aboutsummaryrefslogtreecommitdiffstats
path: root/target/ppc/fpu_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/ppc/fpu_helper.c')
-rw-r--r--target/ppc/fpu_helper.c3289
1 files changed, 3289 insertions, 0 deletions
diff --git a/target/ppc/fpu_helper.c b/target/ppc/fpu_helper.c
new file mode 100644
index 000000000..c4896cecc
--- /dev/null
+++ b/target/ppc/fpu_helper.c
@@ -0,0 +1,3289 @@
+/*
+ * PowerPC floating point and SPE emulation helpers for QEMU.
+ *
+ * Copyright (c) 2003-2007 Jocelyn Mayer
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "exec/helper-proto.h"
+#include "exec/exec-all.h"
+#include "internal.h"
+#include "fpu/softfloat.h"
+
+static inline float128 float128_snan_to_qnan(float128 x)
+{
+ float128 r;
+
+ r.high = x.high | 0x0000800000000000;
+ r.low = x.low;
+ return r;
+}
+
+#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
+#define float32_snan_to_qnan(x) ((x) | 0x00400000)
+#define float16_snan_to_qnan(x) ((x) | 0x0200)
+
+static inline bool fp_exceptions_enabled(CPUPPCState *env)
+{
+#ifdef CONFIG_USER_ONLY
+ return true;
+#else
+ return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
+#endif
+}
+
+/*****************************************************************************/
+/* Floating point operations helpers */
+
+/*
+ * This is the non-arithmatic conversion that happens e.g. on loads.
+ * In the Power ISA pseudocode, this is called DOUBLE.
+ */
+uint64_t helper_todouble(uint32_t arg)
+{
+ uint32_t abs_arg = arg & 0x7fffffff;
+ uint64_t ret;
+
+ if (likely(abs_arg >= 0x00800000)) {
+ if (unlikely(extract32(arg, 23, 8) == 0xff)) {
+ /* Inf or NAN. */
+ ret = (uint64_t)extract32(arg, 31, 1) << 63;
+ ret |= (uint64_t)0x7ff << 52;
+ ret |= (uint64_t)extract32(arg, 0, 23) << 29;
+ } else {
+ /* Normalized operand. */
+ ret = (uint64_t)extract32(arg, 30, 2) << 62;
+ ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
+ ret |= (uint64_t)extract32(arg, 0, 30) << 29;
+ }
+ } else {
+ /* Zero or Denormalized operand. */
+ ret = (uint64_t)extract32(arg, 31, 1) << 63;
+ if (unlikely(abs_arg != 0)) {
+ /*
+ * Denormalized operand.
+ * Shift fraction so that the msb is in the implicit bit position.
+ * Thus, shift is in the range [1:23].
+ */
+ int shift = clz32(abs_arg) - 8;
+ /*
+ * The first 3 terms compute the float64 exponent. We then bias
+ * this result by -1 so that we can swallow the implicit bit below.
+ */
+ int exp = -126 - shift + 1023 - 1;
+
+ ret |= (uint64_t)exp << 52;
+ ret += (uint64_t)abs_arg << (52 - 23 + shift);
+ }
+ }
+ return ret;
+}
+
+/*
+ * This is the non-arithmatic conversion that happens e.g. on stores.
+ * In the Power ISA pseudocode, this is called SINGLE.
+ */
+uint32_t helper_tosingle(uint64_t arg)
+{
+ int exp = extract64(arg, 52, 11);
+ uint32_t ret;
+
+ if (likely(exp > 896)) {
+ /* No denormalization required (includes Inf, NaN). */
+ ret = extract64(arg, 62, 2) << 30;
+ ret |= extract64(arg, 29, 30);
+ } else {
+ /*
+ * Zero or Denormal result. If the exponent is in bounds for
+ * a single-precision denormal result, extract the proper
+ * bits. If the input is not zero, and the exponent is out of
+ * bounds, then the result is undefined; this underflows to
+ * zero.
+ */
+ ret = extract64(arg, 63, 1) << 31;
+ if (unlikely(exp >= 874)) {
+ /* Denormal result. */
+ ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
+ }
+ }
+ return ret;
+}
+
+static inline int ppc_float32_get_unbiased_exp(float32 f)
+{
+ return ((f >> 23) & 0xFF) - 127;
+}
+
+static inline int ppc_float64_get_unbiased_exp(float64 f)
+{
+ return ((f >> 52) & 0x7FF) - 1023;
+}
+
+/* Classify a floating-point number. */
+enum {
+ is_normal = 1,
+ is_zero = 2,
+ is_denormal = 4,
+ is_inf = 8,
+ is_qnan = 16,
+ is_snan = 32,
+ is_neg = 64,
+};
+
+#define COMPUTE_CLASS(tp) \
+static int tp##_classify(tp arg) \
+{ \
+ int ret = tp##_is_neg(arg) * is_neg; \
+ if (unlikely(tp##_is_any_nan(arg))) { \
+ float_status dummy = { }; /* snan_bit_is_one = 0 */ \
+ ret |= (tp##_is_signaling_nan(arg, &dummy) \
+ ? is_snan : is_qnan); \
+ } else if (unlikely(tp##_is_infinity(arg))) { \
+ ret |= is_inf; \
+ } else if (tp##_is_zero(arg)) { \
+ ret |= is_zero; \
+ } else if (tp##_is_zero_or_denormal(arg)) { \
+ ret |= is_denormal; \
+ } else { \
+ ret |= is_normal; \
+ } \
+ return ret; \
+}
+
+COMPUTE_CLASS(float16)
+COMPUTE_CLASS(float32)
+COMPUTE_CLASS(float64)
+COMPUTE_CLASS(float128)
+
+static void set_fprf_from_class(CPUPPCState *env, int class)
+{
+ static const uint8_t fprf[6][2] = {
+ { 0x04, 0x08 }, /* normalized */
+ { 0x02, 0x12 }, /* zero */
+ { 0x14, 0x18 }, /* denormalized */
+ { 0x05, 0x09 }, /* infinity */
+ { 0x11, 0x11 }, /* qnan */
+ { 0x00, 0x00 }, /* snan -- flags are undefined */
+ };
+ bool isneg = class & is_neg;
+
+ env->fpscr &= ~FP_FPRF;
+ env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
+}
+
+#define COMPUTE_FPRF(tp) \
+void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
+{ \
+ set_fprf_from_class(env, tp##_classify(arg)); \
+}
+
+COMPUTE_FPRF(float16)
+COMPUTE_FPRF(float32)
+COMPUTE_FPRF(float64)
+COMPUTE_FPRF(float128)
+
+/* Floating-point invalid operations exception */
+static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
+{
+ /* Update the floating-point invalid operation summary */
+ env->fpscr |= FP_VX;
+ /* Update the floating-point exception summary */
+ env->fpscr |= FP_FX;
+ if (fpscr_ve != 0) {
+ /* Update the floating-point enabled exception summary */
+ env->fpscr |= FP_FEX;
+ if (fp_exceptions_enabled(env)) {
+ raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+ POWERPC_EXCP_FP | op, retaddr);
+ }
+ }
+}
+
+static void finish_invalid_op_arith(CPUPPCState *env, int op,
+ bool set_fpcc, uintptr_t retaddr)
+{
+ env->fpscr &= ~(FP_FR | FP_FI);
+ if (fpscr_ve == 0) {
+ if (set_fpcc) {
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= (FP_C | FP_FU);
+ }
+ }
+ finish_invalid_op_excp(env, op, retaddr);
+}
+
+/* Signalling NaN */
+static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXSNAN;
+ finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
+}
+
+/* Magnitude subtraction of infinities */
+static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXISI;
+ finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
+}
+
+/* Division of infinity by infinity */
+static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXIDI;
+ finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
+}
+
+/* Division of zero by zero */
+static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXZDZ;
+ finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
+}
+
+/* Multiplication of zero by infinity */
+static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXIMZ;
+ finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
+}
+
+/* Square root of a negative number */
+static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXSQRT;
+ finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
+}
+
+/* Ordered comparison of NaN */
+static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXVC;
+ if (set_fpcc) {
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= (FP_C | FP_FU);
+ }
+ /* Update the floating-point invalid operation summary */
+ env->fpscr |= FP_VX;
+ /* Update the floating-point exception summary */
+ env->fpscr |= FP_FX;
+ /* We must update the target FPR before raising the exception */
+ if (fpscr_ve != 0) {
+ CPUState *cs = env_cpu(env);
+
+ cs->exception_index = POWERPC_EXCP_PROGRAM;
+ env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
+ /* Update the floating-point enabled exception summary */
+ env->fpscr |= FP_FEX;
+ /* Exception is deferred */
+ }
+}
+
+/* Invalid conversion */
+static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr)
+{
+ env->fpscr |= FP_VXCVI;
+ env->fpscr &= ~(FP_FR | FP_FI);
+ if (fpscr_ve == 0) {
+ if (set_fpcc) {
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= (FP_C | FP_FU);
+ }
+ }
+ finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
+}
+
+static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
+{
+ env->fpscr |= FP_ZX;
+ env->fpscr &= ~(FP_FR | FP_FI);
+ /* Update the floating-point exception summary */
+ env->fpscr |= FP_FX;
+ if (fpscr_ze != 0) {
+ /* Update the floating-point enabled exception summary */
+ env->fpscr |= FP_FEX;
+ if (fp_exceptions_enabled(env)) {
+ raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+ POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
+ raddr);
+ }
+ }
+}
+
+static inline void float_overflow_excp(CPUPPCState *env)
+{
+ CPUState *cs = env_cpu(env);
+
+ env->fpscr |= FP_OX;
+ /* Update the floating-point exception summary */
+ env->fpscr |= FP_FX;
+ if (fpscr_oe != 0) {
+ /* XXX: should adjust the result */
+ /* Update the floating-point enabled exception summary */
+ env->fpscr |= FP_FEX;
+ /* We must update the target FPR before raising the exception */
+ cs->exception_index = POWERPC_EXCP_PROGRAM;
+ env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
+ } else {
+ env->fpscr |= FP_XX;
+ env->fpscr |= FP_FI;
+ }
+}
+
+static inline void float_underflow_excp(CPUPPCState *env)
+{
+ CPUState *cs = env_cpu(env);
+
+ env->fpscr |= FP_UX;
+ /* Update the floating-point exception summary */
+ env->fpscr |= FP_FX;
+ if (fpscr_ue != 0) {
+ /* XXX: should adjust the result */
+ /* Update the floating-point enabled exception summary */
+ env->fpscr |= FP_FEX;
+ /* We must update the target FPR before raising the exception */
