aboutsummaryrefslogtreecommitdiffstats
path: root/hw/mips/malta.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/mips/malta.c')
-rw-r--r--hw/mips/malta.c1464
1 files changed, 1464 insertions, 0 deletions
diff --git a/hw/mips/malta.c b/hw/mips/malta.c
new file mode 100644
index 000000000..b770b8d36
--- /dev/null
+++ b/hw/mips/malta.c
@@ -0,0 +1,1464 @@
+/*
+ * QEMU Malta board support
+ *
+ * Copyright (c) 2006 Aurelien Jarno
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/units.h"
+#include "qemu/bitops.h"
+#include "qemu-common.h"
+#include "qemu/datadir.h"
+#include "hw/clock.h"
+#include "hw/southbridge/piix.h"
+#include "hw/isa/superio.h"
+#include "hw/char/serial.h"
+#include "net/net.h"
+#include "hw/boards.h"
+#include "hw/i2c/smbus_eeprom.h"
+#include "hw/block/flash.h"
+#include "hw/mips/mips.h"
+#include "hw/mips/cpudevs.h"
+#include "hw/pci/pci.h"
+#include "qemu/log.h"
+#include "hw/mips/bios.h"
+#include "hw/ide.h"
+#include "hw/irq.h"
+#include "hw/loader.h"
+#include "elf.h"
+#include "qom/object.h"
+#include "hw/sysbus.h" /* SysBusDevice */
+#include "qemu/host-utils.h"
+#include "sysemu/qtest.h"
+#include "sysemu/reset.h"
+#include "sysemu/runstate.h"
+#include "qapi/error.h"
+#include "qemu/error-report.h"
+#include "hw/misc/empty_slot.h"
+#include "sysemu/kvm.h"
+#include "semihosting/semihost.h"
+#include "hw/mips/cps.h"
+#include "hw/qdev-clock.h"
+
+#define ENVP_PADDR 0x2000
+#define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
+#define ENVP_NB_ENTRIES 16
+#define ENVP_ENTRY_SIZE 256
+
+/* Hardware addresses */
+#define FLASH_ADDRESS 0x1e000000ULL
+#define FPGA_ADDRESS 0x1f000000ULL
+#define RESET_ADDRESS 0x1fc00000ULL
+
+#define FLASH_SIZE 0x400000
+
+#define MAX_IDE_BUS 2
+
+typedef struct {
+ MemoryRegion iomem;
+ MemoryRegion iomem_lo; /* 0 - 0x900 */
+ MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
+ uint32_t leds;
+ uint32_t brk;
+ uint32_t gpout;
+ uint32_t i2cin;
+ uint32_t i2coe;
+ uint32_t i2cout;
+ uint32_t i2csel;
+ CharBackend display;
+ char display_text[9];
+ SerialMM *uart;
+ bool display_inited;
+} MaltaFPGAState;
+
+#define TYPE_MIPS_MALTA "mips-malta"
+OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
+
+struct MaltaState {
+ SysBusDevice parent_obj;
+
+ Clock *cpuclk;
+ MIPSCPSState cps;
+ qemu_irq i8259[ISA_NUM_IRQS];
+};
+
+static struct _loaderparams {
+ int ram_size, ram_low_size;
+ const char *kernel_filename;
+ const char *kernel_cmdline;
+ const char *initrd_filename;
+} loaderparams;
+
+/* Malta FPGA */
+static void malta_fpga_update_display(void *opaque)
+{
+ char leds_text[9];
+ int i;
+ MaltaFPGAState *s = opaque;
+
+ for (i = 7 ; i >= 0 ; i--) {
+ if (s->leds & (1 << i)) {
+ leds_text[i] = '#';
+ } else {
+ leds_text[i] = ' ';
+ }
+ }
+ leds_text[8] = '\0';
+
+ qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
+ leds_text);
+ qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
+ s->display_text);
+}
+
+/*
+ * EEPROM 24C01 / 24C02 emulation.
