aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/UefiCpuPkg/Library/MpInitLib/MpLib.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/edk2/UefiCpuPkg/Library/MpInitLib/MpLib.c')
-rw-r--r--roms/edk2/UefiCpuPkg/Library/MpInitLib/MpLib.c2880
1 files changed, 2880 insertions, 0 deletions
diff --git a/roms/edk2/UefiCpuPkg/Library/MpInitLib/MpLib.c b/roms/edk2/UefiCpuPkg/Library/MpInitLib/MpLib.c
new file mode 100644
index 000000000..07426274f
--- /dev/null
+++ b/roms/edk2/UefiCpuPkg/Library/MpInitLib/MpLib.c
@@ -0,0 +1,2880 @@
+/** @file
+ CPU MP Initialize Library common functions.
+
+ Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>
+ Copyright (c) 2020, AMD Inc. All rights reserved.<BR>
+
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "MpLib.h"
+#include <Library/VmgExitLib.h>
+#include <Register/Amd/Fam17Msr.h>
+#include <Register/Amd/Ghcb.h>
+
+EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
+
+
+/**
+ The function will check if BSP Execute Disable is enabled.
+
+ DxeIpl may have enabled Execute Disable for BSP, APs need to
+ get the status and sync up the settings.
+ If BSP's CR0.Paging is not set, BSP execute Disble feature is
+ not working actually.
+
+ @retval TRUE BSP Execute Disable is enabled.
+ @retval FALSE BSP Execute Disable is not enabled.
+**/
+BOOLEAN
+IsBspExecuteDisableEnabled (
+ VOID
+ )
+{
+ UINT32 Eax;
+ CPUID_EXTENDED_CPU_SIG_EDX Edx;
+ MSR_IA32_EFER_REGISTER EferMsr;
+ BOOLEAN Enabled;
+ IA32_CR0 Cr0;
+
+ Enabled = FALSE;
+ Cr0.UintN = AsmReadCr0 ();
+ if (Cr0.Bits.PG != 0) {
+ //
+ // If CR0 Paging bit is set
+ //
+ AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
+ if (Eax >= CPUID_EXTENDED_CPU_SIG) {
+ AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
+ //
+ // CPUID 0x80000001
+ // Bit 20: Execute Disable Bit available.
+ //
+ if (Edx.Bits.NX != 0) {
+ EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
+ //
+ // MSR 0xC0000080
+ // Bit 11: Execute Disable Bit enable.
+ //
+ if (EferMsr.Bits.NXE != 0) {
+ Enabled = TRUE;
+ }
+ }
+ }
+ }
+
+ return Enabled;
+}
+
+/**
+ Worker function for SwitchBSP().
+
+ Worker function for SwitchBSP(), assigned to the AP which is intended
+ to become BSP.
+
+ @param[in] Buffer Pointer to CPU MP Data
+**/
+VOID
+EFIAPI
+FutureBSPProc (
+ IN VOID *Buffer
+ )
+{
+ CPU_MP_DATA *DataInHob;
+
+ DataInHob = (CPU_MP_DATA *) Buffer;
+ AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
+}
+
+/**
+ Get the Application Processors state.
+
+ @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
+
+ @return The AP status
+**/
+CPU_STATE
+GetApState (
+ IN CPU_AP_DATA *CpuData
+ )
+{
+ return CpuData->State;
+}
+
+/**
+ Set the Application Processors state.
+
+ @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
+ @param[in] State The AP status
+**/
+VOID
+SetApState (
+ IN CPU_AP_DATA *CpuData,
+ IN CPU_STATE State
+ )
+{
+ AcquireSpinLock (&CpuData->ApLock);
+ CpuData->State = State;
+ ReleaseSpinLock (&CpuData->ApLock);
+}
+
+/**
+ Save BSP's local APIC timer setting.
+
+ @param[in] CpuMpData Pointer to CPU MP Data
+**/
+VOID
+SaveLocalApicTimerSetting (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ //
+ // Record the current local APIC timer setting of BSP
+ //
+ GetApicTimerState (
+ &CpuMpData->DivideValue,
+ &CpuMpData->PeriodicMode,
+ &CpuMpData->Vector
+ );
+ CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
+ CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
+}
+
+/**
+ Sync local APIC timer setting from BSP to AP.
+
+ @param[in] CpuMpData Pointer to CPU MP Data
+**/
+VOID
+SyncLocalApicTimerSetting (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ //
+ // Sync local APIC timer setting from BSP to AP
+ //
+ InitializeApicTimer (
+ CpuMpData->DivideValue,
+ CpuMpData->CurrentTimerCount,
+ CpuMpData->PeriodicMode,
+ CpuMpData->Vector
+ );
+ //
+ // Disable AP's local APIC timer interrupt
+ //
+ DisableApicTimerInterrupt ();
+}
+
+/**
+ Save the volatile registers required to be restored following INIT IPI.
+
+ @param[out] VolatileRegisters Returns buffer saved the volatile resisters
+**/
+VOID
+SaveVolatileRegisters (
+ OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
+ )
+{
+ CPUID_VERSION_INFO_EDX VersionInfoEdx;
+
+ VolatileRegisters->Cr0 = AsmReadCr0 ();
+ VolatileRegisters->Cr3 = AsmReadCr3 ();
+ VolatileRegisters->Cr4 = AsmReadCr4 ();
+
+ AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
+ if (VersionInfoEdx.Bits.DE != 0) {
+ //
+ // If processor supports Debugging Extensions feature
+ // by CPUID.[EAX=01H]:EDX.BIT2
+ //
+ VolatileRegisters->Dr0 = AsmReadDr0 ();
+ VolatileRegisters->Dr1 = AsmReadDr1 ();
+ VolatileRegisters->Dr2 = AsmReadDr2 ();
+ VolatileRegisters->Dr3 = AsmReadDr3 ();
+ VolatileRegisters->Dr6 = AsmReadDr6 ();
+ VolatileRegisters->Dr7 = AsmReadDr7 ();
+ }
+
+ AsmReadGdtr (&VolatileRegisters->Gdtr);
+ AsmReadIdtr (&VolatileRegisters->Idtr);
+ VolatileRegisters->Tr = AsmReadTr ();
+}
+
+/**
+ Restore the volatile registers following INIT IPI.
+
+ @param[in] VolatileRegisters Pointer to volatile resisters
+ @param[in] IsRestoreDr TRUE: Restore DRx if supported
+ FALSE: Do not restore DRx
+**/
+VOID
+RestoreVolatileRegisters (
+ IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
+ IN BOOLEAN IsRestoreDr
+ )
+{
+ CPUID_VERSION_INFO_EDX VersionInfoEdx;
+ IA32_TSS_DESCRIPTOR *Tss;
+
+ AsmWriteCr3 (VolatileRegisters->Cr3);
+ AsmWriteCr4 (VolatileRegisters->Cr4);
+ AsmWriteCr0 (VolatileRegisters->Cr0);
+
+ if (IsRestoreDr) {
+ AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
+ if (VersionInfoEdx.Bits.DE != 0) {
+ //
+ // If processor supports Debugging Extensions feature
+ // by CPUID.[EAX=01H]:EDX.BIT2
+ //
+ AsmWriteDr0 (VolatileRegisters->Dr0);
+ AsmWriteDr1 (VolatileRegisters->Dr1);
+ AsmWriteDr2 (VolatileRegisters->Dr2);
+ AsmWriteDr3 (VolatileRegisters->Dr3);
+ AsmWriteDr6 (VolatileRegisters->Dr6);
+ AsmWriteDr7 (VolatileRegisters->Dr7);
+ }
+ }
+
+ AsmWriteGdtr (&VolatileRegisters->Gdtr);
+ AsmWriteIdtr (&VolatileRegisters->Idtr);
+ if (VolatileRegisters->Tr != 0 &&
+ VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
+ Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
+ VolatileRegisters->Tr);
+ if (Tss->Bits.P == 1) {
+ Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
+ AsmWriteTr (VolatileRegisters->Tr);
+ }
+ }
+}
+
+/**
+ Detect whether Mwait-monitor feature is supported.
+
+ @retval TRUE Mwait-monitor feature is supported.
+ @retval FALSE Mwait-monitor feature is not supported.
+**/
+BOOLEAN
+IsMwaitSupport (
+ VOID
+ )
+{
+ CPUID_VERSION_INFO_ECX VersionInfoEcx;
+
+ AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
+ return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
+}
+
+/**
+ Get AP loop mode.
+
+ @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
+
+ @return The AP loop mode.
+**/
+UINT8
+GetApLoopMode (
+ OUT UINT32 *MonitorFilterSize
+ )
+{
+ UINT8 ApLoopMode;
+ CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
+
+ ASSERT (MonitorFilterSize != NULL);
+
+ ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
+ ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
+ if (ApLoopMode == ApInMwaitLoop) {
+ if (!IsMwaitSupport ()) {
+ //
+ // If processor does not support MONITOR/MWAIT feature,
+ // force AP in Hlt-loop mode
+ //
+ ApLoopMode = ApInHltLoop;
+ }
+
+ if (PcdGetBool (PcdSevEsIsEnabled)) {
+ //
+ // For SEV-ES, force AP in Hlt-loop mode in order to use the GHCB
+ // protocol for starting APs
+ //
+ ApLoopMode = ApInHltLoop;
+ }
+ }
+
+ if (ApLoopMode != ApInMwaitLoop) {
+ *MonitorFilterSize = sizeof (UINT32);
+ } else {
+ //
+ // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
+ // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
+ //
+ AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
+ *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
+ }
+
+ return ApLoopMode;
+}
+
+/**
+ Sort the APIC ID of all processors.
+
+ This function sorts the APIC ID of all processors so that processor number is
+ assigned in the ascending order of APIC ID which eases MP debugging.
