diff options
Diffstat (limited to 'include/exec/ram_addr.h')
-rw-r--r-- | include/exec/ram_addr.h | 523 |
1 files changed, 523 insertions, 0 deletions
diff --git a/include/exec/ram_addr.h b/include/exec/ram_addr.h new file mode 100644 index 000000000..64fb936c7 --- /dev/null +++ b/include/exec/ram_addr.h @@ -0,0 +1,523 @@ +/* + * Declarations for cpu physical memory functions + * + * Copyright 2011 Red Hat, Inc. and/or its affiliates + * + * Authors: + * Avi Kivity <avi@redhat.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or + * later. See the COPYING file in the top-level directory. + * + */ + +/* + * This header is for use by exec.c and memory.c ONLY. Do not include it. + * The functions declared here will be removed soon. + */ + +#ifndef RAM_ADDR_H +#define RAM_ADDR_H + +#ifndef CONFIG_USER_ONLY +#include "cpu.h" +#include "sysemu/xen.h" +#include "sysemu/tcg.h" +#include "exec/ramlist.h" +#include "exec/ramblock.h" + +extern uint64_t total_dirty_pages; + +/** + * clear_bmap_size: calculate clear bitmap size + * + * @pages: number of guest pages + * @shift: guest page number shift + * + * Returns: number of bits for the clear bitmap + */ +static inline long clear_bmap_size(uint64_t pages, uint8_t shift) +{ + return DIV_ROUND_UP(pages, 1UL << shift); +} + +/** + * clear_bmap_set: set clear bitmap for the page range + * + * @rb: the ramblock to operate on + * @start: the start page number + * @size: number of pages to set in the bitmap + * + * Returns: None + */ +static inline void clear_bmap_set(RAMBlock *rb, uint64_t start, + uint64_t npages) +{ + uint8_t shift = rb->clear_bmap_shift; + + bitmap_set_atomic(rb->clear_bmap, start >> shift, + clear_bmap_size(npages, shift)); +} + +/** + * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set + * + * @rb: the ramblock to operate on + * @page: the page number to check + * + * Returns: true if the bit was set, false otherwise + */ +static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page) +{ + uint8_t shift = rb->clear_bmap_shift; + + return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1); +} + +static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset) +{ + return (b && b->host && offset < b->used_length) ? true : false; +} + +static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) +{ + assert(offset_in_ramblock(block, offset)); + return (char *)block->host + offset; +} + +static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr, + RAMBlock *rb) +{ + uint64_t host_addr_offset = + (uint64_t)(uintptr_t)(host_addr - (void *)rb->host); + return host_addr_offset >> TARGET_PAGE_BITS; +} + +bool ramblock_is_pmem(RAMBlock *rb); + +long qemu_minrampagesize(void); +long qemu_maxrampagesize(void); + +/** + * qemu_ram_alloc_from_file, + * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing + * file or device + * + * Parameters: + * @size: the size in bytes of the ram block + * @mr: the memory region where the ram block is + * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, + * RAM_NORESERVE. + * @mem_path or @fd: specify the backing file or device + * @readonly: true to open @path for reading, false for read/write. + * @errp: pointer to Error*, to store an error if it happens + * + * Return: + * On success, return a pointer to the ram block. + * On failure, return NULL. + */ +RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, + uint32_t ram_flags, const char *mem_path, + bool readonly, Error **errp); +RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, + uint32_t ram_flags, int fd, off_t offset, + bool readonly, Error **errp); + +RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, + MemoryRegion *mr, Error **errp); +RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr, + Error **errp); +RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, + void (*resized)(const char*, + uint64_t length, + void *host), + MemoryRegion *mr, Error **errp); +void qemu_ram_free(RAMBlock *block); + +int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp); + +void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length); + +/* Clear whole block of mem */ +static inline void qemu_ram_block_writeback(RAMBlock *block) +{ + qemu_ram_msync(block, 0, block->used_length); +} + +#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1) +#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE)) + +void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end); + +static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, + ram_addr_t length, + unsigned client) +{ + DirtyMemoryBlocks *blocks; + unsigned long end, page; + unsigned long