+ *
+ * Emulation for serial EEPROMs:
+ * 24C01 - 1024 bit (128 x 8)
+ * 24C02 - 2048 bit (256 x 8)
+ *
+ * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
+ */
+
+#if defined(DEBUG)
+# define logout(fmt, ...) \
+ fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
+#else
+# define logout(fmt, ...) ((void)0)
+#endif
+
+struct _eeprom24c0x_t {
+ uint8_t tick;
+ uint8_t address;
+ uint8_t command;
+ uint8_t ack;
+ uint8_t scl;
+ uint8_t sda;
+ uint8_t data;
+ /* uint16_t size; */
+ uint8_t contents[256];
+};
+
+typedef struct _eeprom24c0x_t eeprom24c0x_t;
+
+static eeprom24c0x_t spd_eeprom = {
+ .contents = {
+ /* 00000000: */
+ 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
+ /* 00000008: */
+ 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
+ /* 00000010: */
+ 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
+ /* 00000018: */
+ 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
+ /* 00000020: */
+ 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
+ /* 00000028: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000030: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000038: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
+ /* 00000040: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000048: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000050: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000058: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000060: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000068: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000070: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ /* 00000078: */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
+ },
+};
+
+static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
+{
+ enum { SDR = 0x4, DDR2 = 0x8 } type;
+ uint8_t *spd = spd_eeprom.contents;
+ uint8_t nbanks = 0;
+ uint16_t density = 0;
+ int i;
+
+ /* work in terms of MB */
+ ram_size /= MiB;
+
+ while ((ram_size >= 4) && (nbanks <= 2)) {
+ int sz_log2 = MIN(31 - clz32(ram_size), 14);
+ nbanks++;
+ density |= 1 << (sz_log2 - 2);
+ ram_size -= 1 << sz_log2;
+ }
+
+ /* split to 2 banks if possible */
+ if ((nbanks == 1) && (density > 1)) {
+ nbanks++;
+ density >>= 1;
+ }
+
+ if (density & 0xff00) {
+ density = (density & 0xe0) | ((density >> 8) & 0x1f);
+ type = DDR2;
+ } else if (!(density & 0x1f)) {
+ type = DDR2;
+ } else {
+ type = SDR;
+ }
+
+ if (ram_size) {
+ warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
+ " of SDRAM", ram_size);
+ }
+
+ /* fill in SPD memory information */
+ spd[2] = type;
+ spd[5] = nbanks;
+ spd[31] = density;
+
+ /* checksum */
+ spd[63] = 0;
+ for (i = 0; i < 63; i++) {
+ spd[63] += spd[i];
+ }
+
+ /* copy for SMBUS */
+ memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
+}
+
+static void generate_eeprom_serial(uint8_t *eeprom)
+{
+ int i, pos = 0;
+ uint8_t mac[6] = { 0x00 };
+ uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
+
+ /* version */
+ eeprom[pos++] = 0x01;
+
+ /* count */
+ eeprom[pos++] = 0x02;
+
+ /* MAC address */
+ eeprom[pos++] = 0x01; /* MAC */
+ eeprom[pos++] = 0x06; /* length */
+ memcpy(&eeprom[pos], mac, sizeof(mac));
+ pos += sizeof(mac);
+
+ /* serial number */
+ eeprom[pos++] = 0x02; /* serial */
+ eeprom[pos++] = 0x05; /* length */
+ memcpy(&eeprom[pos], sn, sizeof(sn));
+ pos += sizeof(sn);
+
+ /* checksum */
+ eeprom[pos] = 0;
+ for (i = 0; i < pos; i++) {
+ eeprom[pos] += eeprom[i];
+ }
+}
+
+static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
+{
+ logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
+ eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
+ return eeprom->sda;
+}
+
+static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
+{
+ if (eeprom->scl && scl && (eeprom->sda != sda)) {
+ logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
+ eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
+ sda ? "stop" : "start");
+ if (!sda) {
+ eeprom->tick = 1;
+ eeprom->command = 0;
+ }
+ } else if (eeprom->tick == 0 && !eeprom->ack) {
+ /* Waiting for start. */
+ logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
+ eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
+ } else if (!eeprom->scl && scl) {
+ logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
+ eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
+ if (eeprom->ack) {
+ logout("\ti2c ack bit = 0\n");
+ sda = 0;
+ eeprom->ack = 0;
+ } else if (eeprom->sda == sda) {
+ uint8_t bit = (sda != 0);
+ logout("\ti2c bit = %d\n", bit);
+ if (eeprom->tick < 9) {
+ eeprom->command <<= 1;
+ eeprom->command += bit;
+ eeprom->tick++;
+ if (eeprom->tick == 9) {
+ logout("\tcommand 0x%04x, %s\n", eeprom->command,
+ bit ? "read" : "write");
+ eeprom->ack = 1;
+ }
+ } else if (eeprom->tick < 17) {
+ if (eeprom->command & 1) {
+ sda = ((eeprom->data & 0x80) != 0);
+ }
+ eeprom->address <<= 1;
+ eeprom->address += bit;
+ eeprom->tick++;
+ eeprom->data <<= 1;
+ if (eeprom->tick == 17) {
+ eeprom->data = eeprom->contents[eeprom->address];
+ logout("\taddress 0x%04x, data 0x%02x\n",
+ eeprom->address, eeprom->data);
+ eeprom->ack = 1;
+ eeprom->tick = 0;
+ }
+ } else if (eeprom->tick >= 17) {
+ sda = 0;
+ }
+ } else {
+ logout("\tsda changed with raising scl\n");
+ }
+ } else {
+ logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
+ scl, eeprom->sda, sda);
+ }
+ eeprom->scl = scl;
+ eeprom->sda = sda;
+}
+