+ cs->exception_index = POWERPC_EXCP_PROGRAM;
+ env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
+ }
+}
+
+static inline void float_inexact_excp(CPUPPCState *env)
+{
+ CPUState *cs = env_cpu(env);
+
+ env->fpscr |= FP_FI;
+ env->fpscr |= FP_XX;
+ /* Update the floating-point exception summary */
+ env->fpscr |= FP_FX;
+ if (fpscr_xe != 0) {
+ /* Update the floating-point enabled exception summary */
+ env->fpscr |= FP_FEX;
+ /* We must update the target FPR before raising the exception */
+ cs->exception_index = POWERPC_EXCP_PROGRAM;
+ env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
+ }
+}
+
+void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
+{
+ uint32_t mask = 1u << bit;
+ if (env->fpscr & mask) {
+ ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
+ }
+}
+
+void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
+{
+ uint32_t mask = 1u << bit;
+ if (!(env->fpscr & mask)) {
+ ppc_store_fpscr(env, env->fpscr | mask);
+ }
+}
+
+void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
+{
+ target_ulong mask = 0;
+ int i;
+
+ /* TODO: push this extension back to translation time */
+ for (i = 0; i < sizeof(target_ulong) * 2; i++) {
+ if (nibbles & (1 << i)) {
+ mask |= (target_ulong) 0xf << (4 * i);
+ }
+ }
+ val = (val & mask) | (env->fpscr & ~mask);
+ ppc_store_fpscr(env, val);
+}
+
+static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
+{
+ CPUState *cs = env_cpu(env);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (status & float_flag_overflow) {
+ float_overflow_excp(env);
+ } else if (status & float_flag_underflow) {
+ float_underflow_excp(env);
+ }
+ if (status & float_flag_inexact) {
+ float_inexact_excp(env);
+ } else {
+ env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */
+ }
+
+ if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
+ (env->error_code & POWERPC_EXCP_FP)) {
+ /* Deferred floating-point exception after target FPR update */
+ if (fp_exceptions_enabled(env)) {
+ raise_exception_err_ra(env, cs->exception_index,
+ env->error_code, raddr);
+ }
+ }
+}
+
+void helper_float_check_status(CPUPPCState *env)
+{
+ do_float_check_status(env, GETPC());
+}
+
+void helper_reset_fpstatus(CPUPPCState *env)
+{
+ set_float_exception_flags(0, &env->fp_status);
+}
+
+static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
+ uintptr_t retaddr, int classes)
+{
+ if ((classes & ~is_neg) == is_inf) {
+ /* Magnitude subtraction of infinities */
+ float_invalid_op_vxisi(env, set_fpcc, retaddr);
+ } else if (classes & is_snan) {
+ float_invalid_op_vxsnan(env, retaddr);
+ }
+}
+
+/* fadd - fadd. */
+float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
+{
+ float64 ret = float64_add(arg1, arg2, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status & float_flag_invalid)) {
+ float_invalid_op_addsub(env, 1, GETPC(),
+ float64_classify(arg1) |
+ float64_classify(arg2));
+ }
+
+ return ret;
+}
+
+/* fsub - fsub. */
+float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
+{
+ float64 ret = float64_sub(arg1, arg2, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status & float_flag_invalid)) {
+ float_invalid_op_addsub(env, 1, GETPC(),
+ float64_classify(arg1) |
+ float64_classify(arg2));
+ }
+
+ return ret;
+}
+
+static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
+ uintptr_t retaddr, int classes)
+{
+ if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
+ /* Multiplication of zero by infinity */
+ float_invalid_op_vximz(env, set_fprc, retaddr);
+ } else if (classes & is_snan) {
+ float_invalid_op_vxsnan(env, retaddr);
+ }
+}
+
+/* fmul - fmul. */
+float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
+{
+ float64 ret = float64_mul(arg1, arg2, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status & float_flag_invalid)) {
+ float_invalid_op_mul(env, 1, GETPC(),
+ float64_classify(arg1) |
+ float64_classify(arg2));
+ }
+
+ return ret;
+}
+
+static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
+ uintptr_t retaddr, int classes)
+{
+ classes &= ~is_neg;
+ if (classes == is_inf) {
+ /* Division of infinity by infinity */
+ float_invalid_op_vxidi(env, set_fprc, retaddr);
+ } else if (classes == is_zero) {
+ /* Division of zero by zero */
+ float_invalid_op_vxzdz(env, set_fprc, retaddr);
+ } else if (classes & is_snan) {
+ float_invalid_op_vxsnan(env, retaddr);
+ }
+}
+
+/* fdiv - fdiv. */
+float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
+{
+ float64 ret = float64_div(arg1, arg2, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status)) {
+ if (status & float_flag_invalid) {
+ float_invalid_op_div(env, 1, GETPC(),
+ float64_classify(arg1) |
+ float64_classify(arg2));
+ }
+ if (status & float_flag_divbyzero) {
+ float_zero_divide_excp(env, GETPC());
+ }
+ }
+
+ return ret;
+}
+
+static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
+ uintptr_t retaddr, int class1)
+{
+ float_invalid_op_vxcvi(env, set_fprc, retaddr);
+ if (class1 & is_snan) {
+ float_invalid_op_vxsnan(env, retaddr);
+ }
+}
+
+#define FPU_FCTI(op, cvt, nanval) \
+uint64_t helper_##op(CPUPPCState *env, float64 arg) \
+{ \
+ uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
+ int status = get_float_exception_flags(&env->fp_status); \
+ \
+ if (unlikely(status)) { \
+ if (status & float_flag_invalid) { \
+ float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
+ ret = nanval; \
+ } \
+ do_float_check_status(env, GETPC()); \
+ } \
+ return ret; \
+}
+
+FPU_FCTI(fctiw, int32, 0x80000000U)
+FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
+FPU_FCTI(fctiwu, uint32, 0x00000000U)
+FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
+FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
+FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
+FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
+FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
+
+#define FPU_FCFI(op, cvtr, is_single) \
+uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
+{ \
+ CPU_DoubleU farg; \
+ \
+ if (is_single) { \
+ float32 tmp = cvtr(arg, &env->fp_status); \
+ farg.d = float32_to_float64(tmp, &env->fp_status); \
+ } else { \
+ farg.d = cvtr(arg, &env->fp_status); \
+ } \
+ do_float_check_status(env, GETPC()); \
+ return farg.ll; \
+}
+
+FPU_FCFI(fcfid, int64_to_float64, 0)
+FPU_FCFI(fcfids, int64_to_float32, 1)
+FPU_FCFI(fcfidu, uint64_to_float64, 0)
+FPU_FCFI(fcfidus, uint64_to_float32, 1)
+
+static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
+ int rounding_mode)
+{
+ CPU_DoubleU farg;
+ FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
+
+ farg.ll = arg;
+
+ if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
+ /* sNaN round */
+ float_invalid_op_vxsnan(env, GETPC());
+ farg.ll = arg | 0x0008000000000000ULL;
+ } else {
+ int inexact = get_float_exception_flags(&env->fp_status) &
+ float_flag_inexact;
+ set_float_rounding_mode(rounding_mode, &env->fp_status);
+ farg.ll = float64_round_to_int(farg.d, &env->fp_status);
+ set_float_rounding_mode(old_rounding_mode, &env->fp_status);
+
+ /* fri* does not set FPSCR[XX] */
+ if (!inexact) {
+ env->fp_status.float_exception_flags &= ~float_flag_inexact;
+ }
+ }
+ do_float_check_status(env, GETPC());
+ return farg.ll;
+}
+
+uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
+{
+ return do_fri(env, arg, float_round_ties_away);
+}
+
+uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
+{
+ return do_fri(env, arg, float_round_to_zero);
+}
+
+uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
+{
+ return do_fri(env, arg, float_round_up);
+}
+
+uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
+{
+ return do_fri(env, arg, float_round_down);
+}
+
+#define FPU_MADDSUB_UPDATE(NAME, TP) \
+static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
+ unsigned int madd_flags, uintptr_t retaddr) \
+{ \
+ if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
+ TP##_is_signaling_nan(arg2, &env->fp_status) || \
+ TP##_is_signaling_nan(arg3, &env->fp_status)) { \
+ /* sNaN operation */ \
+ float_invalid_op_vxsnan(env, retaddr); \
+ } \
+ if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
+ (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
+ /* Multiplication of zero by infinity */ \
+ float_invalid_op_vximz(env, 1, retaddr); \
+ } \
+ if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
+ TP##_is_infinity(arg3)) { \
+ uint8_t aSign, bSign, cSign; \
+ \
+ aSign = TP##_is_neg(arg1); \
+ bSign = TP##_is_neg(arg2); \
+ cSign = TP##_is_neg(arg3); \
+ if (madd_flags & float_muladd_negate_c) { \
+ cSign ^= 1; \
+ } \
+ if (aSign ^ bSign ^ cSign) { \
+ float_invalid_op_vxisi(env, 1, retaddr); \
+ } \
+ } \
+}
+FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
+FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
+
+#define FPU_FMADD(op, madd_flags) \
+uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
+ uint64_t arg2, uint64_t arg3) \
+{ \
+ uint32_t flags; \
+ float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
+ &env->fp_status); \
+ flags = get_float_exception_flags(&env->fp_status); \
+ if (flags) { \
+ if (flags & float_flag_invalid) { \
+ float64_maddsub_update_excp(env, arg1, arg2, arg3, \
+ madd_flags, GETPC()); \
+ } \
+ do_float_check_status(env, GETPC()); \
+ } \
+ return ret; \
+}
+
+#define MADD_FLGS 0
+#define MSUB_FLGS float_muladd_negate_c
+#define NMADD_FLGS float_muladd_negate_result
+#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