+
+ @param[in] CpuMpData Pointer to PEI CPU MP Data
+**/
+VOID
+SortApicId (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ UINTN Index1;
+ UINTN Index2;
+ UINTN Index3;
+ UINT32 ApicId;
+ CPU_INFO_IN_HOB CpuInfo;
+ UINT32 ApCount;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ volatile UINT32 *StartupApSignal;
+
+ ApCount = CpuMpData->CpuCount - 1;
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+ if (ApCount != 0) {
+ for (Index1 = 0; Index1 < ApCount; Index1++) {
+ Index3 = Index1;
+ //
+ // Sort key is the hardware default APIC ID
+ //
+ ApicId = CpuInfoInHob[Index1].ApicId;
+ for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
+ if (ApicId > CpuInfoInHob[Index2].ApicId) {
+ Index3 = Index2;
+ ApicId = CpuInfoInHob[Index2].ApicId;
+ }
+ }
+ if (Index3 != Index1) {
+ CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
+ CopyMem (
+ &CpuInfoInHob[Index3],
+ &CpuInfoInHob[Index1],
+ sizeof (CPU_INFO_IN_HOB)
+ );
+ CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
+
+ //
+ // Also exchange the StartupApSignal.
+ //
+ StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
+ CpuMpData->CpuData[Index3].StartupApSignal =
+ CpuMpData->CpuData[Index1].StartupApSignal;
+ CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
+ }
+ }
+
+ //
+ // Get the processor number for the BSP
+ //
+ ApicId = GetInitialApicId ();
+ for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
+ if (CpuInfoInHob[Index1].ApicId == ApicId) {
+ CpuMpData->BspNumber = (UINT32) Index1;
+ break;
+ }
+ }
+ }
+}
+
+/**
+ Enable x2APIC mode on APs.
+
+ @param[in, out] Buffer Pointer to private data buffer.
+**/
+VOID
+EFIAPI
+ApFuncEnableX2Apic (
+ IN OUT VOID *Buffer
+ )
+{
+ SetApicMode (LOCAL_APIC_MODE_X2APIC);
+}
+
+/**
+ Do sync on APs.
+
+ @param[in, out] Buffer Pointer to private data buffer.
+**/
+VOID
+EFIAPI
+ApInitializeSync (
+ IN OUT VOID *Buffer
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ UINTN ProcessorNumber;
+ EFI_STATUS Status;
+
+ CpuMpData = (CPU_MP_DATA *) Buffer;
+ Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);
+ ASSERT_EFI_ERROR (Status);
+ //
+ // Load microcode on AP
+ //
+ MicrocodeDetect (CpuMpData, ProcessorNumber);
+ //
+ // Sync BSP's MTRR table to AP
+ //
+ MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
+}
+
+/**
+ Find the current Processor number by APIC ID.
+
+ @param[in] CpuMpData Pointer to PEI CPU MP Data
+ @param[out] ProcessorNumber Return the pocessor number found
+
+ @retval EFI_SUCCESS ProcessorNumber is found and returned.
+ @retval EFI_NOT_FOUND ProcessorNumber is not found.
+**/
+EFI_STATUS
+GetProcessorNumber (
+ IN CPU_MP_DATA *CpuMpData,
+ OUT UINTN *ProcessorNumber
+ )
+{
+ UINTN TotalProcessorNumber;
+ UINTN Index;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ UINT32 CurrentApicId;
+
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+
+ TotalProcessorNumber = CpuMpData->CpuCount;
+ CurrentApicId = GetApicId ();
+ for (Index = 0; Index < TotalProcessorNumber; Index ++) {
+ if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
+ *ProcessorNumber = Index;
+ return EFI_SUCCESS;
+ }
+ }
+
+ return EFI_NOT_FOUND;
+}
+
+/**
+ This function will get CPU count in the system.
+
+ @param[in] CpuMpData Pointer to PEI CPU MP Data
+
+ @return CPU count detected
+**/
+UINTN
+CollectProcessorCount (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ UINTN Index;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ BOOLEAN X2Apic;
+
+ //
+ // Send 1st broadcast IPI to APs to wakeup APs
+ //
+ CpuMpData->InitFlag = ApInitConfig;
+ WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
+ CpuMpData->InitFlag = ApInitDone;
+ ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
+ //
+ // Wait for all APs finished the initialization
+ //
+ while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
+ CpuPause ();
+ }
+
+
+ //
+ // Enable x2APIC mode if
+ // 1. Number of CPU is greater than 255; or
+ // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.
+ //
+ X2Apic = FALSE;
+ if (CpuMpData->CpuCount > 255) {
+ //
+ // If there are more than 255 processor found, force to enable X2APIC
+ //
+ X2Apic = TRUE;
+ } else {
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {
+ X2Apic = TRUE;
+ break;
+ }
+ }
+ }
+
+ if (X2Apic) {
+ DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
+ //
+ // Wakeup all APs to enable x2APIC mode
+ //
+ WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
+ //
+ // Wait for all known APs finished
+ //
+ while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
+ CpuPause ();
+ }
+ //
+ // Enable x2APIC on BSP
+ //
+ SetApicMode (LOCAL_APIC_MODE_X2APIC);
+ //
+ // Set BSP/Aps state to IDLE
+ //
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
+ }
+ }
+ DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
+ //
+ // Sort BSP/Aps by CPU APIC ID in ascending order
+ //
+ SortApicId (CpuMpData);
+
+ DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
+
+ return CpuMpData->CpuCount;
+}
+
+/**
+ Initialize CPU AP Data when AP is wakeup at the first time.
+
+ @param[in, out] CpuMpData Pointer to PEI CPU MP Data
+ @param[in] ProcessorNumber The handle number of processor
+ @param[in] BistData Processor BIST data
+ @param[in] ApTopOfStack Top of AP stack
+
+**/
+VOID
+InitializeApData (
+ IN OUT CPU_MP_DATA *CpuMpData,
+ IN UINTN ProcessorNumber,
+ IN UINT32 BistData,
+ IN UINT64 ApTopOfStack
+ )
+{
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;
+
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+ CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
+ CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
+ CpuInfoInHob[ProcessorNumber].Health = BistData;
+ CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
+
+ CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
+ CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
+
+ //
+ // NOTE: PlatformId is not relevant on AMD platforms.
+ //
+ if (!StandardSignatureIsAuthenticAMD ()) {
+ PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);
+ CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8)PlatformIdMsr.Bits.PlatformId;
+ }
+
+ AsmCpuid (
+ CPUID_VERSION_INFO,
+ &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,
+ NULL,
+ NULL,
+ NULL
+ );
+
+ InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
+ SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
+}
+
+/**
+ Get Protected mode code segment with 16-bit default addressing
+ from current GDT table.
+
+ @return Protected mode 16-bit code segment value.
+**/
+STATIC
+UINT16
+GetProtectedMode16CS (
+ VOID
+ )
+{
+ IA32_DESCRIPTOR GdtrDesc;
+ IA32_SEGMENT_DESCRIPTOR *GdtEntry;
+ UINTN GdtEntryCount;
+ UINT16 Index;
+
+ Index = (UINT16) -1;
+ AsmReadGdtr (&GdtrDesc);
+ GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
+ GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
+ for (Index = 0; Index < GdtEntryCount; Index++) {
+ if (GdtEntry->Bits.L == 0 &&
+ GdtEntry->Bits.DB == 0 &&
+ GdtEntry->Bits.Type > 8) {
+ break;
+ }
+ GdtEntry++;
+ }
+ ASSERT (Index != GdtEntryCount);
+ return Index * 8;
+}
+
+/**
+ Get Protected mode code segment with 32-bit default addressing
+ from current GDT table.
+
+ @return Protected mode 32-bit code segment value.
+**/
+STATIC
+UINT16
+GetProtectedMode32CS (
+ VOID
+ )
+{
+ IA32_DESCRIPTOR GdtrDesc;
+ IA32_SEGMENT_DESCRIPTOR *GdtEntry;
+ UINTN GdtEntryCount;
+ UINT16 Index;
+
+ Index = (UINT16) -1;
+ AsmReadGdtr (&GdtrDesc);
+ GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
+ GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
+ for (Index = 0; Index < GdtEntryCount; Index++) {
+ if (GdtEntry->Bits.L == 0 &&
+ GdtEntry->Bits.DB == 1 &&
+ GdtEntry->Bits.Type > 8) {
+ break;
+ }
+ GdtEntry++;
+ }
+ ASSERT (Index != GdtEntryCount);
+ return Index * 8;
+}
+
+/**
+ Reset an AP when in SEV-ES mode.
+
+ If successful, this function never returns.
+
+ @param[in] Ghcb Pointer to the GHCB
+ @param[in] CpuMpData Pointer to CPU MP Data
+
+**/
+STATIC
+VOID
+MpInitLibSevEsAPReset (
+ IN GHCB *Ghcb,
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ UINT16 Code16, Code32;
+ AP_RESET *APResetFn;
+ UINTN BufferStart;
+ UINTN StackStart;
+
+ Code16 = GetProtectedMode16CS ();
+ Code32 = GetProtectedMode32CS ();
+
+ if (CpuMpData->WakeupBufferHigh != 0) {
+ APResetFn = (AP_RESET *) (CpuMpData->WakeupBufferHigh + CpuMpData->AddressMap.SwitchToRealNoNxOffset);
+ } else {
+ APResetFn = (AP_RESET *) (CpuMpData->MpCpuExchangeInfo->BufferStart + CpuMpData->AddressMap.SwitchToRealOffset);
+ }
+
+ BufferStart = CpuMpData->MpCpuExchangeInfo->BufferStart;
+ StackStart = CpuMpData->SevEsAPResetStackStart -
+ (AP_RESET_STACK_SIZE * GetApicId ());
+
+ //
+ // This call never returns.
+ //
+ APResetFn (BufferStart, Code16, Code32, StackStart);
+}
+
+/**
+ This function will be called from AP reset code if BSP uses WakeUpAP.