+static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
+ unsigned size)
+{
+ MaltaFPGAState *s = opaque;
+ uint32_t val = 0;
+ uint32_t saddr;
+
+ saddr = (addr & 0xfffff);
+
+ switch (saddr) {
+
+ /* SWITCH Register */
+ case 0x00200:
+ val = 0x00000000;
+ break;
+
+ /* STATUS Register */
+ case 0x00208:
+#ifdef TARGET_WORDS_BIGENDIAN
+ val = 0x00000012;
+#else
+ val = 0x00000010;
+#endif
+ break;
+
+ /* JMPRS Register */
+ case 0x00210:
+ val = 0x00;
+ break;
+
+ /* LEDBAR Register */
+ case 0x00408:
+ val = s->leds;
+ break;
+
+ /* BRKRES Register */
+ case 0x00508:
+ val = s->brk;
+ break;
+
+ /* UART Registers are handled directly by the serial device */
+
+ /* GPOUT Register */
+ case 0x00a00:
+ val = s->gpout;
+ break;
+
+ /* XXX: implement a real I2C controller */
+
+ /* GPINP Register */
+ case 0x00a08:
+ /* IN = OUT until a real I2C control is implemented */
+ if (s->i2csel) {
+ val = s->i2cout;
+ } else {
+ val = 0x00;
+ }
+ break;
+
+ /* I2CINP Register */
+ case 0x00b00:
+ val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
+ break;
+
+ /* I2COE Register */
+ case 0x00b08:
+ val = s->i2coe;
+ break;
+
+ /* I2COUT Register */
+ case 0x00b10:
+ val = s->i2cout;
+ break;
+
+ /* I2CSEL Register */
+ case 0x00b18:
+ val = s->i2csel;
+ break;
+
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
+ addr);
+ break;
+ }
+ return val;
+}
+
+static void malta_fpga_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
+{
+ MaltaFPGAState *s = opaque;
+ uint32_t saddr;
+
+ saddr = (addr & 0xfffff);
+
+ switch (saddr) {
+
+ /* SWITCH Register */
+ case 0x00200:
+ break;
+
+ /* JMPRS Register */
+ case 0x00210:
+ break;
+
+ /* LEDBAR Register */
+ case 0x00408:
+ s->leds = val & 0xff;
+ malta_fpga_update_display(s);
+ break;
+
+ /* ASCIIWORD Register */
+ case 0x00410:
+ snprintf(s->display_text, 9, "%08X", (uint32_t)val);
+ malta_fpga_update_display(s);
+ break;
+
+ /* ASCIIPOS0 to ASCIIPOS7 Registers */
+ case 0x00418:
+ case 0x00420:
+ case 0x00428:
+ case 0x00430:
+ case 0x00438:
+ case 0x00440:
+ case 0x00448:
+ case 0x00450:
+ s->display_text[(saddr - 0x00418) >> 3] = (char) val;
+ malta_fpga_update_display(s);
+ break;
+
+ /* SOFTRES Register */
+ case 0x00500:
+ if (val == 0x42) {
+ qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
+ }
+ break;
+
+ /* BRKRES Register */
+ case 0x00508:
+ s->brk = val & 0xff;
+ break;
+
+ /* UART Registers are handled directly by the serial device */
+
+ /* GPOUT Register */
+ case 0x00a00:
+ s->gpout = val & 0xff;
+ break;
+
+ /* I2COE Register */
+ case 0x00b08:
+ s->i2coe = val & 0x03;
+ break;
+
+ /* I2COUT Register */
+ case 0x00b10:
+ eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
+ s->i2cout = val;
+ break;
+
+ /* I2CSEL Register */
+ case 0x00b18:
+ s->i2csel = val & 0x01;
+ break;
+
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
+ addr);
+ break;
+ }
+}
+
+static const MemoryRegionOps malta_fpga_ops = {
+ .read = malta_fpga_read,
+ .write = malta_fpga_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static void malta_fpga_reset(void *opaque)
+{
+ MaltaFPGAState *s = opaque;
+
+ s->leds = 0x00;
+ s->brk = 0x0a;
+ s->gpout = 0x00;
+ s->i2cin = 0x3;
+ s->i2coe = 0x0;
+ s->i2cout = 0x3;
+ s->i2csel = 0x1;
+
+ s->display_text[8] = '\0';
+ snprintf(s->display_text, 9, " ");
+}
+
+static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
+{
+ MaltaFPGAState *s = opaque;
+
+ if (event == CHR_EVENT_OPENED && !s->display_inited) {
+ qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
+ qemu_chr_fe_printf(&s->display, "+--------+\r\n");
+ qemu_chr_fe_printf(&s->display, "+ +\r\n");
+ qemu_chr_fe_printf(&s->display, "+--------+\r\n");
+ qemu_chr_fe_printf(&s->display, "\n");
+ qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
+ qemu_chr_fe_printf(&s->display, "+--------+\r\n");
+ qemu_chr_fe_printf(&s->display, "+ +\r\n");
+ qemu_chr_fe_printf(&s->display, "+--------+\r\n");
+ s->display_inited = true;
+ }
+}
+
+static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
+ hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
+{
+ MaltaFPGAState *s;
+ Chardev *chr;
+
+ s = g_new0(MaltaFPGAState, 1);
+
+ memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
+ "malta-fpga", 0x100000);
+ memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
+ &s->iomem, 0, 0x900);
+ memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
+ &s->iomem, 0xa00, 0x100000 - 0xa00);
+
+ memory_region_add_subregion(address_space, base, &s->iomem_lo);
+ memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
+
+ chr = qemu_chr_new("fpga", "vc:320x200", NULL);
+ qemu_chr_fe_init(&s->display, chr, NULL);
+ qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
+ malta_fgpa_display_event, NULL, s, NULL, true);
+
+ s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
+ 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
+
+ malta_fpga_reset(s);
+ qemu_register_reset(malta_fpga_reset, s);
+
+ return s;
+}
+
+/* Network support */
+static void network_init(PCIBus *pci_bus)
+{
+ int i;
+
+ for (i = 0; i < nb_nics; i++) {
+ NICInfo *nd = &nd_table[i];
+ const char *default_devaddr = NULL;
+
+ if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
+ /* The malta board has a PCNet card using PCI SLOT 11 */
+ default_devaddr = "0b";
+
+ pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
+ }
+}
+
+static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