+
+FPU_FMADD(fmadd, MADD_FLGS)
+FPU_FMADD(fnmadd, NMADD_FLGS)
+FPU_FMADD(fmsub, MSUB_FLGS)
+FPU_FMADD(fnmsub, NMSUB_FLGS)
+
+/* frsp - frsp. */
+uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
+{
+ CPU_DoubleU farg;
+ float32 f32;
+
+ farg.ll = arg;
+
+ if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ f32 = float64_to_float32(farg.d, &env->fp_status);
+ farg.d = float32_to_float64(f32, &env->fp_status);
+
+ return farg.ll;
+}
+
+/* fsqrt - fsqrt. */
+float64 helper_fsqrt(CPUPPCState *env, float64 arg)
+{
+ float64 ret = float64_sqrt(arg, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status & float_flag_invalid)) {
+ if (unlikely(float64_is_any_nan(arg))) {
+ if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
+ /* sNaN square root */
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ } else {
+ /* Square root of a negative nonzero number */
+ float_invalid_op_vxsqrt(env, 1, GETPC());
+ }
+ }
+
+ return ret;
+}
+
+/* fre - fre. */
+float64 helper_fre(CPUPPCState *env, float64 arg)
+{
+ /* "Estimate" the reciprocal with actual division. */
+ float64 ret = float64_div(float64_one, arg, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status)) {
+ if (status & float_flag_invalid) {
+ if (float64_is_signaling_nan(arg, &env->fp_status)) {
+ /* sNaN reciprocal */
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ }
+ if (status & float_flag_divbyzero) {
+ float_zero_divide_excp(env, GETPC());
+ /* For FPSCR.ZE == 0, the result is 1/2. */
+ ret = float64_set_sign(float64_half, float64_is_neg(arg));
+ }
+ }
+
+ return ret;
+}
+
+/* fres - fres. */
+uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
+{
+ CPU_DoubleU farg;
+ float32 f32;
+
+ farg.ll = arg;
+
+ if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
+ /* sNaN reciprocal */
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ farg.d = float64_div(float64_one, farg.d, &env->fp_status);
+ f32 = float64_to_float32(farg.d, &env->fp_status);
+ farg.d = float32_to_float64(f32, &env->fp_status);
+
+ return farg.ll;
+}
+
+/* frsqrte - frsqrte. */
+float64 helper_frsqrte(CPUPPCState *env, float64 arg)
+{
+ /* "Estimate" the reciprocal with actual division. */
+ float64 rets = float64_sqrt(arg, &env->fp_status);
+ float64 retd = float64_div(float64_one, rets, &env->fp_status);
+ int status = get_float_exception_flags(&env->fp_status);
+
+ if (unlikely(status)) {
+ if (status & float_flag_invalid) {
+ if (float64_is_signaling_nan(arg, &env->fp_status)) {
+ /* sNaN reciprocal */
+ float_invalid_op_vxsnan(env, GETPC());
+ } else {
+ /* Square root of a negative nonzero number */
+ float_invalid_op_vxsqrt(env, 1, GETPC());
+ }
+ }
+ if (status & float_flag_divbyzero) {
+ /* Reciprocal of (square root of) zero. */
+ float_zero_divide_excp(env, GETPC());
+ }
+ }
+
+ return retd;
+}
+
+/* fsel - fsel. */
+uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
+ uint64_t arg3)
+{
+ CPU_DoubleU farg1;
+
+ farg1.ll = arg1;
+
+ if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
+ !float64_is_any_nan(farg1.d)) {
+ return arg2;
+ } else {
+ return arg3;
+ }
+}
+
+uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
+{
+ int fe_flag = 0;
+ int fg_flag = 0;
+
+ if (unlikely(float64_is_infinity(fra) ||
+ float64_is_infinity(frb) ||
+ float64_is_zero(frb))) {
+ fe_flag = 1;
+ fg_flag = 1;
+ } else {
+ int e_a = ppc_float64_get_unbiased_exp(fra);
+ int e_b = ppc_float64_get_unbiased_exp(frb);
+
+ if (unlikely(float64_is_any_nan(fra) ||
+ float64_is_any_nan(frb))) {
+ fe_flag = 1;
+ } else if ((e_b <= -1022) || (e_b >= 1021)) {
+ fe_flag = 1;
+ } else if (!float64_is_zero(fra) &&
+ (((e_a - e_b) >= 1023) ||
+ ((e_a - e_b) <= -1021) ||
+ (e_a <= -970))) {
+ fe_flag = 1;
+ }
+
+ if (unlikely(float64_is_zero_or_denormal(frb))) {
+ /* XB is not zero because of the above check and */
+ /* so must be denormalized. */
+ fg_flag = 1;
+ }
+ }
+
+ return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
+}
+
+uint32_t helper_ftsqrt(uint64_t frb)
+{
+ int fe_flag = 0;
+ int fg_flag = 0;
+
+ if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
+ fe_flag = 1;
+ fg_flag = 1;
+ } else {
+ int e_b = ppc_float64_get_unbiased_exp(frb);
+
+ if (unlikely(float64_is_any_nan(frb))) {
+ fe_flag = 1;
+ } else if (unlikely(float64_is_zero(frb))) {
+ fe_flag = 1;
+ } else if (unlikely(float64_is_neg(frb))) {
+ fe_flag = 1;
+ } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
+ fe_flag = 1;
+ }
+
+ if (unlikely(float64_is_zero_or_denormal(frb))) {
+ /* XB is not zero because of the above check and */
+ /* therefore must be denormalized. */
+ fg_flag = 1;
+ }
+ }
+
+ return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
+}
+
+void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
+ uint32_t crfD)
+{
+ CPU_DoubleU farg1, farg2;
+ uint32_t ret = 0;
+
+ farg1.ll = arg1;
+ farg2.ll = arg2;
+
+ if (unlikely(float64_is_any_nan(farg1.d) ||
+ float64_is_any_nan(farg2.d))) {
+ ret = 0x01UL;
+ } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
+ ret = 0x08UL;
+ } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
+ ret = 0x04UL;
+ } else {
+ ret = 0x02UL;
+ }
+
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= ret << FPSCR_FPCC;
+ env->crf[crfD] = ret;
+ if (unlikely(ret == 0x01UL
+ && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+ float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
+ /* sNaN comparison */
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+}
+
+void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
+ uint32_t crfD)
+{
+ CPU_DoubleU farg1, farg2;
+ uint32_t ret = 0;
+
+ farg1.ll = arg1;
+ farg2.ll = arg2;
+
+ if (unlikely(float64_is_any_nan(farg1.d) ||
+ float64_is_any_nan(farg2.d))) {
+ ret = 0x01UL;
+ } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
+ ret = 0x08UL;
+ } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
+ ret = 0x04UL;
+ } else {
+ ret = 0x02UL;
+ }
+
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= ret << FPSCR_FPCC;
+ env->crf[crfD] = (uint32_t) ret;
+ if (unlikely(ret == 0x01UL)) {
+ float_invalid_op_vxvc(env, 1, GETPC());
+ if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+ float64_is_signaling_nan(farg2.d, &env->fp_status)) {
+ /* sNaN comparison */
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ }
+}
+
+/* Single-precision floating-point conversions */
+static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+
+ u.f = int32_to_float32(val, &env->vec_status);
+
+ return u.l;
+}
+
+static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+
+ u.f = uint32_to_float32(val, &env->vec_status);
+
+ return u.l;
+}
+
+static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+
+ u.l = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
+ return 0;
+ }
+
+ return float32_to_int32(u.f, &env->vec_status);
+}
+
+static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+
+ u.l = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
+ return 0;
+ }
+
+ return float32_to_uint32(u.f, &env->vec_status);
+}
+
+static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+
+ u.l = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
+ return 0;
+ }
+
+ return float32_to_int32_round_to_zero(u.f, &env->vec_status);
+}
+
+static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+
+ u.l = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
+ return 0;
+ }
+
+ return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
+}
+
+static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+ float32 tmp;
+
+ u.f = int32_to_float32(val, &env->vec_status);
+ tmp = int64_to_float32(1ULL << 32, &env->vec_status);
+ u.f = float32_div(u.f, tmp, &env->vec_status);
+
+ return u.l;
+}
+
+static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+ float32 tmp;
+
+ u.f = uint32_to_float32(val, &env->vec_status);
+ tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
+ u.f = float32_div(u.f, tmp, &env->vec_status);
+
+ return u.l;
+}
+
+static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+ float32 tmp;
+
+ u.l = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
+ return 0;
+ }
+ tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
+ u.f = float32_mul(u.f, tmp, &env->vec_status);
+
+ return float32_to_int32(u.f, &env->vec_status);
+}
+
+static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
+{
+ CPU_FloatU u;
+ float32 tmp;
+
+ u.l = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
+ return 0;
+ }
+ tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
+ u.f = float32_mul(u.f, tmp, &env->vec_status);
+
+ return float32_to_uint32(u.f, &env->vec_status);
+}
+
+#define HELPER_SPE_SINGLE_CONV(name) \
+ uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
+ { \
+ return e##name(env, val); \
+ }
+/* efscfsi */
+HELPER_SPE_SINGLE_CONV(fscfsi);
+/* efscfui */
+HELPER_SPE_SINGLE_CONV(fscfui);
+/* efscfuf */
+HELPER_SPE_SINGLE_CONV(fscfuf);
+/* efscfsf */
+HELPER_SPE_SINGLE_CONV(fscfsf);
+/* efsctsi */
+HELPER_SPE_SINGLE_CONV(fsctsi);
+/* efsctui */
+HELPER_SPE_SINGLE_CONV(fsctui);
+/* efsctsiz */
+HELPER_SPE_SINGLE_CONV(fsctsiz);
+/* efsctuiz */
+HELPER_SPE_SINGLE_CONV(fsctuiz);
+/* efsctsf */
+HELPER_SPE_SINGLE_CONV(fsctsf);
+/* efsctuf */
+HELPER_SPE_SINGLE_CONV(fsctuf);
+
+#define HELPER_SPE_VECTOR_CONV(name) \
+ uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
+ { \
+ return ((uint64_t)e##name(env, val >> 32) << 32) | \
+ (uint64_t)e##name(env, val); \
+ }
+/* evfscfsi */