+
+ @param[in] ExchangeInfo Pointer to the MP exchange info buffer
+ @param[in] ApIndex Number of current executing AP
+**/
+VOID
+EFIAPI
+ApWakeupFunction (
+ IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
+ IN UINTN ApIndex
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ UINTN ProcessorNumber;
+ EFI_AP_PROCEDURE Procedure;
+ VOID *Parameter;
+ UINT32 BistData;
+ volatile UINT32 *ApStartupSignalBuffer;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ UINT64 ApTopOfStack;
+ UINTN CurrentApicMode;
+
+ //
+ // AP finished assembly code and begin to execute C code
+ //
+ CpuMpData = ExchangeInfo->CpuMpData;
+
+ //
+ // AP's local APIC settings will be lost after received INIT IPI
+ // We need to re-initialize them at here
+ //
+ ProgramVirtualWireMode ();
+ //
+ // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
+ //
+ DisableLvtInterrupts ();
+ SyncLocalApicTimerSetting (CpuMpData);
+
+ CurrentApicMode = GetApicMode ();
+ while (TRUE) {
+ if (CpuMpData->InitFlag == ApInitConfig) {
+ //
+ // Add CPU number
+ //
+ InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
+ ProcessorNumber = ApIndex;
+ //
+ // This is first time AP wakeup, get BIST information from AP stack
+ //
+ ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
+ BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
+ //
+ // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
+ // to initialize AP in InitConfig path.
+ // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
+ //
+ RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
+ InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
+ ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
+
+ //
+ // Delay decrementing the APs executing count when SEV-ES is enabled
+ // to allow the APs to issue an AP_RESET_HOLD before the BSP possibly
+ // performs another INIT-SIPI-SIPI sequence.
+ //
+ if (!CpuMpData->SevEsIsEnabled) {
+ InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
+ }
+ } else {
+ //
+ // Execute AP function if AP is ready
+ //
+ GetProcessorNumber (CpuMpData, &ProcessorNumber);
+ //
+ // Clear AP start-up signal when AP waken up
+ //
+ ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
+ InterlockedCompareExchange32 (
+ (UINT32 *) ApStartupSignalBuffer,
+ WAKEUP_AP_SIGNAL,
+ 0
+ );
+
+ if (CpuMpData->InitFlag == ApInitReconfig) {
+ //
+ // ApInitReconfig happens when:
+ // 1. AP is re-enabled after it's disabled, in either PEI or DXE phase.
+ // 2. AP is initialized in DXE phase.
+ // In either case, use the volatile registers value derived from BSP.
+ // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a
+ // different IDT shared by all APs.
+ //
+ RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
+ } else {
+ if (CpuMpData->ApLoopMode == ApInHltLoop) {
+ //
+ // Restore AP's volatile registers saved before AP is halted
+ //
+ RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
+ } else {
+ //
+ // The CPU driver might not flush TLB for APs on spot after updating
+ // page attributes. AP in mwait loop mode needs to take care of it when
+ // woken up.
+ //
+ CpuFlushTlb ();
+ }
+ }
+
+ if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
+ Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
+ Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
+ if (Procedure != NULL) {
+ SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
+ //
+ // Enable source debugging on AP function
+ //
+ EnableDebugAgent ();
+ //
+ // Invoke AP function here
+ //
+ Procedure (Parameter);
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+ if (CpuMpData->SwitchBspFlag) {
+ //
+ // Re-get the processor number due to BSP/AP maybe exchange in AP function
+ //
+ GetProcessorNumber (CpuMpData, &ProcessorNumber);
+ CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
+ CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
+ ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
+ CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
+ } else {
+ if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
+ CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
+ if (CurrentApicMode != GetApicMode ()) {
+ //
+ // If APIC mode change happened during AP function execution,
+ // we do not support APIC ID value changed.
+ //
+ ASSERT (FALSE);
+ CpuDeadLoop ();
+ } else {
+ //
+ // Re-get the CPU APICID and Initial APICID if they are changed
+ //
+ CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
+ CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
+ }
+ }
+ }
+ }
+ SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
+ }
+ }
+
+ //
+ // AP finished executing C code
+ //
+ InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
+
+ //
+ // Place AP is specified loop mode
+ //
+ if (CpuMpData->ApLoopMode == ApInHltLoop) {
+ //
+ // Save AP volatile registers
+ //
+ SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
+ //
+ // Place AP in HLT-loop
+ //
+ while (TRUE) {
+ DisableInterrupts ();
+ if (CpuMpData->SevEsIsEnabled) {
+ MSR_SEV_ES_GHCB_REGISTER Msr;
+ GHCB *Ghcb;
+ UINT64 Status;
+ BOOLEAN DoDecrement;
+
+ DoDecrement = (BOOLEAN) (CpuMpData->InitFlag == ApInitConfig);
+
+ while (TRUE) {
+ Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
+ Ghcb = Msr.Ghcb;
+
+ VmgInit (Ghcb);
+
+ if (DoDecrement) {
+ DoDecrement = FALSE;
+
+ //
+ // Perform the delayed decrement just before issuing the first
+ // VMGEXIT with AP_RESET_HOLD.
+ //
+ InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
+ }
+
+ Status = VmgExit (Ghcb, SVM_EXIT_AP_RESET_HOLD, 0, 0);
+ if ((Status == 0) && (Ghcb->SaveArea.SwExitInfo2 != 0)) {
+ VmgDone (Ghcb);
+ break;
+ }
+
+ VmgDone (Ghcb);
+ }
+
+ //
+ // Awakened in a new phase? Use the new CpuMpData
+ //
+ if (CpuMpData->NewCpuMpData != NULL) {
+ CpuMpData = CpuMpData->NewCpuMpData;
+ }
+
+ MpInitLibSevEsAPReset (Ghcb, CpuMpData);
+ } else {
+ CpuSleep ();
+ }
+ CpuPause ();
+ }
+ }
+ while (TRUE) {
+ DisableInterrupts ();
+ if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
+ //
+ // Place AP in MWAIT-loop
+ //
+ AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
+ if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
+ //
+ // Check AP start-up signal again.
+ // If AP start-up signal is not set, place AP into
+ // the specified C-state
+ //
+ AsmMwait (CpuMpData->ApTargetCState << 4, 0);
+ }
+ } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
+ //
+ // Place AP in Run-loop
+ //
+ CpuPause ();
+ } else {
+ ASSERT (FALSE);
+ }
+
+ //
+ // If AP start-up signal is written, AP is waken up
+ // otherwise place AP in loop again
+ //
+ if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
+ break;
+ }
+ }
+ }
+}
+
+/**
+ Wait for AP wakeup and write AP start-up signal till AP is waken up.
+
+ @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
+**/
+VOID
+WaitApWakeup (
+ IN volatile UINT32 *ApStartupSignalBuffer
+ )
+{
+ //
+ // If AP is waken up, StartupApSignal should be cleared.
+ // Otherwise, write StartupApSignal again till AP waken up.
+ //
+ while (InterlockedCompareExchange32 (
+ (UINT32 *) ApStartupSignalBuffer,
+ WAKEUP_AP_SIGNAL,
+ WAKEUP_AP_SIGNAL
+ ) != 0) {
+ CpuPause ();
+ }
+}
+
+/**
+ This function will fill the exchange info structure.
+
+ @param[in] CpuMpData Pointer to CPU MP Data
+
+**/
+VOID
+FillExchangeInfoData (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
+ UINTN Size;
+ IA32_SEGMENT_DESCRIPTOR *Selector;
+ IA32_CR4 Cr4;
+
+ ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
+ ExchangeInfo->Lock = 0;
+ ExchangeInfo->StackStart = CpuMpData->Buffer;
+ ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
+ ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
+ ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
+
+ ExchangeInfo->CodeSegment = AsmReadCs ();
+ ExchangeInfo->DataSegment = AsmReadDs ();
+
+ ExchangeInfo->Cr3 = AsmReadCr3 ();
+
+ ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
+ ExchangeInfo->ApIndex = 0;
+ ExchangeInfo->NumApsExecuting = 0;
+ ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
+ ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+ ExchangeInfo->CpuMpData = CpuMpData;
+
+ ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
+
+ ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
+
+ //
+ // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]
+ // to determin whether 5-Level Paging is enabled.
+ // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows
+ // current system setting.
+ // Using latter way is simpler because it also eliminates the needs to
+ // check whether platform wants to enable it.
+ //
+ Cr4.UintN = AsmReadCr4 ();
+ ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
+ DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));
+
+ ExchangeInfo->SevEsIsEnabled = CpuMpData->SevEsIsEnabled;
+ ExchangeInfo->GhcbBase = (UINTN) CpuMpData->GhcbBase;
+
+ //
+ // Get the BSP's data of GDT and IDT
+ //
+ AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
+ AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
+
+ //
+ // Find a 32-bit code segment
+ //
+ Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
+ Size = ExchangeInfo->GdtrProfile.Limit + 1;
+ while (Size > 0) {
+ if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
+ ExchangeInfo->ModeTransitionSegment =
+ (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
+ break;
+ }
+ Selector += 1;
+ Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
+ }
+
+ //
+ // Copy all 32-bit code and 64-bit code into memory with type of
+ // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
+ //
+ if (CpuMpData->WakeupBufferHigh != 0) {
+ Size = CpuMpData->AddressMap.RendezvousFunnelSize +
+ CpuMpData->AddressMap.SwitchToRealSize -
+ CpuMpData->AddressMap.ModeTransitionOffset;
+ CopyMem (
+ (VOID *)CpuMpData->WakeupBufferHigh,
+ CpuMpData->AddressMap.RendezvousFunnelAddress +
+ CpuMpData->AddressMap.ModeTransitionOffset,
+ Size
+ );
+
+ ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
+ } else {
+ ExchangeInfo->ModeTransitionMemory = (UINT32)
+ (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
+ }
+
+ ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
+ (UINT32)ExchangeInfo->ModeOffset -
+ (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
+ ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
+}
+
+/**
+ Helper function that waits until the finished AP count reaches the specified
+ limit, or the specified timeout elapses (whichever comes first).
+
+ @param[in] CpuMpData Pointer to CPU MP Data.
+ @param[in] FinishedApLimit The number of finished APs to wait for.
+ @param[in] TimeLimit The number of microseconds to wait for.