+ uint64_t kernel_entry)
+{
+ uint16_t *p;
+
+ /* Small bootloader */
+ p = (uint16_t *)base;
+
+#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
+#define NM_HI2(VAL) \
+ (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
+#define NM_LO(VAL) ((VAL) & 0xfff)
+
+ stw_p(p++, 0x2800); stw_p(p++, 0x001c);
+ /* bc to_here */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+
+ /* to_here: */
+ if (semihosting_get_argc()) {
+ /* Preserve a0 content as arguments have been passed */
+ stw_p(p++, 0x8000); stw_p(p++, 0xc000);
+ /* nop */
+ } else {
+ stw_p(p++, 0x0080); stw_p(p++, 0x0002);
+ /* li a0,2 */
+ }
+
+ stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
+
+ stw_p(p++, NM_HI2(ENVP_VADDR - 64));
+ /* lui sp,%hi(ENVP_VADDR - 64) */
+
+ stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
+ /* ori sp,sp,%lo(ENVP_VADDR - 64) */
+
+ stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
+
+ stw_p(p++, NM_HI2(ENVP_VADDR));
+ /* lui a1,%hi(ENVP_VADDR) */
+
+ stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
+ /* ori a1,a1,%lo(ENVP_VADDR) */
+
+ stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
+
+ stw_p(p++, NM_HI2(ENVP_VADDR + 8));
+ /* lui a2,%hi(ENVP_VADDR + 8) */
+
+ stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
+ /* ori a2,a2,%lo(ENVP_VADDR + 8) */
+
+ stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
+
+ stw_p(p++, NM_HI2(loaderparams.ram_low_size));
+ /* lui a3,%hi(loaderparams.ram_low_size) */
+
+ stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
+ /* ori a3,a3,%lo(loaderparams.ram_low_size) */
+
+ /*
+ * Load BAR registers as done by YAMON:
+ *
+ * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
+ * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
+ * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
+ *
+ */
+ stw_p(p++, 0xe040); stw_p(p++, 0x0681);
+ /* lui t1, %hi(0xb4000000) */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
+ /* lui t0, %hi(0xdf000000) */
+
+ /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9068);
+ /* sw t0, 0x68(t1) */
+
+ stw_p(p++, 0xe040); stw_p(p++, 0x077d);
+ /* lui t1, %hi(0xbbe00000) */
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x0801);
+ /* lui t0, %hi(0xc0000000) */
+
+ /* 0x48 corresponds to GT_PCI0IOLD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9048);
+ /* sw t0, 0x48(t1) */
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x0800);
+ /* lui t0, %hi(0x40000000) */
+
+ /* 0x50 corresponds to GT_PCI0IOHD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9050);
+ /* sw t0, 0x50(t1) */
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x0001);
+ /* lui t0, %hi(0x80000000) */
+
+ /* 0x58 corresponds to GT_PCI0M0LD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9058);
+ /* sw t0, 0x58(t1) */
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
+ /* lui t0, %hi(0x3f000000) */
+
+ /* 0x60 corresponds to GT_PCI0M0HD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9060);
+ /* sw t0, 0x60(t1) */
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x0821);
+ /* lui t0, %hi(0xc1000000) */
+
+ /* 0x80 corresponds to GT_PCI0M1LD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9080);
+ /* sw t0, 0x80(t1) */
+
+ stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
+ /* lui t0, %hi(0x5e000000) */
+
+#else
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x00df);
+ /* addiu[32] t0, $0, 0xdf */
+
+ /* 0x68 corresponds to GT_ISD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9068);
+ /* sw t0, 0x68(t1) */
+
+ /* Use kseg2 remapped address 0x1be00000 */
+ stw_p(p++, 0xe040); stw_p(p++, 0x077d);
+ /* lui t1, %hi(0xbbe00000) */
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
+ /* addiu[32] t0, $0, 0xc0 */
+
+ /* 0x48 corresponds to GT_PCI0IOLD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9048);
+ /* sw t0, 0x48(t1) */
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x0040);
+ /* addiu[32] t0, $0, 0x40 */
+
+ /* 0x50 corresponds to GT_PCI0IOHD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9050);
+ /* sw t0, 0x50(t1) */
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x0080);
+ /* addiu[32] t0, $0, 0x80 */
+
+ /* 0x58 corresponds to GT_PCI0M0LD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9058);
+ /* sw t0, 0x58(t1) */
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x003f);
+ /* addiu[32] t0, $0, 0x3f */
+
+ /* 0x60 corresponds to GT_PCI0M0HD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9060);
+ /* sw t0, 0x60(t1) */
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
+ /* addiu[32] t0, $0, 0xc1 */
+
+ /* 0x80 corresponds to GT_PCI0M1LD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9080);
+ /* sw t0, 0x80(t1) */
+
+ stw_p(p++, 0x0020); stw_p(p++, 0x005e);
+ /* addiu[32] t0, $0, 0x5e */
+
+#endif
+
+ /* 0x88 corresponds to GT_PCI0M1HD */
+ stw_p(p++, 0x8422); stw_p(p++, 0x9088);
+ /* sw t0, 0x88(t1) */
+
+ stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
+
+ stw_p(p++, NM_HI2(kernel_entry));
+ /* lui t9,%hi(kernel_entry) */
+
+ stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
+ /* ori t9,t9,%lo(kernel_entry) */
+
+ stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
+ /* jalrc t8 */
+}
+
+/*
+ * ROM and pseudo bootloader
+ *
+ * The following code implements a very very simple bootloader. It first
+ * loads the registers a0 to a3 to the values expected by the OS, and
+ * then jump at the kernel address.