+HELPER_SPE_VECTOR_CONV(fscfsi);
+/* evfscfui */
+HELPER_SPE_VECTOR_CONV(fscfui);
+/* evfscfuf */
+HELPER_SPE_VECTOR_CONV(fscfuf);
+/* evfscfsf */
+HELPER_SPE_VECTOR_CONV(fscfsf);
+/* evfsctsi */
+HELPER_SPE_VECTOR_CONV(fsctsi);
+/* evfsctui */
+HELPER_SPE_VECTOR_CONV(fsctui);
+/* evfsctsiz */
+HELPER_SPE_VECTOR_CONV(fsctsiz);
+/* evfsctuiz */
+HELPER_SPE_VECTOR_CONV(fsctuiz);
+/* evfsctsf */
+HELPER_SPE_VECTOR_CONV(fsctsf);
+/* evfsctuf */
+HELPER_SPE_VECTOR_CONV(fsctuf);
+
+/* Single-precision floating-point arithmetic */
+static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ u1.f = float32_add(u1.f, u2.f, &env->vec_status);
+ return u1.l;
+}
+
+static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
+ return u1.l;
+}
+
+static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
+ return u1.l;
+}
+
+static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ u1.f = float32_div(u1.f, u2.f, &env->vec_status);
+ return u1.l;
+}
+
+#define HELPER_SPE_SINGLE_ARITH(name) \
+ uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
+ { \
+ return e##name(env, op1, op2); \
+ }
+/* efsadd */
+HELPER_SPE_SINGLE_ARITH(fsadd);
+/* efssub */
+HELPER_SPE_SINGLE_ARITH(fssub);
+/* efsmul */
+HELPER_SPE_SINGLE_ARITH(fsmul);
+/* efsdiv */
+HELPER_SPE_SINGLE_ARITH(fsdiv);
+
+#define HELPER_SPE_VECTOR_ARITH(name) \
+ uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
+ { \
+ return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
+ (uint64_t)e##name(env, op1, op2); \
+ }
+/* evfsadd */
+HELPER_SPE_VECTOR_ARITH(fsadd);
+/* evfssub */
+HELPER_SPE_VECTOR_ARITH(fssub);
+/* evfsmul */
+HELPER_SPE_VECTOR_ARITH(fsmul);
+/* evfsdiv */
+HELPER_SPE_VECTOR_ARITH(fsdiv);
+
+/* Single-precision floating-point comparisons */
+static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
+}
+
+static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
+}
+
+static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ CPU_FloatU u1, u2;
+
+ u1.l = op1;
+ u2.l = op2;
+ return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
+}
+
+static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ /* XXX: TODO: ignore special values (NaN, infinites, ...) */
+ return efscmplt(env, op1, op2);
+}
+
+static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ /* XXX: TODO: ignore special values (NaN, infinites, ...) */
+ return efscmpgt(env, op1, op2);
+}
+
+static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
+{
+ /* XXX: TODO: ignore special values (NaN, infinites, ...) */
+ return efscmpeq(env, op1, op2);
+}
+
+#define HELPER_SINGLE_SPE_CMP(name) \
+ uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
+ { \
+ return e##name(env, op1, op2); \
+ }
+/* efststlt */
+HELPER_SINGLE_SPE_CMP(fststlt);
+/* efststgt */
+HELPER_SINGLE_SPE_CMP(fststgt);
+/* efststeq */
+HELPER_SINGLE_SPE_CMP(fststeq);
+/* efscmplt */
+HELPER_SINGLE_SPE_CMP(fscmplt);
+/* efscmpgt */
+HELPER_SINGLE_SPE_CMP(fscmpgt);
+/* efscmpeq */
+HELPER_SINGLE_SPE_CMP(fscmpeq);
+
+static inline uint32_t evcmp_merge(int t0, int t1)
+{
+ return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
+}
+
+#define HELPER_VECTOR_SPE_CMP(name) \
+ uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
+ { \
+ return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
+ e##name(env, op1, op2)); \
+ }
+/* evfststlt */
+HELPER_VECTOR_SPE_CMP(fststlt);
+/* evfststgt */
+HELPER_VECTOR_SPE_CMP(fststgt);
+/* evfststeq */
+HELPER_VECTOR_SPE_CMP(fststeq);
+/* evfscmplt */
+HELPER_VECTOR_SPE_CMP(fscmplt);
+/* evfscmpgt */
+HELPER_VECTOR_SPE_CMP(fscmpgt);
+/* evfscmpeq */
+HELPER_VECTOR_SPE_CMP(fscmpeq);
+
+/* Double-precision floating-point conversion */
+uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
+{
+ CPU_DoubleU u;
+
+ u.d = int32_to_float64(val, &env->vec_status);
+
+ return u.ll;
+}
+
+uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.d = int64_to_float64(val, &env->vec_status);
+
+ return u.ll;
+}
+
+uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
+{
+ CPU_DoubleU u;
+
+ u.d = uint32_to_float64(val, &env->vec_status);
+
+ return u.ll;
+}
+
+uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.d = uint64_to_float64(val, &env->vec_status);
+
+ return u.ll;
+}
+
+uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+
+ return float64_to_int32(u.d, &env->vec_status);
+}
+
+uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+
+ return float64_to_uint32(u.d, &env->vec_status);
+}
+
+uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+
+ return float64_to_int32_round_to_zero(u.d, &env->vec_status);
+}
+
+uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+
+ return float64_to_int64_round_to_zero(u.d, &env->vec_status);
+}
+
+uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+
+ return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
+}
+
+uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+
+ return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
+}
+
+uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
+{
+ CPU_DoubleU u;
+ float64 tmp;
+
+ u.d = int32_to_float64(val, &env->vec_status);
+ tmp = int64_to_float64(1ULL << 32, &env->vec_status);
+ u.d = float64_div(u.d, tmp, &env->vec_status);
+
+ return u.ll;
+}
+
+uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
+{
+ CPU_DoubleU u;
+ float64 tmp;
+
+ u.d = uint32_to_float64(val, &env->vec_status);
+ tmp = int64_to_float64(1ULL << 32, &env->vec_status);
+ u.d = float64_div(u.d, tmp, &env->vec_status);
+
+ return u.ll;
+}
+
+uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+ float64 tmp;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+ tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
+ u.d = float64_mul(u.d, tmp, &env->vec_status);
+
+ return float64_to_int32(u.d, &env->vec_status);
+}
+
+uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u;
+ float64 tmp;
+
+ u.ll = val;
+ /* NaN are not treated the same way IEEE 754 does */
+ if (unlikely(float64_is_any_nan(u.d))) {
+ return 0;
+ }
+ tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
+ u.d = float64_mul(u.d, tmp, &env->vec_status);
+
+ return float64_to_uint32(u.d, &env->vec_status);
+}
+
+uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
+{
+ CPU_DoubleU u1;
+ CPU_FloatU u2;
+
+ u1.ll = val;
+ u2.f = float64_to_float32(u1.d, &env->vec_status);
+
+ return u2.l;
+}
+
+uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
+{
+ CPU_DoubleU u2;
+ CPU_FloatU u1;
+
+ u1.l = val;
+ u2.d = float32_to_float64(u1.f, &env->vec_status);
+
+ return u2.ll;
+}
+
+/* Double precision fixed-point arithmetic */
+uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ u1.d = float64_add(u1.d, u2.d, &env->vec_status);
+ return u1.ll;
+}
+
+uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
+ return u1.ll;
+}
+
+uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
+ return u1.ll;
+}
+
+uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ u1.d = float64_div(u1.d, u2.d, &env->vec_status);
+ return u1.ll;
+}
+
+/* Double precision floating point helpers */
+uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
+}
+
+uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
+}
+
+uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ CPU_DoubleU u1, u2;
+
+ u1.ll = op1;
+ u2.ll = op2;
+ return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
+}
+
+uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ /* XXX: TODO: test special values (NaN, infinites, ...) */
+ return helper_efdtstlt(env, op1, op2);
+}
+
+uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ /* XXX: TODO: test special values (NaN, infinites, ...) */
+ return helper_efdtstgt(env, op1, op2);
+}
+
+uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
+{
+ /* XXX: TODO: test special values (NaN, infinites, ...) */
+ return helper_efdtsteq(env, op1, op2);
+}
+
+#define float64_to_float64(x, env) x
+
+
+/*
+ * VSX_ADD_SUB - VSX floating point add/subtract
+ * name - instruction mnemonic
+ * op - operation (add or sub)
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * sfprf - set FPRF
+ */
+#define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
+void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ float_status tstat = env->fp_status; \
+ set_float_exception_flags(0, &tstat); \
+ t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
+ \
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
+ float_invalid_op_addsub(env, sfprf, GETPC(), \
+ tp##_classify(xa->fld) | \
+ tp##_classify(xb->fld)); \
+ } \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
+VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
+VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
+VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
+VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
+VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
+VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
+VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
+
+void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = *xt;
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+
+ tstat = env->fp_status;
+ if (unlikely(Rc(opcode) != 0)) {
+ tstat.float_rounding_mode = float_round_to_odd;
+ }
+
+ set_float_exception_flags(0, &tstat);
+ t.f128 = float128_add(xa->f128, xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ float_invalid_op_addsub(env, 1, GETPC(),
+ float128_classify(xa->f128) |
+ float128_classify(xb->f128));
+ }
+
+ helper_compute_fprf_float128(env, t.f128);