+**/
+VOID
+TimedWaitForApFinish (
+ IN CPU_MP_DATA *CpuMpData,
+ IN UINT32 FinishedApLimit,
+ IN UINT32 TimeLimit
+ );
+
+/**
+ Get available system memory below 1MB by specified size.
+
+ @param[in] CpuMpData The pointer to CPU MP Data structure.
+**/
+VOID
+BackupAndPrepareWakeupBuffer(
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ CopyMem (
+ (VOID *) CpuMpData->BackupBuffer,
+ (VOID *) CpuMpData->WakeupBuffer,
+ CpuMpData->BackupBufferSize
+ );
+ CopyMem (
+ (VOID *) CpuMpData->WakeupBuffer,
+ (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
+ CpuMpData->AddressMap.RendezvousFunnelSize +
+ CpuMpData->AddressMap.SwitchToRealSize
+ );
+}
+
+/**
+ Restore wakeup buffer data.
+
+ @param[in] CpuMpData The pointer to CPU MP Data structure.
+**/
+VOID
+RestoreWakeupBuffer(
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ CopyMem (
+ (VOID *) CpuMpData->WakeupBuffer,
+ (VOID *) CpuMpData->BackupBuffer,
+ CpuMpData->BackupBufferSize
+ );
+}
+
+/**
+ Calculate the size of the reset stack.
+
+ @return Total amount of memory required for stacks
+**/
+STATIC
+UINTN
+GetApResetStackSize (
+ VOID
+ )
+{
+ return AP_RESET_STACK_SIZE * PcdGet32(PcdCpuMaxLogicalProcessorNumber);
+}
+
+/**
+ Calculate the size of the reset vector.
+
+ @param[in] AddressMap The pointer to Address Map structure.
+
+ @return Total amount of memory required for the AP reset area
+**/
+STATIC
+UINTN
+GetApResetVectorSize (
+ IN MP_ASSEMBLY_ADDRESS_MAP *AddressMap
+ )
+{
+ UINTN Size;
+
+ Size = ALIGN_VALUE (AddressMap->RendezvousFunnelSize +
+ AddressMap->SwitchToRealSize +
+ sizeof (MP_CPU_EXCHANGE_INFO),
+ CPU_STACK_ALIGNMENT);
+ Size += GetApResetStackSize ();
+
+ return Size;
+}
+
+/**
+ Allocate reset vector buffer.
+
+ @param[in, out] CpuMpData The pointer to CPU MP Data structure.
+**/
+VOID
+AllocateResetVector (
+ IN OUT CPU_MP_DATA *CpuMpData
+ )
+{
+ UINTN ApResetVectorSize;
+
+ if (CpuMpData->WakeupBuffer == (UINTN) -1) {
+ ApResetVectorSize = GetApResetVectorSize (&CpuMpData->AddressMap);
+
+ CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
+ CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
+ (CpuMpData->WakeupBuffer +
+ CpuMpData->AddressMap.RendezvousFunnelSize +
+ CpuMpData->AddressMap.SwitchToRealSize);
+ CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
+ CpuMpData->AddressMap.RendezvousFunnelSize +
+ CpuMpData->AddressMap.SwitchToRealSize -
+ CpuMpData->AddressMap.ModeTransitionOffset
+ );
+ //
+ // The reset stack starts at the end of the buffer.
+ //
+ CpuMpData->SevEsAPResetStackStart = CpuMpData->WakeupBuffer + ApResetVectorSize;
+ }
+ BackupAndPrepareWakeupBuffer (CpuMpData);
+}
+
+/**
+ Free AP reset vector buffer.
+
+ @param[in] CpuMpData The pointer to CPU MP Data structure.
+**/
+VOID
+FreeResetVector (
+ IN CPU_MP_DATA *CpuMpData
+ )
+{
+ //
+ // If SEV-ES is enabled, the reset area is needed for AP parking and
+ // and AP startup in the OS, so the reset area is reserved. Do not
+ // perform the restore as this will overwrite memory which has data
+ // needed by SEV-ES.
+ //
+ if (!CpuMpData->SevEsIsEnabled) {
+ RestoreWakeupBuffer (CpuMpData);
+ }
+}
+
+/**
+ Allocate the SEV-ES AP jump table buffer.
+
+ @param[in, out] CpuMpData The pointer to CPU MP Data structure.
+**/
+VOID
+AllocateSevEsAPMemory (
+ IN OUT CPU_MP_DATA *CpuMpData
+ )
+{
+ if (CpuMpData->SevEsAPBuffer == (UINTN) -1) {
+ CpuMpData->SevEsAPBuffer =
+ CpuMpData->SevEsIsEnabled ? GetSevEsAPMemory () : 0;
+ }
+}
+
+/**
+ Program the SEV-ES AP jump table buffer.
+
+ @param[in] SipiVector The SIPI vector used for the AP Reset
+**/
+VOID
+SetSevEsJumpTable (
+ IN UINTN SipiVector
+ )
+{
+ SEV_ES_AP_JMP_FAR *JmpFar;
+ UINT32 Offset, InsnByte;
+ UINT8 LoNib, HiNib;
+
+ JmpFar = (SEV_ES_AP_JMP_FAR *) FixedPcdGet32 (PcdSevEsWorkAreaBase);
+ ASSERT (JmpFar != NULL);
+
+ //
+ // Obtain the address of the Segment/Rip location in the workarea.
+ // This will be set to a value derived from the SIPI vector and will
+ // be the memory address used for the far jump below.
+ //
+ Offset = FixedPcdGet32 (PcdSevEsWorkAreaBase);
+ Offset += sizeof (JmpFar->InsnBuffer);
+ LoNib = (UINT8) Offset;
+ HiNib = (UINT8) (Offset >> 8);
+
+ //
+ // Program the workarea (which is the initial AP boot address) with
+ // far jump to the SIPI vector (where XX and YY represent the
+ // address of where the SIPI vector is stored.
+ //
+ // JMP FAR [CS:XXYY] => 2E FF 2E YY XX
+ //
+ InsnByte = 0;
+ JmpFar->InsnBuffer[InsnByte++] = 0x2E; // CS override prefix
+ JmpFar->InsnBuffer[InsnByte++] = 0xFF; // JMP (FAR)
+ JmpFar->InsnBuffer[InsnByte++] = 0x2E; // ModRM (JMP memory location)
+ JmpFar->InsnBuffer[InsnByte++] = LoNib; // YY offset ...
+ JmpFar->InsnBuffer[InsnByte++] = HiNib; // XX offset ...
+
+ //
+ // Program the Segment/Rip based on the SIPI vector (always at least
+ // 16-byte aligned, so Rip is set to 0).
+ //
+ JmpFar->Rip = 0;
+ JmpFar->Segment = (UINT16) (SipiVector >> 4);
+}
+
+/**
+ This function will be called by BSP to wakeup AP.
+
+ @param[in] CpuMpData Pointer to CPU MP Data
+ @param[in] Broadcast TRUE: Send broadcast IPI to all APs
+ FALSE: Send IPI to AP by ApicId
+ @param[in] ProcessorNumber The handle number of specified processor
+ @param[in] Procedure The function to be invoked by AP
+ @param[in] ProcedureArgument The argument to be passed into AP function
+ @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
+**/
+VOID
+WakeUpAP (
+ IN CPU_MP_DATA *CpuMpData,
+ IN BOOLEAN Broadcast,
+ IN UINTN ProcessorNumber,
+ IN EFI_AP_PROCEDURE Procedure, OPTIONAL
+ IN VOID *ProcedureArgument, OPTIONAL
+ IN BOOLEAN WakeUpDisabledAps
+ )
+{
+ volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
+ UINTN Index;
+ CPU_AP_DATA *CpuData;
+ BOOLEAN ResetVectorRequired;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+
+ CpuMpData->FinishedCount = 0;
+ ResetVectorRequired = FALSE;
+
+ if (CpuMpData->WakeUpByInitSipiSipi ||
+ CpuMpData->InitFlag != ApInitDone) {
+ ResetVectorRequired = TRUE;
+ AllocateResetVector (CpuMpData);
+ AllocateSevEsAPMemory (CpuMpData);
+ FillExchangeInfoData (CpuMpData);
+ SaveLocalApicTimerSetting (CpuMpData);
+ }
+
+ if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
+ //
+ // Get AP target C-state each time when waking up AP,
+ // for it maybe updated by platform again
+ //
+ CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
+ }
+
+ ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
+
+ if (Broadcast) {
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ if (Index != CpuMpData->BspNumber) {
+ CpuData = &CpuMpData->CpuData[Index];
+ //
+ // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
+ // the AP procedure will be skipped for disabled AP because AP state
+ // is not CpuStateReady.
+ //
+ if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {
+ continue;
+ }
+
+ CpuData->ApFunction = (UINTN) Procedure;
+ CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
+ SetApState (CpuData, CpuStateReady);
+ if (CpuMpData->InitFlag != ApInitConfig) {
+ *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
+ }
+ }
+ }
+ if (ResetVectorRequired) {
+ //
+ // For SEV-ES, the initial AP boot address will be defined by
+ // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
+ // from the original INIT-SIPI-SIPI.
+ //
+ if (CpuMpData->SevEsIsEnabled) {
+ SetSevEsJumpTable (ExchangeInfo->BufferStart);
+ }
+
+ //
+ // Wakeup all APs
+ //
+ SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
+ }
+ if (CpuMpData->InitFlag == ApInitConfig) {
+ if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {
+ //
+ // The AP enumeration algorithm below is suitable only when the
+ // platform can tell us the *exact* boot CPU count in advance.
+ //
+ // The wait below finishes only when the detected AP count reaches
+ // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that
+ // takes. If at least one AP fails to check in (meaning a platform
+ // hardware bug), the detection hangs forever, by design. If the actual
+ // boot CPU count in the system is higher than
+ // PcdCpuBootLogicalProcessorNumber (meaning a platform
+ // misconfiguration), then some APs may complete initialization after
+ // the wait finishes, and cause undefined behavior.
+ //
+ TimedWaitForApFinish (
+ CpuMpData,
+ PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,
+ MAX_UINT32 // approx. 71 minutes
+ );
+ } else {
+ //
+ // The AP enumeration algorithm below is suitable for two use cases.