+ *
+ * The bootloader should pass the locations of the kernel arguments and
+ * environment variables tables. Those tables contain the 32-bit address
+ * of NULL terminated strings. The environment variables table should be
+ * terminated by a NULL address.
+ *
+ * For a simpler implementation, the number of kernel arguments is fixed
+ * to two (the name of the kernel and the command line), and the two
+ * tables are actually the same one.
+ *
+ * The registers a0 to a3 should contain the following values:
+ * a0 - number of kernel arguments
+ * a1 - 32-bit address of the kernel arguments table
+ * a2 - 32-bit address of the environment variables table
+ * a3 - RAM size in bytes
+ */
+static void write_bootloader(uint8_t *base, uint64_t run_addr,
+ uint64_t kernel_entry)
+{
+ uint32_t *p;
+
+ /* Small bootloader */
+ p = (uint32_t *)base;
+
+ stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
+ ((run_addr + 0x580) & 0x0fffffff) >> 2);
+ stl_p(p++, 0x00000000); /* nop */
+
+ /* YAMON service vector */
+ stl_p(base + 0x500, run_addr + 0x0580); /* start: */
+ stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
+ stl_p(base + 0x520, run_addr + 0x0580); /* start: */
+ stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
+ stl_p(base + 0x534, run_addr + 0x0808); /* print: */
+ stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
+ stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
+ stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
+ stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
+ stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
+ stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
+ stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
+ stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
+
+
+ /* Second part of the bootloader */
+ p = (uint32_t *) (base + 0x580);
+
+ if (semihosting_get_argc()) {
+ /* Preserve a0 content as arguments have been passed */
+ stl_p(p++, 0x00000000); /* nop */
+ } else {
+ stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
+ }
+
+ /* lui sp, high(ENVP_VADDR) */
+ stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
+ /* ori sp, sp, low(ENVP_VADDR) */
+ stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
+ /* lui a1, high(ENVP_VADDR) */
+ stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
+ /* ori a1, a1, low(ENVP_VADDR) */
+ stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
+ /* lui a2, high(ENVP_VADDR + 8) */
+ stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
+ /* ori a2, a2, low(ENVP_VADDR + 8) */
+ stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
+ /* lui a3, high(ram_low_size) */
+ stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
+ /* ori a3, a3, low(ram_low_size) */
+ stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
+
+ /* Load BAR registers as done by YAMON */
+ stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
+#else
+ stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
+#endif
+ stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
+
+ stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
+#else
+ stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
+#endif
+ stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
+#else
+ stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
+#endif
+ stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
+#else
+ stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
+#endif
+ stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
+#else
+ stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
+#endif
+ stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
+#else
+ stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
+#endif
+ stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
+#ifdef TARGET_WORDS_BIGENDIAN
+ stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
+#else
+ stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
+#endif
+ stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
+
+ /* Jump to kernel code */
+ stl_p(p++, 0x3c1f0000 |
+ ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
+ stl_p(p++, 0x37ff0000 |
+ (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
+ stl_p(p++, 0x03e00009); /* jalr ra */
+ stl_p(p++, 0x00000000); /* nop */
+
+ /* YAMON subroutines */
+ p = (uint32_t *) (base + 0x800);
+ stl_p(p++, 0x03e00009); /* jalr ra */
+ stl_p(p++, 0x24020000); /* li v0,0 */
+ /* 808 YAMON print */
+ stl_p(p++, 0x03e06821); /* move t5,ra */
+ stl_p(p++, 0x00805821); /* move t3,a0 */
+ stl_p(p++, 0x00a05021); /* move t2,a1 */
+ stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
+ stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
+ stl_p(p++, 0x10800005); /* beqz a0,834 */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x0ff0021c); /* jal 870 */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x1000fff9); /* b 814 */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x01a00009); /* jalr t5 */
+ stl_p(p++, 0x01602021); /* move a0,t3 */
+ /* 0x83c YAMON print_count */
+ stl_p(p++, 0x03e06821); /* move t5,ra */
+ stl_p(p++, 0x00805821); /* move t3,a0 */
+ stl_p(p++, 0x00a05021); /* move t2,a1 */
+ stl_p(p++, 0x00c06021); /* move t4,a2 */
+ stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
+ stl_p(p++, 0x0ff0021c); /* jal 870 */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
+ stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
+ stl_p(p++, 0x1580fffa); /* bnez t4,84c */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x01a00009); /* jalr t5 */
+ stl_p(p++, 0x01602021); /* move a0,t3 */
+ /* 0x870 */
+ stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
+ stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
+ stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
+ stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
+ stl_p(p++, 0x00000000); /* nop */
+ stl_p(p++, 0x03e00009); /* jalr ra */
+ stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
+
+}
+
+static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
+ const char *string, ...)
