0x00440: + case 0x00448: + case 0x00450: + s->display_text[(saddr - 0x00418) >> 3] = (char) val; + malta_fpga_update_display(s); + break; + + /* SOFTRES Register */ + case 0x00500: + if (val == 0x42) { + qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); + } + break; + + /* BRKRES Register */ + case 0x00508: + s->brk = val & 0xff; + break; + + /* UART Registers are handled directly by the serial device */ + + /* GPOUT Register */ + case 0x00a00: + s->gpout = val & 0xff; + break; + + /* I2COE Register */ + case 0x00b08: + s->i2coe = val & 0x03; + break; + + /* I2COUT Register */ + case 0x00b10: + eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); + s->i2cout = val; + break; + + /* I2CSEL Register */ + case 0x00b18: + s->i2csel = val & 0x01; + break; + + default: + qemu_log_mask(LOG_GUEST_ERROR, + "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n", + addr); + break; + } +} + +static const MemoryRegionOps malta_fpga_ops = { + .read = malta_fpga_read, + .write = malta_fpga_write, + .endianness = DEVICE_NATIVE_ENDIAN, +}; + +static void malta_fpga_reset(void *opaque) +{ + MaltaFPGAState *s = opaque; + + s->leds = 0x00; + s->brk = 0x0a; + s->gpout = 0x00; + s->i2cin = 0x3; + s->i2coe = 0x0; + s->i2cout = 0x3; + s->i2csel = 0x1; + + s->display_text[8] = '\0'; + snprintf(s->display_text, 9, " "); +} + +static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) +{ + MaltaFPGAState *s = opaque; + + if (event == CHR_EVENT_OPENED && !s->display_inited) { + qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); + qemu_chr_fe_printf(&s->display, "+--------+\r\n"); + qemu_chr_fe_printf(&s->display, "+ +\r\n"); + qemu_chr_fe_printf(&s->display, "+--------+\r\n"); + qemu_chr_fe_printf(&s->display, "\n"); + qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); + qemu_chr_fe_printf(&s->display, "+--------+\r\n"); + qemu_chr_fe_printf(&s->display, "+ +\r\n"); + qemu_chr_fe_printf(&s->display, "+--------+\r\n"); + s->display_inited = true; + } +} + +static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, + hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) +{ + MaltaFPGAState *s; + Chardev *chr; + + s = g_new0(MaltaFPGAState, 1); + + memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, + "malta-fpga", 0x100000); + memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", + &s->iomem, 0, 0x900); + memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", + &s->iomem, 0xa00, 0x100000 - 0xa00); + + memory_region_add_subregion(address_space, base, &s->iomem_lo); + memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); + + chr = qemu_chr_new("fpga", "vc:320x200", NULL); + qemu_chr_fe_init(&s->display, chr, NULL); + qemu_chr_fe_set_handlers(&s->display, NULL, NULL, + malta_fgpa_display_event, NULL, s, NULL, true); + + s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, + 230400, uart_chr, DEVICE_NATIVE_ENDIAN); + + malta_fpga_reset(s); + qemu_register_reset(malta_fpga_reset, s); + + return s; +} + +/* Network support */ +static void network_init(PCIBus *pci_bus) +{ + int i; + + for (i = 0; i < nb_nics; i++) { + NICInfo *nd = &nd_table[i]; + const char *default_devaddr = NULL; + + if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) + /* The malta board has a PCNet card using PCI SLOT 11 */ + default_devaddr = "0b"; + + pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr); + } +} + +static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr, + uint64_t kernel_entry) +{ + uint16_t *p; + + /* Small bootloader */ + p = (uint16_t *)base; + +#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f) +#define NM_HI2(VAL) \ + (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1)) +#define NM_LO(VAL) ((VAL) & 0xfff) + + stw_p(p++, 0x2800); stw_p(p++, 0x001c); + /* bc to_here */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + + /* to_here: */ + if (semihosting_get_argc()) { + /* Preserve a0 content as arguments have been passed */ + stw_p(p++, 0x8000); stw_p(p++, 0xc000); + /* nop */ + } else { + stw_p(p++, 0x0080); stw_p(p++, 0x0002); + /* li a0,2 */ + } + + stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64)); + + stw_p(p++, NM_HI2(ENVP_VADDR - 64)); + /* lui sp,%hi(ENVP_VADDR - 64) */ + + stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64)); + /* ori sp,sp,%lo(ENVP_VADDR - 64) */ + + stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR)); + + stw_p(p++, NM_HI2(ENVP_VADDR)); + /* lui a1,%hi(ENVP_VADDR) */ + + stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR)); + /* ori a1,a1,%lo(ENVP_VADDR) */ + + stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8)); + + stw_p(p++, NM_HI2(ENVP_VADDR + 8)); + /* lui a2,%hi(ENVP_VADDR + 8) */ + + stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8)); + /* ori a2,a2,%lo(ENVP_VADDR + 8) */ + + stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size)); + + stw_p(p++, NM_HI2(loaderparams.ram_low_size)); + /* lui a3,%hi(loaderparams.ram_low_size) */ + + stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size)); + /* ori a3,a3,%lo(loaderparams.ram_low_size) */ + + /* + * Load BAR registers as done by YAMON: + * + * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff + * - set up PCI0 MEM0 at 0x10000000, size 0x8000000 + * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000 + * + */ + stw_p(p++, 0xe040); stw_p(p++, 0x0681); + /* lui t1, %hi(0xb4000000) */ + +#ifdef TARGET_WORDS_BIGENDIAN + + stw_p(p++, 0xe020); stw_p(p++, 0x0be1); + /* lui t0, %hi(0xdf000000) */ + + /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */ + stw_p(p++, 0x8422); stw_p(p++, 0x9068); + /* sw t0, 0x68(t1) */ + + stw_p(p++, 0xe040); stw_p(p++, 0x077d); + /* lui t1, %hi(0xbbe00000) */ + + stw_p(p++, 0xe020); stw_p(p++, 0x0801); + /* lui t0, %hi(0xc0000000) */ + + /* 0x48 corresponds to GT_PCI0IOLD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9048); + /* sw t0, 0x48(t1) */ + + stw_p(p++, 0xe020); stw_p(p++, 0x0800); + /* lui t0, %hi(0x40000000) */ + + /* 0x50 corresponds to GT_PCI0IOHD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9050); + /* sw t0, 0x50(t1) */ + + stw_p(p++, 0xe020); stw_p(p++, 0x0001); + /* lui t0, %hi(0x80000000) */ + + /* 0x58 corresponds to GT_PCI0M0LD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9058); + /* sw t0, 0x58(t1) */ + + stw_p(p++, 0xe020); stw_p(p++, 0x07e0); + /* lui t0, %hi(0x3f000000) */ + + /* 0x60 corresponds to GT_PCI0M0HD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9060); + /* sw t0, 0x60(t1) */ + + stw_p(p++, 0xe020); stw_p(p++, 0x0821); + /* lui t0, %hi(0xc1000000) */ + + /* 0x80 corresponds to GT_PCI0M1LD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9080); + /* sw t0, 0x80(t1) */ + + stw_p(p++, 0xe020); stw_p(p++, 0x0bc0); + /* lui t0, %hi(0x5e000000) */ + +#else + + stw_p(p++, 0x0020); stw_p(p++, 0x00df); + /* addiu[32] t0, $0, 0xdf */ + + /* 0x68 corresponds to GT_ISD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9068); + /* sw t0, 0x68(t1) */ + + /* Use kseg2 remapped address 0x1be00000 */ + stw_p(p++, 0xe040); stw_p(p++, 0x077d); + /* lui t1, %hi(0xbbe00000) */ + + stw_p(p++, 0x0020); stw_p(p++, 0x00c0); + /* addiu[32] t0, $0, 0xc0 */ + + /* 0x48 corresponds to GT_PCI0IOLD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9048); + /* sw t0, 0x48(t1) */ + + stw_p(p++, 0x0020); stw_p(p++, 0x0040); + /* addiu[32] t0, $0, 0x40 */ + + /* 0x50 corresponds to GT_PCI0IOHD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9050); + /* sw t0, 0x50(t1) */ + + stw_p(p++, 0x0020); stw_p(p++, 0x0080); + /* addiu[32] t0, $0, 0x80 */ + + /* 0x58 corresponds to GT_PCI0M0LD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9058); + /* sw t0, 0x58(t1) */ + + stw_p(p++, 0x0020); stw_p(p++, 0x003f); + /* addiu[32] t0, $0, 0x3f */ + + /* 0x60 corresponds to GT_PCI0M0HD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9060); + /* sw t0, 0x60(t1) */ + + stw_p(p++, 0x0020); stw_p(p++, 0x00c1); + /* addiu[32] t0, $0, 0xc1 */ + + /* 0x80 corresponds to GT_PCI0M1LD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9080); + /* sw t0, 0x80(t1) */ + + stw_p(p++, 0x0020); stw_p(p++, 0x005e); + /* addiu[32] t0, $0, 0x5e */ + +#endif + + /* 0x88 corresponds to GT_PCI0M1HD */ + stw_p(p++, 0x8422); stw_p(p++, 0x9088); + /* sw t0, 0x88(t1) */ + + stw_p(p++, 0xe320 | NM_HI1(kernel_entry)); + + stw_p(p++, NM_HI2(kernel_entry)); + /* lui t9,%hi(kernel_entry) */ + + stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry)); + /* ori t9,t9,%lo(kernel_entry) */ + + stw_p(p++, 0x4bf9); stw_p(p++, 0x0000); + /* jalrc t8 */ +} + +/* + * ROM and pseudo bootloader + * + * The following code implements a very very simple bootloader. It first + * loads the registers a0 to a3 to the values expected by the OS, and + * then jump at the kernel address. + * + * The bootloader should pass the locations of the kernel arguments and + * environment variables tables. Those tables contain the 32-bit address + * of NULL terminated strings. The environment variables table should be + * terminated by a NULL address. + * + * For a simpler implementation, the number of kernel arguments is fixed + * to two (the name of the kernel and the command line), and the two + * tables are actually the same one. + * + * The registers a0 to a3 should contain the following values: + * a0 - number of kernel arguments + * a1 - 32-bit address of the kernel arguments table + * a2 - 32-bit address of the environment variables table + * a3 - RAM size in bytes + */ +static void write_bootloader(uint8_t *base, uint64_t run_addr, + uint64_t kernel_entry) +{ + uint32_t *p; + + /* Small bootloader */ + p = (uint32_t *)base; + + stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ + ((run_addr + 0x580) & 0x0fffffff) >> 2); + stl_p(p++, 0x00000000); /* nop */ + + /* YAMON service vector */ + stl_p(base + 0x500, run_addr + 0x0580); /* start: */ + stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ + stl_p(base + 0x520, run_addr + 0x0580); /* start: */ + stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ + stl_p(base + 0x534, run_addr + 0x0808); /* print: */ + stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ + stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ + stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ + stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ + stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ + stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ + stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ + stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ + + + /* Second part of the bootloader */ + p = (uint32_t *) (base + 0x580); + + if (semihosting_get_argc()) { + /* Preserve a0 content as arguments have been passed */ + stl_p(p++, 0x00000000); /* nop */ + } else { + stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */ + } + + /* lui sp, high(ENVP_VADDR) */ + stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff)); + /* ori sp, sp, low(ENVP_VADDR) */ + stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff)); + /* lui a1, high(ENVP_VADDR) */ + stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff)); + /* ori a1, a1, low(ENVP_VADDR) */ + stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff)); + /* lui a2, high(ENVP_VADDR + 8) */ + stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff)); + /* ori a2, a2, low(ENVP_VADDR + 8) */ + stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff)); + /* lui a3, high(ram_low_size) */ + stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); + /* ori a3, a3, low(ram_low_size) */ + stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); + + /* Load BAR registers as done by YAMON */ + stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */ + +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */ +#else + stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */ +#endif + stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */ + + stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */ + +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */ +#else + stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */ +#endif + stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */ +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */ +#else + stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */ +#endif + stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */ + +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */ +#else + stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */ +#endif + stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */ +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */ +#else + stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */ +#endif + stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */ + +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */ +#else + stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */ +#endif + stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */ +#ifdef TARGET_WORDS_BIGENDIAN + stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */ +#else + stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */ +#endif + stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */ + + /* Jump to kernel code */ + stl_p(p++, 0x3c1f0000 | + ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */ + stl_p(p++, 0x37ff0000 | + (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */ + stl_p(p++, 0x03e00009); /* jalr ra */ + stl_p(p++, 0x00000000); /* nop */ + + /* YAMON subroutines */ + p = (uint32_t *) (base + 0x800); + stl_p(p++, 0x03e00009); /* jalr ra */ + stl_p(p++, 0x24020000); /* li v0,0 */ + /* 808 YAMON print */ + stl_p(p++, 0x03e06821); /* move t5,ra */ + stl_p(p++, 0x00805821); /* move t3,a0 */ + stl_p(p++, 0x00a05021); /* move t2,a1 */ + stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ + stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ + stl_p(p++, 0x10800005); /* beqz a0,834 */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x0ff0021c); /* jal 870 */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x1000fff9); /* b 814 */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x01a00009); /* jalr t5 */ + stl_p(p++, 0x01602021); /* move a0,t3 */ + /* 0x83c YAMON print_count */ + stl_p(p++, 0x03e06821); /* move t5,ra */ + stl_p(p++, 0x00805821); /* move t3,a0 */ + stl_p(p++, 0x00a05021); /* move t2,a1 */ + stl_p(p++, 0x00c06021); /* move t4,a2 */ + stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ + stl_p(p++, 0x0ff0021c); /* jal 870 */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ + stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ + stl_p(p++, 0x1580fffa); /* bnez t4,84c */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x01a00009); /* jalr t5 */ + stl_p(p++, 0x01602021); /* move a0,t3 */ + /* 0x870 */ + stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ + stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ + stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ + stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ + stl_p(p++, 0x00000000); /* nop */ + stl_p(p++, 0x03e00009); /* jalr ra */ + stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ + +} + +static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index, + const char *string, ...) +{ + va_list ap; + uint32_t table_addr; + + if (index >= ENVP_NB_ENTRIES) { + return; + } + + if (string == NULL) { + prom_buf[index] = 0; + return; + } + + table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; + prom_buf[index] = tswap32(ENVP_VADDR + table_addr); + + va_start(ap, string); + vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); + va_end(ap); +} + +/* Kernel */ +static uint64_t load_kernel(void) +{ + uint64_t kernel_entry, kernel_high, initrd_size; + long kernel_size; + ram_addr_t initrd_offset; + int big_endian; + uint32_t *prom_buf; + long prom_size; + int prom_index = 0; + uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr); + +#ifdef TARGET_WORDS_BIGENDIAN + big_endian = 1; +#else + big_endian = 0; +#endif + + kernel_size = load_elf(loaderparams.kernel_filename, NULL, + cpu_mips_kseg0_to_phys, NULL, + &kernel_entry, NULL, + &kernel_high, NULL, big_endian, EM_MIPS, + 1, 0); + if (kernel_size < 0) { + error_report("could not load kernel '%s': %s", + loaderparams.kernel_filename, + load_elf_strerror(kernel_size)); + exit(1); + } + + /* Check