+
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}
+
+/*
+ * VSX_MUL - VSX floating point multiply
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * sfprf - set FPRF
+ */
+#define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ float_status tstat = env->fp_status; \
+ set_float_exception_flags(0, &tstat); \
+ t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
+ \
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
+ float_invalid_op_mul(env, sfprf, GETPC(), \
+ tp##_classify(xa->fld) | \
+ tp##_classify(xb->fld)); \
+ } \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
+VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
+VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
+VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
+
+void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = *xt;
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+ tstat = env->fp_status;
+ if (unlikely(Rc(opcode) != 0)) {
+ tstat.float_rounding_mode = float_round_to_odd;
+ }
+
+ set_float_exception_flags(0, &tstat);
+ t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ float_invalid_op_mul(env, 1, GETPC(),
+ float128_classify(xa->f128) |
+ float128_classify(xb->f128));
+ }
+ helper_compute_fprf_float128(env, t.f128);
+
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}
+
+/*
+ * VSX_DIV - VSX floating point divide
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * sfprf - set FPRF
+ */
+#define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ float_status tstat = env->fp_status; \
+ set_float_exception_flags(0, &tstat); \
+ t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
+ \
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
+ float_invalid_op_div(env, sfprf, GETPC(), \
+ tp##_classify(xa->fld) | \
+ tp##_classify(xb->fld)); \
+ } \
+ if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
+ float_zero_divide_excp(env, GETPC()); \
+ } \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
+VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
+VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
+VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
+
+void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = *xt;
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+ tstat = env->fp_status;
+ if (unlikely(Rc(opcode) != 0)) {
+ tstat.float_rounding_mode = float_round_to_odd;
+ }
+
+ set_float_exception_flags(0, &tstat);
+ t.f128 = float128_div(xa->f128, xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ float_invalid_op_div(env, 1, GETPC(),
+ float128_classify(xa->f128) |
+ float128_classify(xb->f128));
+ }
+ if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
+ float_zero_divide_excp(env, GETPC());
+ }
+
+ helper_compute_fprf_float128(env, t.f128);
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}
+
+/*
+ * VSX_RE - VSX floating point reciprocal estimate
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * sfprf - set FPRF
+ */
+#define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
+VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
+VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
+VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
+
+/*
+ * VSX_SQRT - VSX floating point square root
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * sfprf - set FPRF
+ */
+#define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ float_status tstat = env->fp_status; \
+ set_float_exception_flags(0, &tstat); \
+ t.fld = tp##_sqrt(xb->fld, &tstat); \
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
+ \
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
+ if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
+ float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
+ } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ } \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
+VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
+VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
+VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
+
+/*
+ *VSX_RSQRTE - VSX floating point reciprocal square root estimate
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * sfprf - set FPRF
+ */
+#define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ float_status tstat = env->fp_status; \
+ set_float_exception_flags(0, &tstat); \
+ t.fld = tp##_sqrt(xb->fld, &tstat); \
+ t.fld = tp##_div(tp##_one, t.fld, &tstat); \
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
+ \
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
+ if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
+ float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
+ } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ } \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
+VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
+VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
+VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
+
+/*
+ * VSX_TDIV - VSX floating point test for divide
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * emin - minimum unbiased exponent
+ * emax - maximum unbiased exponent
+ * nbits - number of fraction bits
+ */
+#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
+void helper_##op(CPUPPCState *env, uint32_t opcode, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ int i; \
+ int fe_flag = 0; \
+ int fg_flag = 0; \
+ \
+ for (i = 0; i < nels; i++) { \
+ if (unlikely(tp##_is_infinity(xa->fld) || \
+ tp##_is_infinity(xb->fld) || \
+ tp##_is_zero(xb->fld))) { \
+ fe_flag = 1; \
+ fg_flag = 1; \
+ } else { \
+ int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
+ int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
+ \
+ if (unlikely(tp##_is_any_nan(xa->fld) || \
+ tp##_is_any_nan(xb->fld))) { \
+ fe_flag = 1; \
+ } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
+ fe_flag = 1; \
+ } else if (!tp##_is_zero(xa->fld) && \
+ (((e_a - e_b) >= emax) || \
+ ((e_a - e_b) <= (emin + 1)) || \
+ (e_a <= (emin + nbits)))) { \
+ fe_flag = 1; \
+ } \
+ \
+ if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
+ /* \
+ * XB is not zero because of the above check and so \
+ * must be denormalized. \
+ */ \
+ fg_flag = 1; \
+ } \
+ } \
+ } \
+ \
+ env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
+}
+
+VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
+VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
+VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
+
+/*
+ * VSX_TSQRT - VSX floating point test for square root
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * emin - minimum unbiased exponent
+ * emax - maximum unbiased exponent
+ * nbits - number of fraction bits
+ */
+#define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
+void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
+{ \
+ int i; \
+ int fe_flag = 0; \
+ int fg_flag = 0; \
+ \
+ for (i = 0; i < nels; i++) { \
+ if (unlikely(tp##_is_infinity(xb->fld) || \
+ tp##_is_zero(xb->fld))) { \
+ fe_flag = 1; \
+ fg_flag = 1; \
+ } else { \
+ int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
+ \
+ if (unlikely(tp##_is_any_nan(xb->fld))) { \
+ fe_flag = 1; \
+ } else if (unlikely(tp##_is_zero(xb->fld))) { \
+ fe_flag = 1; \
+ } else if (unlikely(tp##_is_neg(xb->fld))) { \
+ fe_flag = 1; \
+ } else if (!tp##_is_zero(xb->fld) && \
+ (e_b <= (emin + nbits))) { \
+ fe_flag = 1; \
+ } \
+ \
+ if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
+ /* \
+ * XB is not zero because of the above check and \
+ * therefore must be denormalized. \
+ */ \
+ fg_flag = 1; \
+ } \
+ } \
+ } \
+ \
+ env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
+}
+
+VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
+VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
+VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
+
+/*
+ * VSX_MADD - VSX floating point muliply/add variations
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * maddflgs - flags for the float*muladd routine that control the
+ * various forms (madd, msub, nmadd, nmsub)
+ * sfprf - set FPRF
+ */
+#define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ helper_reset_fpstatus(env); \
+ \
+ for (i = 0; i < nels; i++) { \
+ float_status tstat = env->fp_status; \
+ set_float_exception_flags(0, &tstat); \
+ if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
+ /* \
+ * Avoid double rounding errors by rounding the intermediate \
+ * result to odd. \
+ */ \
+ set_float_rounding_mode(float_round_to_zero, &tstat); \
+ t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
+ maddflgs, &tstat); \
+ t.fld |= (get_float_exception_flags(&tstat) & \
+ float_flag_inexact) != 0; \
+ } else { \
+ t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
+ maddflgs, &tstat); \
+ } \
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
+ \
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
+ tp##_maddsub_update_excp(env, xa->fld, b->fld, \
+ c->fld, maddflgs, GETPC()); \
+ } \
+ \
+ if (r2sp) { \
+ t.fld = helper_frsp(env, t.fld); \
+ } \
+ \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
+VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
+VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
+VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
+VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
+VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
+VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
+VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
+
+VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
+VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
+VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
+VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
+
+VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
+VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
+VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
+VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
+
+/*
+ * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
+ * op - instruction mnemonic
+ * cmp - comparison operation
+ * exp - expected result of comparison
+ * svxvc - set VXVC bit
+ */
+#define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
+ \
+ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
+ float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
+ vxsnan_flag = true; \
+ if (fpscr_ve == 0 && svxvc) { \
+ vxvc_flag = true; \
+ } \
+ } else if (svxvc) { \
+ vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
+ float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
+ } \
+ if (vxsnan_flag) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ if (vxvc_flag) { \
+ float_invalid_op_vxvc(env, 0, GETPC()); \
+ } \
+ vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
+ \
+ if (!vex_flag) { \
+ if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
+ &env->fp_status) == exp) { \
+ t.VsrD(0) = -1; \
+ t.VsrD(1) = 0; \
+ } else { \
+ t.VsrD(0) = 0; \
+ t.VsrD(1) = 0; \
+ } \
+ } \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
+VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
+VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
+VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
+
+void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xa, ppc_vsr_t *xb)
+{
+ int64_t exp_a, exp_b;
+ uint32_t cc;
+
+ exp_a = extract64(xa->VsrD(0), 52, 11);
+ exp_b = extract64(xb->VsrD(0), 52, 11);
+
+ if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
+ float64_is_any_nan(xb->VsrD(0)))) {
+ cc = CRF_SO;
+ } else {
+ if (exp_a < exp_b) {
+ cc = CRF_LT;
+ } else if (exp_a > exp_b) {
+ cc = CRF_GT;
+ } else {
+ cc = CRF_EQ;
+ }
+ }
+
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= cc << FPSCR_FPCC;
+ env->crf[BF(opcode)] = cc;
+
+ do_float_check_status(env, GETPC());
+}
+
+void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xa, ppc_vsr_t *xb)
+{
+ int64_t exp_a, exp_b;
+ uint32_t cc;
+
+ exp_a = extract64(xa->VsrD(0), 48, 15);
+ exp_b = extract64(xb->VsrD(0), 48, 15);
+
+ if (unlikely(float128_is_any_nan(xa->f128) ||
+ float128_is_any_nan(xb->f128))) {
+ cc = CRF_SO;
+ } else {
+ if (exp_a < exp_b) {
+ cc = CRF_LT;
+ } else if (exp_a > exp_b) {
+ cc = CRF_GT;
+ } else {
+ cc = CRF_EQ;
+ }
+ }
+
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= cc << FPSCR_FPCC;
+ env->crf[BF(opcode)] = cc;
+
+ do_float_check_status(env, GETPC());
+}
+
+static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
+ int crf_idx, bool ordered)
+{
+ uint32_t cc;
+ bool vxsnan_flag = false, vxvc_flag = false;
+
+ helper_reset_fpstatus(env);
+
+ switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
+ case float_relation_less:
+ cc = CRF_LT;
+ break;
+ case float_relation_equal:
+ cc = CRF_EQ;
+ break;
+ case float_relation_greater:
+ cc = CRF_GT;
+ break;
+ case float_relation_unordered:
+ cc = CRF_SO;
+
+ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
+ float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
+ vxsnan_flag = true;
+ if (fpscr_ve == 0 && ordered) {
+ vxvc_flag = true;
+ }
+ } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
+ float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
+ if (ordered) {
+ vxvc_flag = true;
+ }
+ }
+
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= cc << FPSCR_FPCC;
+ env->crf[crf_idx] = cc;
+
+ if (vxsnan_flag) {
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ if (vxvc_flag) {
+ float_invalid_op_vxvc(env, 0, GETPC());
+ }
+
+ do_float_check_status(env, GETPC());
+}
+
+void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
+ ppc_vsr_t *xb)
+{
+ do_scalar_cmp(env, xa, xb, BF(opcode), true);
+}
+
+void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
+ ppc_vsr_t *xb)
+{
+ do_scalar_cmp(env, xa, xb, BF(opcode), false);
+}
+
+static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
+ ppc_vsr_t *xb, int crf_idx, bool ordered)
+{
+ uint32_t cc;
+ bool vxsnan_flag = false, vxvc_flag = false;
+
+ helper_reset_fpstatus(env);
+
+ switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
+ case float_relation_less:
+ cc = CRF_LT;
+ break;
+ case float_relation_equal:
+ cc = CRF_EQ;
+ break;
+ case float_relation_greater:
+ cc = CRF_GT;
+ break;
+ case float_relation_unordered:
+ cc = CRF_SO;
+
+ if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
+ float128_is_signaling_nan(xb->f128, &env->fp_status)) {
+ vxsnan_flag = true;
+ if (fpscr_ve == 0 && ordered) {
+ vxvc_flag = true;
+ }
+ } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
+ float128_is_quiet_nan(xb->f128, &env->fp_status)) {
+ if (ordered) {
+ vxvc_flag = true;
+ }
+ }
+
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= cc << FPSCR_FPCC;
+ env->crf[crf_idx] = cc;
+
+ if (vxsnan_flag) {
+ float_invalid_op_vxsnan(env, GETPC());
+ }
+ if (vxvc_flag) {
+ float_invalid_op_vxvc(env, 0, GETPC());
+ }
+
+ do_float_check_status(env, GETPC());
+}
+
+void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
+ ppc_vsr_t *xb)
+{
+ do_scalar_cmpq(env, xa, xb, BF(opcode), true);
+}
+
+void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
+ ppc_vsr_t *xb)
+{
+ do_scalar_cmpq(env, xa, xb, BF(opcode), false);
+}
+
+/*
+ * VSX_MAX_MIN - VSX floating point maximum/minimum
+ * name - instruction mnemonic
+ * op - operation (max or min)
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ */
+#define VSX_MAX_MIN(name, op, nels, tp, fld) \
+void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ for (i = 0; i < nels; i++) { \
+ t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
+ if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
+ tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
+VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
+VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
+VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
+VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
+VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
+
+#define VSX_MAX_MINC(name, max) \
+void helper_##name(CPUPPCState *env, uint32_t opcode, \
+ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ bool vxsnan_flag = false, vex_flag = false; \
+ \
+ if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
+ float64_is_any_nan(xb->VsrD(0)))) { \
+ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
+ float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
+ vxsnan_flag = true; \
+ } \
+ t.VsrD(0) = xb->VsrD(0); \
+ } else if ((max && \
+ !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
+ (!max && \
+ float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
+ t.VsrD(0) = xa->VsrD(0); \
+ } else { \
+ t.VsrD(0) = xb->VsrD(0); \
+ } \
+ \
+ vex_flag = fpscr_ve & vxsnan_flag; \
+ if (vxsnan_flag) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ if (!vex_flag) { \
+ *xt = t; \
+ } \
+} \
+
+VSX_MAX_MINC(xsmaxcdp, 1);
+VSX_MAX_MINC(xsmincdp, 0);
+
+#define VSX_MAX_MINJ(name, max) \
+void helper_##name(CPUPPCState *env, uint32_t opcode, \
+ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ bool vxsnan_flag = false, vex_flag = false; \
+ \
+ if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
+ if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
+ vxsnan_flag = true; \
+ } \
+ t.VsrD(0) = xa->VsrD(0); \
+ } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
+ if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
+ vxsnan_flag = true; \
+ } \
+ t.VsrD(0) = xb->VsrD(0); \
+ } else if (float64_is_zero(xa->VsrD(0)) && \
+ float64_is_zero(xb->VsrD(0))) { \
+ if (max) { \
+ if (!float64_is_neg(xa->VsrD(0)) || \
+ !float64_is_neg(xb->VsrD(0))) { \
+ t.VsrD(0) = 0ULL; \
+ } else { \
+ t.VsrD(0) = 0x8000000000000000ULL; \
+ } \
+ } else { \
+ if (float64_is_neg(xa->VsrD(0)) || \
+ float64_is_neg(xb->VsrD(0))) { \
+ t.VsrD(0) = 0x8000000000000000ULL; \
+ } else { \
+ t.VsrD(0) = 0ULL; \
+ } \
+ } \
+ } else if ((max && \
+ !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
+ (!max && \
+ float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
+ t.VsrD(0) = xa->VsrD(0); \
+ } else { \
+ t.VsrD(0) = xb->VsrD(0); \
+ } \
+ \
+ vex_flag = fpscr_ve & vxsnan_flag; \
+ if (vxsnan_flag) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ if (!vex_flag) { \
+ *xt = t; \
+ } \
+} \
+
+VSX_MAX_MINJ(xsmaxjdp, 1);
+VSX_MAX_MINJ(xsminjdp, 0);
+
+/*
+ * VSX_CMP - VSX floating point compare
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * cmp - comparison operation
+ * svxvc - set VXVC bit
+ * exp - expected result of comparison
+ */
+#define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
+uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ uint32_t crf6 = 0; \
+ int i; \
+ int all_true = 1; \
+ int all_false = 1; \
+ \
+ for (i = 0; i < nels; i++) { \
+ if (unlikely(tp##_is_any_nan(xa->fld) || \
+ tp##_is_any_nan(xb->fld))) { \
+ if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
+ tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ } \
+ if (svxvc) { \
+ float_invalid_op_vxvc(env, 0, GETPC()); \
+ } \
+ t.fld = 0; \
+ all_true = 0; \
+ } else { \
+ if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
+ t.fld = -1; \
+ all_false = 0; \
+ } else { \
+ t.fld = 0; \
+ all_true = 0; \
+ } \
+ } \
+ } \
+ \
+ *xt = t; \
+ crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
+ return crf6; \
+}
+
+VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
+VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
+VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
+VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
+VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
+VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
+VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
+VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
+
+/*
+ * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * stp - source type (float32 or float64)
+ * ttp - target type (float32 or float64)
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field (f32 or f64)
+ * sfprf - set FPRF
+ */
+#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ for (i = 0; i < nels; i++) { \
+ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
+ if (unlikely(stp##_is_signaling_nan(xb->sfld, \
+ &env->fp_status))) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ t.tfld = ttp##_snan_to_qnan(t.tfld); \
+ } \
+ if (sfprf) { \
+ helper_compute_fprf_##ttp(env, t.tfld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
+VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
+VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
+VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
+
+/*
+ * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * stp - source type (float32 or float64)
+ * ttp - target type (float32 or float64)
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field (f32 or f64)
+ * sfprf - set FPRF
+ */
+#define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
+void helper_##op(CPUPPCState *env, uint32_t opcode, \
+ ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ for (i = 0; i < nels; i++) { \
+ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
+ if (unlikely(stp##_is_signaling_nan(xb->sfld, \
+ &env->fp_status))) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ t.tfld = ttp##_snan_to_qnan(t.tfld); \
+ } \
+ if (sfprf) { \
+ helper_compute_fprf_##ttp(env, t.tfld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
+
+/*
+ * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
+ * involving one half precision value
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * stp - source type
+ * ttp - target type
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field
+ * sfprf - set FPRF
+ */
+#define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = { }; \
+ int i; \
+ \
+ for (i = 0; i < nels; i++) { \
+ t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
+ if (unlikely(stp##_is_signaling_nan(xb->sfld, \
+ &env->fp_status))) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ t.tfld = ttp##_snan_to_qnan(t.tfld); \
+ } \
+ if (sfprf) { \
+ helper_compute_fprf_##ttp(env, t.tfld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
+VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
+VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
+VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
+
+/*
+ * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
+ * added to this later.
+ */
+void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = { };
+ float_status tstat;
+
+ tstat = env->fp_status;
+ if (unlikely(Rc(opcode) != 0)) {
+ tstat.float_rounding_mode = float_round_to_odd;
+ }
+
+ t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+ if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
+ float_invalid_op_vxsnan(env, GETPC());
+ t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
+ }
+ helper_compute_fprf_float64(env, t.VsrD(0));
+
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}
+
+uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
+{
+ uint64_t result, sign, exp, frac;
+
+ float_status tstat = env->fp_status;
+ set_float_exception_flags(0, &tstat);
+
+ sign = extract64(xb, 63, 1);
+ exp = extract64(xb, 52, 11);
+ frac = extract64(xb, 0, 52) | 0x10000000000000ULL;
+
+ if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
+ /* DP denormal operand. */
+ /* Exponent override to DP min exp. */
+ exp = 1;
+ /* Implicit bit override to 0. */
+ frac = deposit64(frac, 53, 1, 0);
+ }
+
+ if (unlikely(exp < 897 && frac != 0)) {
+ /* SP tiny operand. */
+ if (897 - exp > 63) {
+ frac = 0;
+ } else {
+ /* Denormalize until exp = SP min exp. */
+ frac >>= (897 - exp);
+ }
+ /* Exponent override to SP min exp - 1. */
+ exp = 896;
+ }
+
+ result = sign << 31;
+ result |= extract64(exp, 10, 1) << 30;
+ result |= extract64(exp, 0, 7) << 23;
+ result |= extract64(frac, 29, 23);
+
+ /* hardware replicates result to both words of the doubleword result. */
+ return (result << 32) | result;
+}
+
+uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
+{
+ float_status tstat = env->fp_status;
+ set_float_exception_flags(0, &tstat);
+
+ return float32_to_float64(xb >> 32, &tstat);
+}
+
+/*
+ * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * stp - source type (float32 or float64)
+ * ttp - target type (int32, uint32, int64 or uint64)
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field
+ * rnan - resulting NaN
+ */
+#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ int all_flags = env->fp_status.float_exception_flags, flags; \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ for (i = 0; i < nels; i++) { \
+ env->fp_status.float_exception_flags = 0; \
+ t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
+ flags = env->fp_status.float_exception_flags; \
+ if (unlikely(flags & float_flag_invalid)) { \
+ float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
+ t.tfld = rnan; \
+ } \
+ all_flags |= flags; \
+ } \
+ \
+ *xt = t; \
+ env->fp_status.float_exception_flags = all_flags; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
+ 0x8000000000000000ULL)
+VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
+ 0x80000000U)
+VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
+VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
+VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
+ 0x8000000000000000ULL)
+VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
+ 0x80000000U)
+VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
+VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
+VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
+ 0x8000000000000000ULL)
+VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
+VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
+VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
+
+/*
+ * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
+ * op - instruction mnemonic
+ * stp - source type (float32 or float64)
+ * ttp - target type (int32, uint32, int64 or uint64)
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field
+ * rnan - resulting NaN
+ */
+#define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
+void helper_##op(CPUPPCState *env, uint32_t opcode, \
+ ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = { }; \
+ \
+ t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
+ if (env->fp_status.float_exception_flags & float_flag_invalid) { \
+ float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
+ t.tfld = rnan; \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
+ 0x8000000000000000ULL)
+
+VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
+ 0xffffffff80000000ULL)
+VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
+VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
+
+/*
+ * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * stp - source type (int32, uint32, int64 or uint64)
+ * ttp - target type (float32 or float64)
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field
+ * jdef - definition of the j index (i or 2*i)
+ * sfprf - set FPRF
+ */
+#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ \
+ for (i = 0; i < nels; i++) { \
+ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
+ if (r2sp) { \
+ t.tfld = helper_frsp(env, t.tfld); \
+ } \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.tfld); \
+ } \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
+VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
+VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
+VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
+VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
+VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
+
+/*
+ * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
+ * op - instruction mnemonic
+ * stp - source type (int32, uint32, int64 or uint64)
+ * ttp - target type (float32 or float64)
+ * sfld - source vsr_t field
+ * tfld - target vsr_t field
+ */
+#define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
+void helper_##op(CPUPPCState *env, uint32_t opcode, \
+ ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ \
+ t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
+ helper_compute_fprf_##ttp(env, t.tfld); \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
+VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
+
+/*
+ * For "use current rounding mode", define a value that will not be
+ * one of the existing rounding model enums.