+{
+ va_list ap;
+ uint32_t table_addr;
+
+ if (index >= ENVP_NB_ENTRIES) {
+ return;
+ }
+
+ if (string == NULL) {
+ prom_buf[index] = 0;
+ return;
+ }
+
+ table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
+ prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
+
+ va_start(ap, string);
+ vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
+ va_end(ap);
+}
+
+/* Kernel */
+static uint64_t load_kernel(void)
+{
+ uint64_t kernel_entry, kernel_high, initrd_size;
+ long kernel_size;
+ ram_addr_t initrd_offset;
+ int big_endian;
+ uint32_t *prom_buf;
+ long prom_size;
+ int prom_index = 0;
+ uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ big_endian = 1;
+#else
+ big_endian = 0;
+#endif
+
+ kernel_size = load_elf(loaderparams.kernel_filename, NULL,
+ cpu_mips_kseg0_to_phys, NULL,
+ &kernel_entry, NULL,
+ &kernel_high, NULL, big_endian, EM_MIPS,
+ 1, 0);
+ if (kernel_size < 0) {
+ error_report("could not load kernel '%s': %s",
+ loaderparams.kernel_filename,
+ load_elf_strerror(kernel_size));
+ exit(1);
+ }
+
+ /* Check where the kernel has been linked */
+ if (kernel_entry & 0x80000000ll) {
+ if (kvm_enabled()) {
+ error_report("KVM guest kernels must be linked in useg. "
+ "Did you forget to enable CONFIG_KVM_GUEST?");
+ exit(1);
+ }
+
+ xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
+ } else {
+ /* if kernel entry is in useg it is probably a KVM T&E kernel */
+ mips_um_ksegs_enable();
+
+ xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
+ }
+
+ /* load initrd */
+ initrd_size = 0;
+ initrd_offset = 0;
+ if (loaderparams.initrd_filename) {
+ initrd_size = get_image_size(loaderparams.initrd_filename);
+ if (initrd_size > 0) {
+ /*
+ * The kernel allocates the bootmap memory in the low memory after
+ * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
+ * pages.
+ */
+ initrd_offset = ROUND_UP(loaderparams.ram_low_size
+ - (initrd_size + 128 * KiB),
+ INITRD_PAGE_SIZE);
+ if (kernel_high >= initrd_offset) {
+ error_report("memory too small for initial ram disk '%s'",
+ loaderparams.initrd_filename);
+ exit(1);
+ }
+ initrd_size = load_image_targphys(loaderparams.initrd_filename,
+ initrd_offset,
+ loaderparams.ram_size - initrd_offset);
+ }
+ if (initrd_size == (target_ulong) -1) {
+ error_report("could not load initial ram disk '%s'",
+ loaderparams.initrd_filename);
+ exit(1);
+ }
+ }
+
+ /* Setup prom parameters. */
+ prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
+ prom_buf = g_malloc(prom_size);
+
+ prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
+ if (initrd_size > 0) {
+ prom_set(prom_buf, prom_index++,
+ "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
+ xlate_to_kseg0(NULL, initrd_offset),
+ initrd_size, loaderparams.kernel_cmdline);
+ } else {
+ prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
+ }
+
+ prom_set(prom_buf, prom_index++, "memsize");
+ prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
+
+ prom_set(prom_buf, prom_index++, "ememsize");
+ prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
+
+ prom_set(prom_buf, prom_index++, "modetty0");
+ prom_set(prom_buf, prom_index++, "38400n8r");
+ prom_set(prom_buf, prom_index++, NULL);
+
+ rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
+
+ g_free(prom_buf);
+ return kernel_entry;
+}
+
+static void malta_mips_config(MIPSCPU *cpu)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+ unsigned int smp_cpus = ms->smp.cpus;
+ CPUMIPSState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+
+ if (ase_mt_available(env)) {
+ env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
+ CP0MVPC0_PTC, 8,
+ smp_cpus * cs->nr_threads - 1);
+ env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
+ CP0MVPC0_PVPE, 4, smp_cpus - 1);
+ }
+}
+
+static void main_cpu_reset(void *opaque)
+{
+ MIPSCPU *cpu = opaque;
+ CPUMIPSState *env = &cpu->env;
+
+ cpu_reset(CPU(cpu));
+
+ /*
+ * The bootloader does not need to be rewritten as it is located in a
+ * read only location. The kernel location and the arguments table
+ * location does not change.