idx, offset, base; + bool dirty = false; + + assert(client < DIRTY_MEMORY_NUM); + + end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; + page = start >> TARGET_PAGE_BITS; + + WITH_RCU_READ_LOCK_GUARD() { + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + base = page - offset; + while (page < end) { + unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); + unsigned long num = next - base; + unsigned long found = find_next_bit(blocks->blocks[idx], + num, offset); + if (found < num) { + dirty = true; + break; + } + + page = next; + idx++; + offset = 0; + base += DIRTY_MEMORY_BLOCK_SIZE; + } + } + + return dirty; +} + +static inline bool cpu_physical_memory_all_dirty(ram_addr_t start, + ram_addr_t length, + unsigned client) +{ + DirtyMemoryBlocks *blocks; + unsigned long end, page; + unsigned long idx, offset, base; + bool dirty = true; + + assert(client < DIRTY_MEMORY_NUM); + + end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; + page = start >> TARGET_PAGE_BITS; + + RCU_READ_LOCK_GUARD(); + + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + base = page - offset; + while (page < end) { + unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); + unsigned long num = next - base; + unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset); + if (found < num) { + dirty = false; + break; + } + + page = next; + idx++; + offset = 0; + base += DIRTY_MEMORY_BLOCK_SIZE; + } + + return dirty; +} + +static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, + unsigned client) +{ + return cpu_physical_memory_get_dirty(addr, 1, client); +} + +static inline bool cpu_physical_memory_is_clean(ram_addr_t addr) +{ + bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA); + bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE); + bool migration = + cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); + return !(vga && code && migration); +} + +static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start, + ram_addr_t length, + uint8_t mask) +{ + uint8_t ret = 0; + + if (mask & (1 << DIRTY_MEMORY_VGA) && + !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) { + ret |= (1 << DIRTY_MEMORY_VGA); + } + if (mask & (1 << DIRTY_MEMORY_CODE) && + !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) { + ret |= (1 << DIRTY_MEMORY_CODE); + } + if (mask & (1 << DIRTY_MEMORY_MIGRATION) && + !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) { + ret |= (1 << DIRTY_MEMORY_MIGRATION); + } + return ret; +} + +static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, + unsigned client) +{ + unsigned long page, idx, offset; + DirtyMemoryBlocks *blocks; + + assert(client < DIRTY_MEMORY_NUM); + + page = addr >> TARGET_PAGE_BITS; + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + + RCU_READ_LOCK_GUARD(); + + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + + set_bit_atomic(offset, blocks->blocks[idx]); +} + +static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, + ram_addr_t length, + uint8_t mask) +{ + DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM]; + unsigned long end, page; + unsigned long idx, offset, base; + int i; + + if (!mask && !xen_enabled()) { + return; + } + + end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; + page = start >> TARGET_PAGE_BITS; + + WITH_RCU_READ_LOCK_GUARD() { + for (i = 0; i < DIRTY_MEMORY_NUM; i++) { + blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]); + } + + idx = page / DIRTY_MEMORY_BLOCK_SIZE; + offset = page % DIRTY_MEMORY_BLOCK_SIZE; + base = page - offset; + while (page < end) { + unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); + + if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { + bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx], + offset, next - page); + } + if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { + bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx], + offset, next - page); + } + if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { + bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx], + offset, next - page); + } + + page = next; + idx++; + offset = 0; + base += DIRTY_MEMORY_BLOCK_SIZE; + } + } + + xen_hvm_modified_memory(start, length); +} + +#if !defined(_WIN32) +static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, + ram_addr_t start, + ram_addr_t pages) +{ + unsigned long i, j; + unsigned long page_number, c; + hwaddr addr; + ram_addr_t ram_addr; + unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; + unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE; + unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); + + /* start address is aligned at the start of