where the kernel has been linked */ + if (kernel_entry & 0x80000000ll) { + if (kvm_enabled()) { + error_report("KVM guest kernels must be linked in useg. " + "Did you forget to enable CONFIG_KVM_GUEST?"); + exit(1); + } + + xlate_to_kseg0 = cpu_mips_phys_to_kseg0; + } else { + /* if kernel entry is in useg it is probably a KVM T&E kernel */ + mips_um_ksegs_enable(); + + xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0; + } + + /* load initrd */ + initrd_size = 0; + initrd_offset = 0; + if (loaderparams.initrd_filename) { + initrd_size = get_image_size(loaderparams.initrd_filename); + if (initrd_size > 0) { + /* + * The kernel allocates the bootmap memory in the low memory after + * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB + * pages. + */ + initrd_offset = ROUND_UP(loaderparams.ram_low_size + - (initrd_size + 128 * KiB), + INITRD_PAGE_SIZE); + if (kernel_high >= initrd_offset) { + error_report("memory too small for initial ram disk '%s'", + loaderparams.initrd_filename); + exit(1); + } + initrd_size = load_image_targphys(loaderparams.initrd_filename, + initrd_offset, + loaderparams.ram_size - initrd_offset); + } + if (initrd_size == (target_ulong) -1) { + error_report("could not load initial ram disk '%s'", + loaderparams.initrd_filename); + exit(1); + } + } + + /* Setup prom parameters. */ + prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); + prom_buf = g_malloc(prom_size); + + prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); + if (initrd_size > 0) { + prom_set(prom_buf, prom_index++, + "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", + xlate_to_kseg0(NULL, initrd_offset), + initrd_size, loaderparams.kernel_cmdline); + } else { + prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); + } + + prom_set(prom_buf, prom_index++, "memsize"); + prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); + + prom_set(prom_buf, prom_index++, "ememsize"); + prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); + + prom_set(prom_buf, prom_index++, "modetty0"); + prom_set(prom_buf, prom_index++, "38400n8r"); + prom_set(prom_buf, prom_index++, NULL); + + rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR); + + g_free(prom_buf); + return kernel_entry; +} + +static void malta_mips_config(MIPSCPU *cpu) +{ + MachineState *ms = MACHINE(qdev_get_machine()); + unsigned int smp_cpus = ms->smp.cpus; + CPUMIPSState *env = &cpu->env; + CPUState *cs = CPU(cpu); + + if (ase_mt_available(env)) { + env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, + CP0MVPC0_PTC, 8, + smp_cpus * cs->nr_threads - 1); + env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, + CP0MVPC0_PVPE, 4, smp_cpus - 1); + } +} + +static void main_cpu_reset(void *opaque) +{ + MIPSCPU *cpu = opaque; + CPUMIPSState *env = &cpu->env; + + cpu_reset(CPU(cpu)); + + /* + * The bootloader does not need to be rewritten as it is located in a + * read only location. The kernel location and the arguments table + * location does not change. + */ + if (loaderparams.kernel_filename) { + env->CP0_Status &= ~(1 << CP0St_ERL); + } + + malta_mips_config(cpu); + + if (kvm_enabled()) { + /* Start running from the bootloader we wrote to end of RAM */ + env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size; + } +} + +static void create_cpu_without_cps(MachineState *ms, MaltaState *s, + qemu_irq *cbus_irq, qemu_irq *i8259_irq) +{ + CPUMIPSState *env; + MIPSCPU *cpu; + int i; + + for (i = 0; i < ms->smp.cpus; i++) { + cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk); + + /* Init internal devices */ + cpu_mips_irq_init_cpu(cpu); + cpu_mips_clock_init(cpu); + qemu_register_reset(main_cpu_reset, cpu); + } + + cpu = MIPS_CPU(first_cpu); + env = &cpu->env; + *i8259_irq = env->irq[2]; + *cbus_irq = env->irq[4]; +} + +static void create_cps(MachineState *ms, MaltaState *s, + qemu_irq *cbus_irq, qemu_irq *i8259_irq) +{ + object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS); + object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type, + &error_fatal); + object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus, + &error_fatal); + qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk); + sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); + + sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); + + *i8259_irq = get_cps_irq(&s->cps, 3); + *cbus_irq = NULL; +} + +static void mips_create_cpu(MachineState *ms, MaltaState *s, + qemu_irq *cbus_irq, qemu_irq *i8259_irq) +{ + if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) { + create_cps(ms, s, cbus_irq, i8259_irq); + } else { + create_cpu_without_cps(ms, s, cbus_irq, i8259_irq); + } +} + +static +void mips_malta_init(MachineState *machine) +{ + ram_addr_t ram_size = machine->ram_size; + ram_addr_t ram_low_size; + const char *kernel_filename = machine->kernel_filename; + const char *kernel_cmdline = machine->kernel_cmdline; + const char *initrd_filename = machine->initrd_filename; + char *filename; + PFlashCFI01 *fl; + MemoryRegion *system_memory = get_system_memory(); + MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); + MemoryRegion *ram_low_postio; + MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); + const size_t smbus_eeprom_size = 8 * 256; + uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); + uint64_t kernel_entry, bootloader_run_addr; + PCIBus *pci_bus; + ISABus *isa_bus; + qemu_irq cbus_irq, i8259_irq; + I2CBus *smbus; + DriveInfo *dinfo; + int fl_idx = 0; + int be; + MaltaState *s; + DeviceState *dev; + + s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA)); + sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal); + + /* create CPU */ + mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); + + /* allocate RAM */ + if (ram_size > 2 * GiB) { + error_report("Too much memory for this machine: %" PRId64 "MB," + " maximum 2048MB", ram_size / MiB); + exit(1); + } + + /* register RAM at high address where it is undisturbed by IO */ + memory_region_add_subregion(system_memory, 0x80000000, machine->ram); + + /* alias for pre IO hole access */ + memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", + machine->ram, 0, MIN(ram_size, 256 * MiB)); + memory_region_add_subregion(system_memory, 0, ram_low_preio); + + /* alias for post IO hole access, if there is enough RAM */ + if (ram_size > 512 * MiB) { + ram_low_postio = g_new(MemoryRegion, 1); + memory_region_init_alias(ram_low_postio, NULL, + "mips_malta_low_postio.ram", + machine->ram, 512 * MiB, + ram_size - 512 * MiB); + memory_region_add_subregion(system_memory, 512 * MiB, + ram_low_postio); + } + +#ifdef TARGET_WORDS_BIGENDIAN + be = 1; +#else + be = 0; +#endif + + /* FPGA */ + + /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ + malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); + + /* Load firmware in flash / BIOS. */ + dinfo = drive_get(IF_PFLASH, 0, fl_idx); + fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", + FLASH_SIZE, + dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, + 65536, + 4, 0x0000, 0x0000, 0x0000, 0x0000, be); + bios = pflash_cfi01_get_memory(fl); + fl_idx++; + if (kernel_filename) { + ram_low_size = MIN(ram_size, 256 * MiB); + /* For KVM we reserve 1MB of RAM for running bootloader */ + if (kvm_enabled()) { + ram_low_size -= 0x100000; + bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size); + } else { + bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS); + } + + /* Write a small bootloader to the flash location. */ + loaderparams.ram_size = ram_size; + loaderparams.ram_low_size = ram_low_size; + loaderparams.kernel_filename = kernel_filename; + loaderparams.kernel_cmdline = kernel_cmdline; + loaderparams.initrd_filename = initrd_filename; + kernel_entry = load_kernel(); + + if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { + write_bootloader(memory_region_get_ram_ptr(bios), + bootloader_run_addr, kernel_entry); + } else { + write_bootloader_nanomips(memory_region_get_ram_ptr(bios), + bootloader_run_addr, kernel_entry); + } + if (kvm_enabled()) { + /* Write the bootloader code @ the end of RAM, 1MB reserved */ + write_bootloader(memory_region_get_ram_ptr(ram_low_preio) + + ram_low_size, + bootloader_run_addr, kernel_entry); + } + } else { + target_long bios_size = FLASH_SIZE; + /* The flash region isn't executable from a KVM guest */ + if (kvm_enabled()) { + error_report("KVM enabled but no -kernel argument was specified. " + "Booting from flash is not supported with KVM."); + exit(1); + } + /* Load firmware from flash. */ + if (!dinfo) { + /* Load a BIOS image. */ + filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, + machine->firmware ?: BIOS_FILENAME); + if (filename) { + bios_size = load_image_targphys(filename, FLASH_ADDRESS, + BIOS_SIZE); + g_free(filename); + } else { + bios_size = -1; + } + if ((bios_size < 0 || bios_size > BIOS_SIZE) && + machine->firmware && !qtest_enabled()) { + error_report("Could not load MIPS bios '%s'", machine->firmware); + exit(1); + } + } + /* + * In little endian mode the 32bit words in the bios are swapped, + * a neat trick which allows bi-endian firmware. + */ +#ifndef TARGET_WORDS_BIGENDIAN + { + uint32_t *end, *addr; + const size_t swapsize = MIN(bios_size, 0x3e0000); + addr = rom_ptr(FLASH_ADDRESS, swapsize); + if (!addr) { + addr = memory_region_get_ram_ptr(bios); + } + end = (void *)addr + swapsize; + while (addr < end) { + bswap32s(addr); + addr++; + } + } +#endif + } + + /* + * Map the BIOS at a 2nd physical location, as on the real board. + * Copy it so that we can patch in the MIPS revision, which cannot be + * handled by an overlapping region as the resulting ROM code subpage + * regions are not executable. + */ + memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, + &error_fatal); + if (!rom_copy(memory_region_get_ram_ptr(bios_copy), + FLASH_ADDRESS, BIOS_SIZE)) { + memcpy(memory_region_get_ram_ptr(bios_copy), + memory_region_get_ram_ptr(bios), BIOS_SIZE); + } + memory_region_set_readonly(bios_copy, true); + memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); + + /* Board ID = 0x420 (Malta Board with CoreLV) */ + stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); + + /* Northbridge */ + pci_bus = gt64120_register(s->i8259); + /* + * The whole address space decoded by the GT-64120A doesn't generate + * exception when accessing invalid memory. Create an empty slot to + * emulate this feature. + */ + empty_slot_init("GT64120", 0, 0x20000000); + + /* Southbridge */ + dev = piix4_create(pci_bus, &isa_bus, &smbus); + + /* Interrupt controller */ + qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq); + for (int i = 0; i < ISA_NUM_IRQS; i++) { + s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i); + } + + /* generate SPD EEPROM data */ + generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); + generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); + smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); + g_free(smbus_eeprom_buf); + + /* Super I/O: SMS FDC37M817 */ + isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); + + /* Network card */ + network_init(pci_bus); + + /* Optional PCI video card */ + pci_vga_init(pci_bus); +} + +static void mips_malta_instance_init(Object *obj) +{ + MaltaState *s = MIPS_MALTA(obj); + + s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); + clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */ +} + +static const TypeInfo mips_malta_device = { + .name = TYPE_MIPS_MALTA, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(MaltaState), + .instance_init = mips_malta_instance_init, +}; + +static void mips_malta_machine_init(MachineClass *mc) +{ + mc->desc = "MIPS Malta Core LV"; + mc->init = mips_malta_init; + mc->block_default_type = IF_IDE; + mc->max_cpus = 16; + mc->is_default = true; +#ifdef TARGET_MIPS64 + mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); +#else + mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); +#endif + mc->default_ram_id = "mips_malta.ram"; +} + +DEFINE_MACHINE("malta", mips_malta_machine_init) + +static void mips_malta_register_types(void) +{ + type_register_static(&mips_malta_device); +} + +type_init(mips_malta_register_types) |