+ */
+ if (loaderparams.kernel_filename) {
+ env->CP0_Status &= ~(1 << CP0St_ERL);
+ }
+
+ malta_mips_config(cpu);
+
+ if (kvm_enabled()) {
+ /* Start running from the bootloader we wrote to end of RAM */
+ env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
+ }
+}
+
+static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
+ qemu_irq *cbus_irq, qemu_irq *i8259_irq)
+{
+ CPUMIPSState *env;
+ MIPSCPU *cpu;
+ int i;
+
+ for (i = 0; i < ms->smp.cpus; i++) {
+ cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
+
+ /* Init internal devices */
+ cpu_mips_irq_init_cpu(cpu);
+ cpu_mips_clock_init(cpu);
+ qemu_register_reset(main_cpu_reset, cpu);
+ }
+
+ cpu = MIPS_CPU(first_cpu);
+ env = &cpu->env;
+ *i8259_irq = env->irq[2];
+ *cbus_irq = env->irq[4];
+}
+
+static void create_cps(MachineState *ms, MaltaState *s,
+ qemu_irq *cbus_irq, qemu_irq *i8259_irq)
+{
+ object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
+ object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
+ &error_fatal);
+ object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
+ &error_fatal);
+ qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
+ sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
+
+ sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
+
+ *i8259_irq = get_cps_irq(&s->cps, 3);
+ *cbus_irq = NULL;
+}
+
+static void mips_create_cpu(MachineState *ms, MaltaState *s,
+ qemu_irq *cbus_irq, qemu_irq *i8259_irq)
+{
+ if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
+ create_cps(ms, s, cbus_irq, i8259_irq);
+ } else {
+ create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
+ }
+}
+
+static
+void mips_malta_init(MachineState *machine)
+{
+ ram_addr_t ram_size = machine->ram_size;
+ ram_addr_t ram_low_size;
+ const char *kernel_filename = machine->kernel_filename;
+ const char *kernel_cmdline = machine->kernel_cmdline;
+ const char *initrd_filename = machine->initrd_filename;
+ char *filename;
+ PFlashCFI01 *fl;
+ MemoryRegion *system_memory = get_system_memory();
+ MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
+ MemoryRegion *ram_low_postio;
+ MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
+ const size_t smbus_eeprom_size = 8 * 256;
+ uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
+ uint64_t kernel_entry, bootloader_run_addr;
+ PCIBus *pci_bus;
+ ISABus *isa_bus;
+ qemu_irq cbus_irq, i8259_irq;
+ I2CBus *smbus;
+ DriveInfo *dinfo;
+ int fl_idx = 0;
+ int be;
+ MaltaState *s;
+ DeviceState *dev;
+
+ s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
+ sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
+
+ /* create CPU */
+ mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
+
+ /* allocate RAM */
+ if (ram_size > 2 * GiB) {
+ error_report("Too much memory for this machine: %" PRId64 "MB,"
+ " maximum 2048MB", ram_size / MiB);
+ exit(1);
+ }
+
+ /* register RAM at high address where it is undisturbed by IO */
+ memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
+
+ /* alias for pre IO hole access */
+ memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
+ machine->ram, 0, MIN(ram_size, 256 * MiB));
+ memory_region_add_subregion(system_memory, 0, ram_low_preio);
+
+ /* alias for post IO hole access, if there is enough RAM */
+ if (ram_size > 512 * MiB) {
+ ram_low_postio = g_new(MemoryRegion, 1);
+ memory_region_init_alias(ram_low_postio, NULL,
+ "mips_malta_low_postio.ram",
+ machine->ram, 512 * MiB,
+ ram_size - 512 * MiB);
+ memory_region_add_subregion(system_memory, 512 * MiB,
+ ram_low_postio);
+ }
+
+#ifdef TARGET_WORDS_BIGENDIAN
+ be = 1;
+#else
+ be = 0;
+#endif
+
+ /* FPGA */
+
+ /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
+ malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
+
+ /* Load firmware in flash / BIOS. */
+ dinfo = drive_get(IF_PFLASH, 0, fl_idx);
+ fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
+ FLASH_SIZE,
+ dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
+ 65536,
+ 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
+ bios = pflash_cfi01_get_memory(fl);
+ fl_idx++;
+ if (kernel_filename) {
+ ram_low_size = MIN(ram_size, 256 * MiB);
+ /* For KVM we reserve 1MB of RAM for running bootloader */
+ if (kvm_enabled()) {
+ ram_low_size -= 0x100000;
+ bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
+ } else {
+ bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
+ }
+
+ /* Write a small bootloader to the flash location. */
+ loaderparams.ram_size = ram_size;
+ loaderparams.ram_low_size = ram_low_size;
+ loaderparams.kernel_filename = kernel_filename;