+ //
+ // (1) The check-in time for an individual AP is bounded, and APs run
+ // through their initialization routines strongly concurrently. In
+ // particular, the number of concurrently running APs
+ // ("NumApsExecuting") is never expected to fall to zero
+ // *temporarily* -- it is expected to fall to zero only when all
+ // APs have checked-in.
+ //
+ // In this case, the platform is supposed to set
+ // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long
+ // enough for one AP to start initialization). The timeout will be
+ // reached soon, and remaining APs are collected by watching
+ // NumApsExecuting fall to zero. If NumApsExecuting falls to zero
+ // mid-process, while some APs have not completed initialization,
+ // the behavior is undefined.
+ //
+ // (2) The check-in time for an individual AP is unbounded, and/or APs
+ // may complete their initializations widely spread out. In
+ // particular, some APs may finish initialization before some APs
+ // even start.
+ //
+ // In this case, the platform is supposed to set
+ // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP
+ // enumeration will always take that long (except when the boot CPU
+ // count happens to be maximal, that is,
+ // PcdCpuMaxLogicalProcessorNumber). All APs are expected to
+ // check-in before the timeout, and NumApsExecuting is assumed zero
+ // at timeout. APs that miss the time-out may cause undefined
+ // behavior.
+ //
+ TimedWaitForApFinish (
+ CpuMpData,
+ PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
+ PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
+ );
+
+ while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
+ CpuPause();
+ }
+ }
+ } else {
+ //
+ // Wait all APs waken up if this is not the 1st broadcast of SIPI
+ //
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ CpuData = &CpuMpData->CpuData[Index];
+ if (Index != CpuMpData->BspNumber) {
+ WaitApWakeup (CpuData->StartupApSignal);
+ }
+ }
+ }
+ } else {
+ CpuData = &CpuMpData->CpuData[ProcessorNumber];
+ CpuData->ApFunction = (UINTN) Procedure;
+ CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
+ SetApState (CpuData, CpuStateReady);
+ //
+ // Wakeup specified AP
+ //
+ ASSERT (CpuMpData->InitFlag != ApInitConfig);
+ *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
+ if (ResetVectorRequired) {
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+
+ //
+ // For SEV-ES, the initial AP boot address will be defined by
+ // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
+ // from the original INIT-SIPI-SIPI.
+ //
+ if (CpuMpData->SevEsIsEnabled) {
+ SetSevEsJumpTable (ExchangeInfo->BufferStart);
+ }
+
+ SendInitSipiSipi (
+ CpuInfoInHob[ProcessorNumber].ApicId,
+ (UINT32) ExchangeInfo->BufferStart
+ );
+ }
+ //
+ // Wait specified AP waken up
+ //
+ WaitApWakeup (CpuData->StartupApSignal);
+ }
+
+ if (ResetVectorRequired) {
+ FreeResetVector (CpuMpData);
+ }
+
+ //
+ // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
+ // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
+ // S3SmmInitDone Ppi.
+ //
+ CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
+}
+
+/**
+ Calculate timeout value and return the current performance counter value.
+
+ Calculate the number of performance counter ticks required for a timeout.
+ If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
+ as infinity.
+
+ @param[in] TimeoutInMicroseconds Timeout value in microseconds.
+ @param[out] CurrentTime Returns the current value of the performance counter.
+
+ @return Expected time stamp counter for timeout.
+ If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
+ as infinity.
+
+**/
+UINT64
+CalculateTimeout (
+ IN UINTN TimeoutInMicroseconds,
+ OUT UINT64 *CurrentTime
+ )
+{
+ UINT64 TimeoutInSeconds;
+ UINT64 TimestampCounterFreq;
+
+ //
+ // Read the current value of the performance counter
+ //
+ *CurrentTime = GetPerformanceCounter ();
+
+ //
+ // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
+ // as infinity.
+ //
+ if (TimeoutInMicroseconds == 0) {
+ return 0;
+ }
+
+ //
+ // GetPerformanceCounterProperties () returns the timestamp counter's frequency
+ // in Hz.
+ //
+ TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
+
+ //
+ // Check the potential overflow before calculate the number of ticks for the timeout value.
+ //
+ if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
+ //
+ // Convert microseconds into seconds if direct multiplication overflows
+ //
+ TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
+ //
+ // Assertion if the final tick count exceeds MAX_UINT64
+ //
+ ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
+ return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
+ } else {
+ //
+ // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
+ // it by 1,000,000, to get the number of ticks for the timeout value.
+ //
+ return DivU64x32 (
+ MultU64x64 (
+ TimestampCounterFreq,
+ TimeoutInMicroseconds
+ ),
+ 1000000
+ );
+ }
+}
+
+/**
+ Checks whether timeout expires.
+
+ Check whether the number of elapsed performance counter ticks required for
+ a timeout condition has been reached.
+ If Timeout is zero, which means infinity, return value is always FALSE.
+
+ @param[in, out] PreviousTime On input, the value of the performance counter
+ when it was last read.
+ On output, the current value of the performance
+ counter
+ @param[in] TotalTime The total amount of elapsed time in performance
+ counter ticks.
+ @param[in] Timeout The number of performance counter ticks required
+ to reach a timeout condition.
+
+ @retval TRUE A timeout condition has been reached.
+ @retval FALSE A timeout condition has not been reached.
+
+**/
+BOOLEAN
+CheckTimeout (
+ IN OUT UINT64 *PreviousTime,
+ IN UINT64 *TotalTime,
+ IN UINT64 Timeout
+ )
+{
+ UINT64 Start;
+ UINT64 End;
+ UINT64 CurrentTime;
+ INT64 Delta;
+ INT64 Cycle;
+
+ if (Timeout == 0) {
+ return FALSE;
+ }
+ GetPerformanceCounterProperties (&Start, &End);
+ Cycle = End - Start;
+ if (Cycle < 0) {
+ Cycle = -Cycle;
+ }
+ Cycle++;
+ CurrentTime = GetPerformanceCounter();
+ Delta = (INT64) (CurrentTime - *PreviousTime);
+ if (Start > End) {
+ Delta = -Delta;
+ }
+ if (Delta < 0) {
+ Delta += Cycle;
+ }
+ *TotalTime += Delta;
+ *PreviousTime = CurrentTime;
+ if (*TotalTime > Timeout) {
+ return TRUE;
+ }
+ return FALSE;
+}
+
+/**
+ Helper function that waits until the finished AP count reaches the specified
+ limit, or the specified timeout elapses (whichever comes first).
+
+ @param[in] CpuMpData Pointer to CPU MP Data.
+ @param[in] FinishedApLimit The number of finished APs to wait for.
+ @param[in] TimeLimit The number of microseconds to wait for.
+**/
+VOID
+TimedWaitForApFinish (
+ IN CPU_MP_DATA *CpuMpData,
+ IN UINT32 FinishedApLimit,
+ IN UINT32 TimeLimit
+ )
+{
+ //
+ // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
+ // "infinity", so check for (TimeLimit == 0) explicitly.
+ //
+ if (TimeLimit == 0) {
+ return;
+ }
+
+ CpuMpData->TotalTime = 0;
+ CpuMpData->ExpectedTime = CalculateTimeout (
+ TimeLimit,
+ &CpuMpData->CurrentTime
+ );
+ while (CpuMpData->FinishedCount < FinishedApLimit &&
+ !CheckTimeout (
+ &CpuMpData->CurrentTime,
+ &CpuMpData->TotalTime,
+ CpuMpData->ExpectedTime
+ )) {
+ CpuPause ();
+ }
+
+ if (CpuMpData->FinishedCount >= FinishedApLimit) {
+ DEBUG ((
+ DEBUG_VERBOSE,
+ "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
+ __FUNCTION__,
+ FinishedApLimit,
+ DivU64x64Remainder (
+ MultU64x32 (CpuMpData->TotalTime, 1000000),
+ GetPerformanceCounterProperties (NULL, NULL),
+ NULL
+ )
+ ));
+ }
+}
+
+/**
+ Reset an AP to Idle state.
+
+ Any task being executed by the AP will be aborted and the AP
+ will be waiting for a new task in Wait-For-SIPI state.
+
+ @param[in] ProcessorNumber The handle number of processor.
+**/
+VOID
+ResetProcessorToIdleState (
+ IN UINTN ProcessorNumber
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+
+ CpuMpData = GetCpuMpData ();
+
+ CpuMpData->InitFlag = ApInitReconfig;
+ WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
+ while (CpuMpData->FinishedCount < 1) {
+ CpuPause ();
+ }
+ CpuMpData->InitFlag = ApInitDone;
+
+ SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
+}
+
+/**
+ Searches for the next waiting AP.
+
+ Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
+
+ @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
+
+ @retval EFI_SUCCESS The next waiting AP has been found.
+ @retval EFI_NOT_FOUND No waiting AP exists.
+
+**/
+EFI_STATUS
+GetNextWaitingProcessorNumber (
+ OUT UINTN *NextProcessorNumber
+ )
+{
+ UINTN ProcessorNumber;
+ CPU_MP_DATA *CpuMpData;
+
+ CpuMpData = GetCpuMpData ();
+
+ for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
+ if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
+ *NextProcessorNumber = ProcessorNumber;
+ return EFI_SUCCESS;
+ }
+ }
+
+ return EFI_NOT_FOUND;
+}
+
+/** Checks status of specified AP.
+
+ This function checks whether the specified AP has finished the task assigned
+ by StartupThisAP(), and whether timeout expires.
+
+ @param[in] ProcessorNumber The handle number of processor.
+
+ @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
+ @retval EFI_TIMEOUT The timeout expires.