a word? */ + if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && + (hpratio == 1)) { + unsigned long **blocks[DIRTY_MEMORY_NUM]; + unsigned long idx; + unsigned long offset; + long k; + long nr = BITS_TO_LONGS(pages); + + idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; + offset = BIT_WORD((start >> TARGET_PAGE_BITS) % + DIRTY_MEMORY_BLOCK_SIZE); + + WITH_RCU_READ_LOCK_GUARD() { + for (i = 0; i < DIRTY_MEMORY_NUM; i++) { + blocks[i] = + qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks; + } + + for (k = 0; k < nr; k++) { + if (bitmap[k]) { + unsigned long temp = leul_to_cpu(bitmap[k]); + + qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp); + + if (global_dirty_tracking) { + qatomic_or( + &blocks[DIRTY_MEMORY_MIGRATION][idx][offset], + temp); + if (unlikely( + global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) { + total_dirty_pages += ctpopl(temp); + } + } + + if (tcg_enabled()) { + qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], + temp); + } + } + + if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { + offset = 0; + idx++; + } + } + } + + xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS); + } else { + uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE; + + if (!global_dirty_tracking) { + clients &= ~(1 << DIRTY_MEMORY_MIGRATION); + } + + /* + * bitmap-traveling is faster than memory-traveling (for addr...) + * especially when most of the memory is not dirty. + */ + for (i = 0; i < len; i++) { + if (bitmap[i] != 0) { + c = leul_to_cpu(bitmap[i]); + if (unlikely(global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) { + total_dirty_pages += ctpopl(c); + } + do { + j = ctzl(c); + c &= ~(1ul << j); + page_number = (i * HOST_LONG_BITS + j) * hpratio; + addr = page_number * TARGET_PAGE_SIZE; + ram_addr = start + addr; + cpu_physical_memory_set_dirty_range(ram_addr, + TARGET_PAGE_SIZE * hpratio, clients); + } while (c != 0); + } + } + } +} +#endif /* not _WIN32 */ + +bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, + ram_addr_t length, + unsigned client); + +DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty + (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client); + +bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, + ram_addr_t start, + ram_addr_t length); + +static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start, + ram_addr_t length) +{ + cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION); + cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA); + cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE); +} + + +/* Called with RCU critical section */ +static inline +uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb, + ram_addr_t start, + ram_addr_t length) +{ + ram_addr_t addr; + unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS); + uint64_t num_dirty = 0; + unsigned long *dest = rb->bmap; + + /* start address and length is aligned at the start of a word? */ + if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) == + (start + rb->offset) && + !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) { + int k; + int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); + unsigned long * const *src; + unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE; + unsigned long offset = BIT_WORD((word * BITS_PER_LONG) % + DIRTY_MEMORY_BLOCK_SIZE); + unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); + + src = qatomic_rcu_read( + &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks; + + for (k = page; k < page + nr; k++) { + if (src[idx][offset]) { + unsigned long bits = qatomic_xchg(&src[idx][offset], 0); + unsigned long new_dirty; + new_dirty = ~dest[k]; + dest[k] |= bits; + new_dirty &= bits; + num_dirty += ctpopl(new_dirty); + } + + if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { + offset = 0; + idx++; + } + } + + if (rb->clear_bmap) { + /* + * Postpone the dirty bitmap clear to the point before we + * really send the pages, also we will split the clear + * dirty procedure into smaller chunks. + */ + clear_bmap_set(rb, start >> TARGET_PAGE_BITS, + length >> TARGET_PAGE_BITS); + } else { + /* Slow path - still do that in a huge chunk */ + memory_region_clear_dirty_bitmap(rb->mr, start, length); + } + } else { + ram_addr_t offset = rb->offset; + + for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { + if (cpu_physical_memory_test_and_clear_dirty( + start + addr + offset, + TARGET_PAGE_SIZE, + DIRTY_MEMORY_MIGRATION)) { + long k = (start + addr) >> TARGET_PAGE_BITS; + if (!test_and_set_bit(k, dest)) { + num_dirty++; + } + } + } + } + + return num_dirty; +} +#endif +#endif |