+ loaderparams.kernel_cmdline = kernel_cmdline;
+ loaderparams.initrd_filename = initrd_filename;
+ kernel_entry = load_kernel();
+
+ if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
+ write_bootloader(memory_region_get_ram_ptr(bios),
+ bootloader_run_addr, kernel_entry);
+ } else {
+ write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
+ bootloader_run_addr, kernel_entry);
+ }
+ if (kvm_enabled()) {
+ /* Write the bootloader code @ the end of RAM, 1MB reserved */
+ write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
+ ram_low_size,
+ bootloader_run_addr, kernel_entry);
+ }
+ } else {
+ target_long bios_size = FLASH_SIZE;
+ /* The flash region isn't executable from a KVM guest */
+ if (kvm_enabled()) {
+ error_report("KVM enabled but no -kernel argument was specified. "
+ "Booting from flash is not supported with KVM.");
+ exit(1);
+ }
+ /* Load firmware from flash. */
+ if (!dinfo) {
+ /* Load a BIOS image. */
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
+ machine->firmware ?: BIOS_FILENAME);
+ if (filename) {
+ bios_size = load_image_targphys(filename, FLASH_ADDRESS,
+ BIOS_SIZE);
+ g_free(filename);
+ } else {
+ bios_size = -1;
+ }
+ if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
+ machine->firmware && !qtest_enabled()) {
+ error_report("Could not load MIPS bios '%s'", machine->firmware);
+ exit(1);
+ }
+ }
+ /*
+ * In little endian mode the 32bit words in the bios are swapped,
+ * a neat trick which allows bi-endian firmware.
+ */
+#ifndef TARGET_WORDS_BIGENDIAN
+ {
+ uint32_t *end, *addr;
+ const size_t swapsize = MIN(bios_size, 0x3e0000);
+ addr = rom_ptr(FLASH_ADDRESS, swapsize);
+ if (!addr) {
+ addr = memory_region_get_ram_ptr(bios);
+ }
+ end = (void *)addr + swapsize;
+ while (addr < end) {
+ bswap32s(addr);
+ addr++;
+ }
+ }
+#endif
+ }
+
+ /*
+ * Map the BIOS at a 2nd physical location, as on the real board.
+ * Copy it so that we can patch in the MIPS revision, which cannot be
+ * handled by an overlapping region as the resulting ROM code subpage
+ * regions are not executable.
+ */
+ memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
+ &error_fatal);
+ if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
+ FLASH_ADDRESS, BIOS_SIZE)) {
+ memcpy(memory_region_get_ram_ptr(bios_copy),
+ memory_region_get_ram_ptr(bios), BIOS_SIZE);
+ }
+ memory_region_set_readonly(bios_copy, true);
+ memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
+
+ /* Board ID = 0x420 (Malta Board with CoreLV) */
+ stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
+
+ /* Northbridge */
+ pci_bus = gt64120_register(s->i8259);
+ /*
+ * The whole address space decoded by the GT-64120A doesn't generate
+ * exception when accessing invalid memory. Create an empty slot to
+ * emulate this feature.
+ */
+ empty_slot_init("GT64120", 0, 0x20000000);
+
+ /* Southbridge */
+ dev = piix4_create(pci_bus, &isa_bus, &smbus);
+
+ /* Interrupt controller */
+ qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
+ for (int i = 0; i < ISA_NUM_IRQS; i++) {
+ s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
+ }
+
+ /* generate SPD EEPROM data */
+ generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
+ generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
+ smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
+ g_free(smbus_eeprom_buf);
+
+ /* Super I/O: SMS FDC37M817 */
+ isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
+
+ /* Network card */
+ network_init(pci_bus);
+
+ /* Optional PCI video card */
+ pci_vga_init(pci_bus);
+}
+
+static void mips_malta_instance_init(Object *obj)
+{
+ MaltaState *s = MIPS_MALTA(obj);
+
+ s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
+ clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
+}
+
+static const TypeInfo mips_malta_device = {
+ .name = TYPE_MIPS_MALTA,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(MaltaState),
+ .instance_init = mips_malta_instance_init,
+};
+
+static void mips_malta_machine_init(MachineClass *mc)
+{
+ mc->desc = "MIPS Malta Core LV";
+ mc->init = mips_malta_init;
+ mc->block_default_type = IF_IDE;
+ mc->max_cpus = 16;
+ mc->is_default = true;
+#ifdef TARGET_MIPS64
+ mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
+#else
+ mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
+#endif
+ mc->default_ram_id = "mips_malta.ram";
+}
+
+DEFINE_MACHINE("malta", mips_malta_machine_init)
+
+static void mips_malta_register_types(void)
+{
+ type_register_static(&mips_malta_device);
+}
+
+type_init(mips_malta_register_types)