+ @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
+**/
+EFI_STATUS
+CheckThisAP (
+ IN UINTN ProcessorNumber
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ CPU_AP_DATA *CpuData;
+
+ CpuMpData = GetCpuMpData ();
+ CpuData = &CpuMpData->CpuData[ProcessorNumber];
+
+ //
+ // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
+ // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
+ // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
+ //
+ //
+ // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
+ //
+ if (GetApState(CpuData) == CpuStateFinished) {
+ if (CpuData->Finished != NULL) {
+ *(CpuData->Finished) = TRUE;
+ }
+ SetApState (CpuData, CpuStateIdle);
+ return EFI_SUCCESS;
+ } else {
+ //
+ // If timeout expires for StartupThisAP(), report timeout.
+ //
+ if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
+ if (CpuData->Finished != NULL) {
+ *(CpuData->Finished) = FALSE;
+ }
+ //
+ // Reset failed AP to idle state
+ //
+ ResetProcessorToIdleState (ProcessorNumber);
+
+ return EFI_TIMEOUT;
+ }
+ }
+ return EFI_NOT_READY;
+}
+
+/**
+ Checks status of all APs.
+
+ This function checks whether all APs have finished task assigned by StartupAllAPs(),
+ and whether timeout expires.
+
+ @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
+ @retval EFI_TIMEOUT The timeout expires.
+ @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
+**/
+EFI_STATUS
+CheckAllAPs (
+ VOID
+ )
+{
+ UINTN ProcessorNumber;
+ UINTN NextProcessorNumber;
+ UINTN ListIndex;
+ EFI_STATUS Status;
+ CPU_MP_DATA *CpuMpData;
+ CPU_AP_DATA *CpuData;
+
+ CpuMpData = GetCpuMpData ();
+
+ NextProcessorNumber = 0;
+
+ //
+ // Go through all APs that are responsible for the StartupAllAPs().
+ //
+ for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
+ if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
+ continue;
+ }
+
+ CpuData = &CpuMpData->CpuData[ProcessorNumber];
+ //
+ // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
+ // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
+ // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
+ //
+ if (GetApState(CpuData) == CpuStateFinished) {
+ CpuMpData->RunningCount --;
+ CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
+ SetApState(CpuData, CpuStateIdle);
+
+ //
+ // If in Single Thread mode, then search for the next waiting AP for execution.
+ //
+ if (CpuMpData->SingleThread) {
+ Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
+
+ if (!EFI_ERROR (Status)) {
+ WakeUpAP (
+ CpuMpData,
+ FALSE,
+ (UINT32) NextProcessorNumber,
+ CpuMpData->Procedure,
+ CpuMpData->ProcArguments,
+ TRUE
+ );
+ }
+ }
+ }
+ }
+
+ //
+ // If all APs finish, return EFI_SUCCESS.
+ //
+ if (CpuMpData->RunningCount == 0) {
+ return EFI_SUCCESS;
+ }
+
+ //
+ // If timeout expires, report timeout.
+ //
+ if (CheckTimeout (
+ &CpuMpData->CurrentTime,
+ &CpuMpData->TotalTime,
+ CpuMpData->ExpectedTime)
+ ) {
+ //
+ // If FailedCpuList is not NULL, record all failed APs in it.
+ //
+ if (CpuMpData->FailedCpuList != NULL) {
+ *CpuMpData->FailedCpuList =
+ AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
+ ASSERT (*CpuMpData->FailedCpuList != NULL);
+ }
+ ListIndex = 0;
+
+ for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
+ //
+ // Check whether this processor is responsible for StartupAllAPs().
+ //
+ if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
+ //
+ // Reset failed APs to idle state
+ //
+ ResetProcessorToIdleState (ProcessorNumber);
+ CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
+ if (CpuMpData->FailedCpuList != NULL) {
+ (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
+ }
+ }
+ }
+ if (CpuMpData->FailedCpuList != NULL) {
+ (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
+ }
+ return EFI_TIMEOUT;
+ }
+ return EFI_NOT_READY;
+}
+
+/**
+ MP Initialize Library initialization.
+
+ This service will allocate AP reset vector and wakeup all APs to do APs
+ initialization.
+
+ This service must be invoked before all other MP Initialize Library
+ service are invoked.
+
+ @retval EFI_SUCCESS MP initialization succeeds.
+ @retval Others MP initialization fails.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibInitialize (
+ VOID
+ )
+{
+ CPU_MP_DATA *OldCpuMpData;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ UINT32 MaxLogicalProcessorNumber;
+ UINT32 ApStackSize;
+ MP_ASSEMBLY_ADDRESS_MAP AddressMap;
+ CPU_VOLATILE_REGISTERS VolatileRegisters;
+ UINTN BufferSize;
+ UINT32 MonitorFilterSize;
+ VOID *MpBuffer;
+ UINTN Buffer;
+ CPU_MP_DATA *CpuMpData;
+ UINT8 ApLoopMode;
+ UINT8 *MonitorBuffer;
+ UINTN Index;
+ UINTN ApResetVectorSize;
+ UINTN BackupBufferAddr;
+ UINTN ApIdtBase;
+
+ OldCpuMpData = GetCpuMpDataFromGuidedHob ();
+ if (OldCpuMpData == NULL) {
+ MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
+ } else {
+ MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
+ }
+ ASSERT (MaxLogicalProcessorNumber != 0);
+
+ AsmGetAddressMap (&AddressMap);
+ ApResetVectorSize = GetApResetVectorSize (&AddressMap);
+ ApStackSize = PcdGet32(PcdCpuApStackSize);
+ ApLoopMode = GetApLoopMode (&MonitorFilterSize);
+
+ //
+ // Save BSP's Control registers for APs.
+ //
+ SaveVolatileRegisters (&VolatileRegisters);
+
+ BufferSize = ApStackSize * MaxLogicalProcessorNumber;
+ BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
+ BufferSize += ApResetVectorSize;
+ BufferSize = ALIGN_VALUE (BufferSize, 8);
+ BufferSize += VolatileRegisters.Idtr.Limit + 1;
+ BufferSize += sizeof (CPU_MP_DATA);
+ BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
+ MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
+ ASSERT (MpBuffer != NULL);
+ ZeroMem (MpBuffer, BufferSize);
+ Buffer = (UINTN) MpBuffer;
+
+ //
+ // The layout of the Buffer is as below:
+ //
+ // +--------------------+ <-- Buffer
+ // AP Stacks (N)
+ // +--------------------+ <-- MonitorBuffer
+ // AP Monitor Filters (N)
+ // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
+ // Backup Buffer
+ // +--------------------+
+ // Padding
+ // +--------------------+ <-- ApIdtBase (8-byte boundary)
+ // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
+ // +--------------------+ <-- CpuMpData
+ // CPU_MP_DATA
+ // +--------------------+ <-- CpuMpData->CpuData
+ // CPU_AP_DATA (N)
+ // +--------------------+ <-- CpuMpData->CpuInfoInHob
+ // CPU_INFO_IN_HOB (N)
+ // +--------------------+
+ //
+ MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
+ BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
+ ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
+ CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
+ CpuMpData->Buffer = Buffer;
+ CpuMpData->CpuApStackSize = ApStackSize;
+ CpuMpData->BackupBuffer = BackupBufferAddr;
+ CpuMpData->BackupBufferSize = ApResetVectorSize;
+ CpuMpData->WakeupBuffer = (UINTN) -1;
+ CpuMpData->CpuCount = 1;
+ CpuMpData->BspNumber = 0;
+ CpuMpData->WaitEvent = NULL;
+ CpuMpData->SwitchBspFlag = FALSE;
+ CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
+ CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
+ InitializeSpinLock(&CpuMpData->MpLock);
+ CpuMpData->SevEsIsEnabled = PcdGetBool (PcdSevEsIsEnabled);
+ CpuMpData->SevEsAPBuffer = (UINTN) -1;
+ CpuMpData->GhcbBase = PcdGet64 (PcdGhcbBase);
+
+ //
+ // Make sure no memory usage outside of the allocated buffer.
+ //
+ ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
+ Buffer + BufferSize);
+
+ //
+ // Duplicate BSP's IDT to APs.
+ // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
+ //
+ CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
+ VolatileRegisters.Idtr.Base = ApIdtBase;
+ //
+ // Don't pass BSP's TR to APs to avoid AP init failure.
+ //
+ VolatileRegisters.Tr = 0;
+ CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
+ //
+ // Set BSP basic information
+ //
+ InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
+ //
+ // Save assembly code information
+ //
+ CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
+ //
+ // Finally set AP loop mode
+ //
+ CpuMpData->ApLoopMode = ApLoopMode;
+ DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
+
+ CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
+
+ //
+ // Set up APs wakeup signal buffer
+ //
+ for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
+ CpuMpData->CpuData[Index].StartupApSignal =
+ (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
+ }
+ //
+ // Enable the local APIC for Virtual Wire Mode.
+ //
+ ProgramVirtualWireMode ();
+
+ if (OldCpuMpData == NULL) {
+ if (MaxLogicalProcessorNumber > 1) {
+ //
+ // Wakeup all APs and calculate the processor count in system
+ //
+ CollectProcessorCount (CpuMpData);
+ }
+ } else {
+ //
+ // APs have been wakeup before, just get the CPU Information
+ // from HOB
+ //
+ OldCpuMpData->NewCpuMpData = CpuMpData;
+ CpuMpData->CpuCount = OldCpuMpData->CpuCount;
+ CpuMpData->BspNumber = OldCpuMpData->BspNumber;
+ CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
+ CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
+ CpuMpData->CpuData[Index].ApFunction = 0;
+ }
+ }
+
+ if (!GetMicrocodePatchInfoFromHob (
+ &CpuMpData->MicrocodePatchAddress,
+ &CpuMpData->MicrocodePatchRegionSize
+ )) {
+ //
+ // The microcode patch information cache HOB does not exist, which means
+ // the microcode patches data has not been loaded into memory yet
+ //
+ ShadowMicrocodeUpdatePatch (CpuMpData);
+ }
+
+ //
+ // Detect and apply Microcode on BSP
+ //
+ MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);
+ //
+ // Store BSP's MTRR setting
+ //
+ MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
+
+ //
+ // Wakeup APs to do some AP initialize sync (Microcode & MTRR)
+ //
+ if (CpuMpData->CpuCount > 1) {
+ if (OldCpuMpData != NULL) {
+ //
+ // Only needs to use this flag for DXE phase to update the wake up
+ // buffer. Wakeup buffer allocated in PEI phase is no longer valid
+ // in DXE.
+ //
+ CpuMpData->InitFlag = ApInitReconfig;
+ }
+ WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
+ //
+ // Wait for all APs finished initialization
+ //
+ while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
+ CpuPause ();
+ }
+ if (OldCpuMpData != NULL) {
+ CpuMpData->InitFlag = ApInitDone;
+ }
+ for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
+ SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
+ }
+ }
+
+ //
+ // Initialize global data for MP support
+ //
+ InitMpGlobalData (CpuMpData);
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Gets detailed MP-related information on the requested processor at the
+ instant this call is made. This service may only be called from the BSP.
+
+ @param[in] ProcessorNumber The handle number of processor.
+ @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
+ the requested processor is deposited.
+ @param[out] HealthData Return processor health data.
+
+ @retval EFI_SUCCESS Processor information was returned.
+ @retval EFI_DEVICE_ERROR The calling processor is an AP.
+ @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
+ ProcessorNumber does not exist in the platform.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibGetProcessorInfo (
+ IN UINTN ProcessorNumber,
+ OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
+ OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ UINTN CallerNumber;
+ CPU_INFO_IN_HOB *CpuInfoInHob;
+ UINTN OriginalProcessorNumber;
+
+ CpuMpData = GetCpuMpData ();
+ CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
+
+ //
+ // Lower 24 bits contains the actual processor number.
+ //
+ OriginalProcessorNumber = ProcessorNumber;
+ ProcessorNumber &= BIT24 - 1;
+
+ //
+ // Check whether caller processor is BSP
+ //
+ MpInitLibWhoAmI (&CallerNumber);
+ if (CallerNumber != CpuMpData->BspNumber) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ if (ProcessorInfoBuffer == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (ProcessorNumber >= CpuMpData->CpuCount) {
+ return EFI_NOT_FOUND;
+ }
+
+ ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
+ ProcessorInfoBuffer->StatusFlag = 0;
+ if (ProcessorNumber == CpuMpData->BspNumber) {
+ ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
+ }
+ if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
+ ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
+ }
+ if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
+ ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
+ } else {
+ ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
+ }
+
+ //
+ // Get processor location information
+ //
+ GetProcessorLocationByApicId (
+ CpuInfoInHob[ProcessorNumber].ApicId,
+ &ProcessorInfoBuffer->Location.Package,
+ &ProcessorInfoBuffer->Location.Core,
+ &ProcessorInfoBuffer->Location.Thread
+ );
+
+ if ((OriginalProcessorNumber & CPU_V2_EXTENDED_TOPOLOGY) != 0) {
+ GetProcessorLocation2ByApicId (
+ CpuInfoInHob[ProcessorNumber].ApicId,
+ &ProcessorInfoBuffer->ExtendedInformation.Location2.Package,
+ &ProcessorInfoBuffer->ExtendedInformation.Location2.Die,
+ &ProcessorInfoBuffer->ExtendedInformation.Location2.Tile,
+ &ProcessorInfoBuffer->ExtendedInformation.Location2.Module,
+ &ProcessorInfoBuffer->ExtendedInformation.Location2.Core,
+ &ProcessorInfoBuffer->ExtendedInformation.Location2.Thread
+ );
+ }
+
+ if (HealthData != NULL) {
+ HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Worker function to switch the requested AP to be the BSP from that point onward.
+
+ @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
+ @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
+ enabled AP. Otherwise, it will be disabled.
+
+ @retval EFI_SUCCESS BSP successfully switched.
+ @retval others Failed to switch BSP.
+
+**/
+EFI_STATUS
+SwitchBSPWorker (
+ IN UINTN ProcessorNumber,
+ IN BOOLEAN EnableOldBSP
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ UINTN CallerNumber;
+ CPU_STATE State;
+ MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
+ BOOLEAN OldInterruptState;
+ BOOLEAN OldTimerInterruptState;
+
+ //
+ // Save and Disable Local APIC timer interrupt
+ //
+ OldTimerInterruptState = GetApicTimerInterruptState ();
+ DisableApicTimerInterrupt ();
+ //
+ // Before send both BSP and AP to a procedure to exchange their roles,
+ // interrupt must be disabled. This is because during the exchange role
+ // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
+ // be corrupted, since interrupt return address will be pushed to stack
+ // by hardware.
+ //
+ OldInterruptState = SaveAndDisableInterrupts ();
+
+ //
+ // Mask LINT0 & LINT1 for the old BSP
+ //
+ DisableLvtInterrupts ();
+
+ CpuMpData = GetCpuMpData ();
+
+ //
+ // Check whether caller processor is BSP
+ //
+ MpInitLibWhoAmI (&CallerNumber);
+ if (CallerNumber != CpuMpData->BspNumber) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ if (ProcessorNumber >= CpuMpData->CpuCount) {
+ return EFI_NOT_FOUND;
+ }
+
+ //
+ // Check whether specified AP is disabled
+ //
+ State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
+ if (State == CpuStateDisabled) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check whether ProcessorNumber specifies the current BSP
+ //
+ if (ProcessorNumber == CpuMpData->BspNumber) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check whether specified AP is busy
+ //
+ if (State == CpuStateBusy) {
+ return EFI_NOT_READY;
+ }
+
+ CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
+ CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
+ CpuMpData->SwitchBspFlag = TRUE;
+ CpuMpData->NewBspNumber = ProcessorNumber;
+
+ //
+ // Clear the BSP bit of MSR_IA32_APIC_BASE
+ //
+ ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
+ ApicBaseMsr.Bits.BSP = 0;
+ AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
+
+ //
+ // Need to wakeUp AP (future BSP).
+ //
+ WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
+
+ AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
+
+ //
+ // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
+ //
+ ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
+ ApicBaseMsr.Bits.BSP = 1;
+ AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
+ ProgramVirtualWireMode ();
+
+ //
+ // Wait for old BSP finished AP task
+ //
+ while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
+ CpuPause ();
+ }
+
+ CpuMpData->SwitchBspFlag = FALSE;
+ //
+ // Set old BSP enable state
+ //
+ if (!EnableOldBSP) {
+ SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
+ } else {
+ SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
+ }
+ //
+ // Save new BSP number
+ //
+ CpuMpData->BspNumber = (UINT32) ProcessorNumber;
+
+ //
+ // Restore interrupt state.
+ //
+ SetInterruptState (OldInterruptState);
+
+ if (OldTimerInterruptState) {
+ EnableApicTimerInterrupt ();
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Worker function to let the caller enable or disable an AP from this point onward.
+ This service may only be called from the BSP.
+
+ @param[in] ProcessorNumber The handle number of AP.
+ @param[in] EnableAP Specifies the new state for the processor for
+ enabled, FALSE for disabled.
+ @param[in] HealthFlag If not NULL, a pointer to a value that specifies
+ the new health status of the AP.
+
+ @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
+ @retval others Failed to Enable/Disable AP.
+
+**/
+EFI_STATUS
+EnableDisableApWorker (
+ IN UINTN ProcessorNumber,
+ IN BOOLEAN EnableAP,
+ IN UINT32 *HealthFlag OPTIONAL
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ UINTN CallerNumber;
+
+ CpuMpData = GetCpuMpData ();
+
+ //
+ // Check whether caller processor is BSP
+ //
+ MpInitLibWhoAmI (&CallerNumber);
+ if (CallerNumber != CpuMpData->BspNumber) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ if (ProcessorNumber == CpuMpData->BspNumber) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (ProcessorNumber >= CpuMpData->CpuCount) {
+ return EFI_NOT_FOUND;
+ }
+
+ if (!EnableAP) {
+ SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
+ } else {
+ ResetProcessorToIdleState (ProcessorNumber);
+ }
+
+ if (HealthFlag != NULL) {
+ CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
+ (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ This return the handle number for the calling processor. This service may be
+ called from the BSP and APs.
+
+ @param[out] ProcessorNumber Pointer to the handle number of AP.
+ The range is from 0 to the total number of
+ logical processors minus 1. The total number of
+ logical processors can be retrieved by
+ MpInitLibGetNumberOfProcessors().
+
+ @retval EFI_SUCCESS The current processor handle number was returned
+ in ProcessorNumber.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibWhoAmI (
+ OUT UINTN *ProcessorNumber
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+
+ if (ProcessorNumber == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ CpuMpData = GetCpuMpData ();
+
+ return GetProcessorNumber (CpuMpData, ProcessorNumber);
+}
+
+/**
+ Retrieves the number of logical processor in the platform and the number of
+ those logical processors that are enabled on this boot. This service may only
+ be called from the BSP.
+
+ @param[out] NumberOfProcessors Pointer to the total number of logical
+ processors in the system, including the BSP
+ and disabled APs.
+ @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
+ processors that exist in system, including
+ the BSP.
+
+ @retval EFI_SUCCESS The number of logical processors and enabled
+ logical processors was retrieved.
+ @retval EFI_DEVICE_ERROR The calling processor is an AP.
+ @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
+ is NULL.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibGetNumberOfProcessors (
+ OUT UINTN *NumberOfProcessors, OPTIONAL
+ OUT UINTN *NumberOfEnabledProcessors OPTIONAL
+ )
+{
+ CPU_MP_DATA *CpuMpData;
+ UINTN CallerNumber;
+ UINTN ProcessorNumber;
+ UINTN EnabledProcessorNumber;
+ UINTN Index;
+
+ CpuMpData = GetCpuMpData ();
+
+ if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check whether caller processor is BSP
+ //
+ MpInitLibWhoAmI (&CallerNumber);
+ if (CallerNumber != CpuMpData->BspNumber) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ ProcessorNumber = CpuMpData->CpuCount;
+ EnabledProcessorNumber = 0;
+ for (Index = 0; Index < ProcessorNumber; Index++) {
+ if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
+ EnabledProcessorNumber ++;
+ }
+ }
+
+ if (NumberOfProcessors != NULL) {
+ *NumberOfProcessors = ProcessorNumber;
+ }
+ if (NumberOfEnabledProcessors != NULL) {
+ *NumberOfEnabledProcessors = EnabledProcessorNumber;
+ }
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Worker function to execute a caller provided function on all enabled APs.
+
+ @param[in] Procedure A pointer to the function to be run on
+ enabled APs of the system.
+ @param[in] SingleThread If TRUE, then all the enabled APs execute
+ the function specified by Procedure one by
+ one, in ascending order of processor handle
+ number. If FALSE, then all the enabled APs
+ execute the function specified by Procedure
+ simultaneously.
+ @param[in] ExcludeBsp Whether let BSP also trig this task.
+ @param[in] WaitEvent The event created by the caller with CreateEvent()
+ service.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
+ APs to return from Procedure, either for
+ blocking or non-blocking mode.
+ @param[in] ProcedureArgument The parameter passed into Procedure for
+ all APs.
+ @param[out] FailedCpuList If all APs finish successfully, then its
+ content is set to NULL. If not all APs
+ finish before timeout expires, then its
+ content is set to address of the buffer
+ holding handle numbers of the failed APs.
+
+ @retval EFI_SUCCESS In blocking mode, all APs have finished before
+ the timeout expired.
+ @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
+ to all enabled APs.
+ @retval others Failed to Startup all APs.
+
+**/
+EFI_STATUS
+StartupAllCPUsWorker (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN BOOLEAN SingleThread,
+ IN BOOLEAN ExcludeBsp,
+ IN EFI_EVENT WaitEvent OPTIONAL,
+ IN UINTN TimeoutInMicroseconds,
+ IN VOID *ProcedureArgument OPTIONAL,
+ OUT UINTN **FailedCpuList OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+ CPU_MP_DATA *CpuMpData;
+ UINTN ProcessorCount;
+ UINTN ProcessorNumber;
+ UINTN CallerNumber;
+ CPU_AP_DATA *CpuData;
+ BOOLEAN HasEnabledAp;
+ CPU_STATE ApState;
+
+ CpuMpData = GetCpuMpData ();
+
+ if (FailedCpuList != NULL) {
+ *FailedCpuList = NULL;
+ }
+
+ if (CpuMpData->CpuCount == 1 && ExcludeBsp) {
+ return EFI_NOT_STARTED;
+ }
+
+ if (Procedure == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check whether caller processor is BSP
+ //
+ MpInitLibWhoAmI (&CallerNumber);
+ if (CallerNumber != CpuMpData->BspNumber) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ //
+ // Update AP state
+ //
+ CheckAndUpdateApsStatus ();
+
+ ProcessorCount = CpuMpData->CpuCount;
+ HasEnabledAp = FALSE;
+ //
+ // Check whether all enabled APs are idle.
+ // If any enabled AP is not idle, return EFI_NOT_READY.
+ //
+ for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
+ CpuData = &CpuMpData->CpuData[ProcessorNumber];
+ if (ProcessorNumber != CpuMpData->BspNumber) {
+ ApState = GetApState (CpuData);
+ if (ApState != CpuStateDisabled) {
+ HasEnabledAp = TRUE;
+ if (ApState != CpuStateIdle) {
+ //
+ // If any enabled APs are busy, return EFI_NOT_READY.
+ //
+ return EFI_NOT_READY;
+ }
+ }
+ }
+ }
+
+ if (!HasEnabledAp && ExcludeBsp) {
+ //
+ // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
+ //
+ return EFI_NOT_STARTED;
+ }
+
+ CpuMpData->RunningCount = 0;
+ for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
+ CpuData = &CpuMpData->CpuData[ProcessorNumber];
+ CpuData->Waiting = FALSE;
+ if (ProcessorNumber != CpuMpData->BspNumber) {
+ if (CpuData->State == CpuStateIdle) {
+ //
+ // Mark this processor as responsible for current calling.
+ //
+ CpuData->Waiting = TRUE;
+ CpuMpData->RunningCount++;
+ }
+ }
+ }
+
+ CpuMpData->Procedure = Procedure;
+ CpuMpData->ProcArguments = ProcedureArgument;
+ CpuMpData->SingleThread = SingleThread;
+ CpuMpData->FinishedCount = 0;
+ CpuMpData->FailedCpuList = FailedCpuList;
+ CpuMpData->ExpectedTime = CalculateTimeout (
+ TimeoutInMicroseconds,
+ &CpuMpData->CurrentTime
+ );
+ CpuMpData->TotalTime = 0;
+ CpuMpData->WaitEvent = WaitEvent;
+
+ if (!SingleThread) {
+ WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
+ } else {
+ for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
+ if (ProcessorNumber == CallerNumber) {
+ continue;
+ }
+ if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
+ WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
+ break;
+ }
+ }
+ }
+
+ if (!ExcludeBsp) {
+ //
+ // Start BSP.
+ //
+ Procedure (ProcedureArgument);
+ }
+
+ Status = EFI_SUCCESS;
+ if (WaitEvent == NULL) {
+ do {
+ Status = CheckAllAPs ();
+ } while (Status == EFI_NOT_READY);
+ }
+
+ return Status;
+}
+
+/**
+ Worker function to let the caller get one enabled AP to execute a caller-provided
+ function.
+
+ @param[in] Procedure A pointer to the function to be run on
+ enabled APs of the system.
+ @param[in] ProcessorNumber The handle number of the AP.
+ @param[in] WaitEvent The event created by the caller with CreateEvent()
+ service.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
+ APs to return from Procedure, either for
+ blocking or non-blocking mode.
+ @param[in] ProcedureArgument The parameter passed into Procedure for
+ all APs.
+ @param[out] Finished If AP returns from Procedure before the
+ timeout expires, its content is set to TRUE.
+ Otherwise, the value is set to FALSE.
+
+ @retval EFI_SUCCESS In blocking mode, specified AP finished before
+ the timeout expires.
+ @retval others Failed to Startup AP.
+
+**/
+EFI_STATUS
+StartupThisAPWorker (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN UINTN ProcessorNumber,
+ IN EFI_EVENT WaitEvent OPTIONAL,
+ IN UINTN TimeoutInMicroseconds,
+ IN VOID *ProcedureArgument OPTIONAL,
+ OUT BOOLEAN *Finished OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+ CPU_MP_DATA *CpuMpData;
+ CPU_AP_DATA *CpuData;
+ UINTN CallerNumber;
+
+ CpuMpData = GetCpuMpData ();
+
+ if (Finished != NULL) {
+ *Finished = FALSE;
+ }
+
+ //
+ // Check whether caller processor is BSP
+ //
+ MpInitLibWhoAmI (&CallerNumber);
+ if (CallerNumber != CpuMpData->BspNumber) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ //
+ // Check whether processor with the handle specified by ProcessorNumber exists
+ //
+ if (ProcessorNumber >= CpuMpData->CpuCount) {
+ return EFI_NOT_FOUND;
+ }
+
+ //
+ // Check whether specified processor is BSP
+ //
+ if (ProcessorNumber == CpuMpData->BspNumber) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check parameter Procedure
+ //
+ if (Procedure == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Update AP state
+ //
+ CheckAndUpdateApsStatus ();
+
+ //
+ // Check whether specified AP is disabled
+ //
+ if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // If WaitEvent is not NULL, execute in non-blocking mode.
+ // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
+ // CheckAPsStatus() will check completion and timeout periodically.
+ //
+ CpuData = &CpuMpData->CpuData[ProcessorNumber];
+ CpuData->WaitEvent = WaitEvent;
+ CpuData->Finished = Finished;
+ CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
+ CpuData->TotalTime = 0;
+
+ WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
+
+ //
+ // If WaitEvent is NULL, execute in blocking mode.
+ // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
+ //
+ Status = EFI_SUCCESS;
+ if (WaitEvent == NULL) {
+ do {
+ Status = CheckThisAP (ProcessorNumber);
+ } while (Status == EFI_NOT_READY);
+ }
+
+ return Status;
+}
+
+/**
+ Get pointer to CPU MP Data structure from GUIDed HOB.
+
+ @return The pointer to CPU MP Data structure.
+**/
+CPU_MP_DATA *
+GetCpuMpDataFromGuidedHob (
+ VOID
+ )
+{
+ EFI_HOB_GUID_TYPE *GuidHob;
+ VOID *DataInHob;
+ CPU_MP_DATA *CpuMpData;
+
+ CpuMpData = NULL;
+ GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
+ if (GuidHob != NULL) {
+ DataInHob = GET_GUID_HOB_DATA (GuidHob);
+ CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
+ }
+ return CpuMpData;
+}
+
+/**
+ This service executes a caller provided function on all enabled CPUs.
+
+ @param[in] Procedure A pointer to the function to be run on
+ enabled APs of the system. See type
+ EFI_AP_PROCEDURE.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
+ APs to return from Procedure, either for
+ blocking or non-blocking mode. Zero means
+ infinity. TimeoutInMicroseconds is ignored
+ for BSP.
+ @param[in] ProcedureArgument The parameter passed into Procedure for
+ all APs.
+
+ @retval EFI_SUCCESS In blocking mode, all CPUs have finished before
+ the timeout expired.
+ @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
+ to all enabled CPUs.
+ @retval EFI_DEVICE_ERROR Caller processor is AP.
+ @retval EFI_NOT_READY Any enabled APs are busy.
+ @retval EFI_NOT_READY MP Initialize Library is not initialized.
+ @retval EFI_TIMEOUT In blocking mode, the timeout expired before
+ all enabled APs have finished.
+ @retval EFI_INVALID_PARAMETER Procedure is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+MpInitLibStartupAllCPUs (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN UINTN TimeoutInMicroseconds,
+ IN VOID *ProcedureArgument OPTIONAL
+ )
+{
+ return StartupAllCPUsWorker (
+ Procedure,
+ FALSE,
+ FALSE,
+ NULL,
+ TimeoutInMicroseconds,
+ ProcedureArgument,
+ NULL
+ );
+}