+ */
+#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
+ float_round_up + float_round_to_zero)
+
+/*
+ * VSX_ROUND - VSX floating point round
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * rmode - rounding mode
+ * sfprf - set FPRF
+ */
+#define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i; \
+ FloatRoundMode curr_rounding_mode; \
+ \
+ if (rmode != FLOAT_ROUND_CURRENT) { \
+ curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
+ set_float_rounding_mode(rmode, &env->fp_status); \
+ } \
+ \
+ for (i = 0; i < nels; i++) { \
+ if (unlikely(tp##_is_signaling_nan(xb->fld, \
+ &env->fp_status))) { \
+ float_invalid_op_vxsnan(env, GETPC()); \
+ t.fld = tp##_snan_to_qnan(xb->fld); \
+ } else { \
+ t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
+ } \
+ if (sfprf) { \
+ helper_compute_fprf_float64(env, t.fld); \
+ } \
+ } \
+ \
+ /* \
+ * If this is not a "use current rounding mode" instruction, \
+ * then inhibit setting of the XX bit and restore rounding \
+ * mode from FPSCR \
+ */ \
+ if (rmode != FLOAT_ROUND_CURRENT) { \
+ set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \
+ env->fp_status.float_exception_flags &= ~float_flag_inexact; \
+ } \
+ \
+ *xt = t; \
+ do_float_check_status(env, GETPC()); \
+}
+
+VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
+VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
+VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
+VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
+VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
+
+VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
+VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
+VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
+VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
+VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
+
+VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
+VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
+VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
+VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
+VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
+
+uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
+{
+ helper_reset_fpstatus(env);
+
+ uint64_t xt = helper_frsp(env, xb);
+
+ helper_compute_fprf_float64(env, xt);
+ do_float_check_status(env, GETPC());
+ return xt;
+}
+
+#define VSX_XXPERM(op, indexed) \
+void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
+ ppc_vsr_t *xa, ppc_vsr_t *pcv) \
+{ \
+ ppc_vsr_t t = *xt; \
+ int i, idx; \
+ \
+ for (i = 0; i < 16; i++) { \
+ idx = pcv->VsrB(i) & 0x1F; \
+ if (indexed) { \
+ idx = 31 - idx; \
+ } \
+ t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
+ : xt->VsrB(idx - 16); \
+ } \
+ *xt = t; \
+}
+
+VSX_XXPERM(xxperm, 0)
+VSX_XXPERM(xxpermr, 1)
+
+void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = { };
+ uint32_t exp, i, fraction;
+
+ for (i = 0; i < 4; i++) {
+ exp = (xb->VsrW(i) >> 23) & 0xFF;
+ fraction = xb->VsrW(i) & 0x7FFFFF;
+ if (exp != 0 && exp != 255) {
+ t.VsrW(i) = fraction | 0x00800000;
+ } else {
+ t.VsrW(i) = fraction;
+ }
+ }
+ *xt = t;
+}
+
+/*
+ * VSX_TEST_DC - VSX floating point test data class
+ * op - instruction mnemonic
+ * nels - number of elements (1, 2 or 4)
+ * xbn - VSR register number
+ * tp - type (float32 or float64)
+ * fld - vsr_t field (VsrD(*) or VsrW(*))
+ * tfld - target vsr_t field (VsrD(*) or VsrW(*))
+ * fld_max - target field max
+ * scrf - set result in CR and FPCC
+ */
+#define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
+void helper_##op(CPUPPCState *env, uint32_t opcode) \
+{ \
+ ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
+ ppc_vsr_t *xb = &env->vsr[xbn]; \
+ ppc_vsr_t t = { }; \
+ uint32_t i, sign, dcmx; \
+ uint32_t cc, match = 0; \
+ \
+ if (!scrf) { \
+ dcmx = DCMX_XV(opcode); \
+ } else { \
+ t = *xt; \
+ dcmx = DCMX(opcode); \
+ } \
+ \
+ for (i = 0; i < nels; i++) { \
+ sign = tp##_is_neg(xb->fld); \
+ if (tp##_is_any_nan(xb->fld)) { \
+ match = extract32(dcmx, 6, 1); \
+ } else if (tp##_is_infinity(xb->fld)) { \
+ match = extract32(dcmx, 4 + !sign, 1); \
+ } else if (tp##_is_zero(xb->fld)) { \
+ match = extract32(dcmx, 2 + !sign, 1); \
+ } else if (tp##_is_zero_or_denormal(xb->fld)) { \
+ match = extract32(dcmx, 0 + !sign, 1); \
+ } \
+ \
+ if (scrf) { \
+ cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
+ env->fpscr &= ~FP_FPCC; \
+ env->fpscr |= cc << FPSCR_FPCC; \
+ env->crf[BF(opcode)] = cc; \
+ } else { \
+ t.tfld = match ? fld_max : 0; \
+ } \
+ match = 0; \
+ } \
+ if (!scrf) { \
+ *xt = t; \
+ } \
+}
+
+VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
+VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
+VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
+VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
+
+void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
+{
+ uint32_t dcmx, sign, exp;
+ uint32_t cc, match = 0, not_sp = 0;
+
+ dcmx = DCMX(opcode);
+ exp = (xb->VsrD(0) >> 52) & 0x7FF;
+
+ sign = float64_is_neg(xb->VsrD(0));
+ if (float64_is_any_nan(xb->VsrD(0))) {
+ match = extract32(dcmx, 6, 1);
+ } else if (float64_is_infinity(xb->VsrD(0))) {
+ match = extract32(dcmx, 4 + !sign, 1);
+ } else if (float64_is_zero(xb->VsrD(0))) {
+ match = extract32(dcmx, 2 + !sign, 1);
+ } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
+ (exp > 0 && exp < 0x381)) {
+ match = extract32(dcmx, 0 + !sign, 1);
+ }
+
+ not_sp = !float64_eq(xb->VsrD(0),
+ float32_to_float64(
+ float64_to_float32(xb->VsrD(0), &env->fp_status),
+ &env->fp_status), &env->fp_status);
+
+ cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
+ env->fpscr &= ~FP_FPCC;
+ env->fpscr |= cc << FPSCR_FPCC;
+ env->crf[BF(opcode)] = cc;
+}
+
+void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = { };
+ uint8_t r = Rrm(opcode);
+ uint8_t ex = Rc(opcode);
+ uint8_t rmc = RMC(opcode);
+ uint8_t rmode = 0;
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+
+ if (r == 0 && rmc == 0) {
+ rmode = float_round_ties_away;
+ } else if (r == 0 && rmc == 0x3) {
+ rmode = fpscr_rn;
+ } else if (r == 1) {
+ switch (rmc) {
+ case 0:
+ rmode = float_round_nearest_even;
+ break;
+ case 1:
+ rmode = float_round_to_zero;
+ break;
+ case 2:
+ rmode = float_round_up;
+ break;
+ case 3:
+ rmode = float_round_down;
+ break;
+ default:
+ abort();
+ }
+ }
+
+ tstat = env->fp_status;
+ set_float_exception_flags(0, &tstat);
+ set_float_rounding_mode(rmode, &tstat);
+ t.f128 = float128_round_to_int(xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ if (float128_is_signaling_nan(xb->f128, &tstat)) {
+ float_invalid_op_vxsnan(env, GETPC());
+ t.f128 = float128_snan_to_qnan(t.f128);
+ }
+ }
+
+ if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
+ env->fp_status.float_exception_flags &= ~float_flag_inexact;
+ }
+
+ helper_compute_fprf_float128(env, t.f128);
+ do_float_check_status(env, GETPC());
+ *xt = t;
+}
+
+void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = { };
+ uint8_t r = Rrm(opcode);
+ uint8_t rmc = RMC(opcode);
+ uint8_t rmode = 0;
+ floatx80 round_res;
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+
+ if (r == 0 && rmc == 0) {
+ rmode = float_round_ties_away;
+ } else if (r == 0 && rmc == 0x3) {
+ rmode = fpscr_rn;
+ } else if (r == 1) {
+ switch (rmc) {
+ case 0:
+ rmode = float_round_nearest_even;
+ break;
+ case 1:
+ rmode = float_round_to_zero;
+ break;
+ case 2:
+ rmode = float_round_up;
+ break;
+ case 3:
+ rmode = float_round_down;
+ break;
+ default:
+ abort();
+ }
+ }
+
+ tstat = env->fp_status;
+ set_float_exception_flags(0, &tstat);
+ set_float_rounding_mode(rmode, &tstat);
+ round_res = float128_to_floatx80(xb->f128, &tstat);
+ t.f128 = floatx80_to_float128(round_res, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ if (float128_is_signaling_nan(xb->f128, &tstat)) {
+ float_invalid_op_vxsnan(env, GETPC());
+ t.f128 = float128_snan_to_qnan(t.f128);
+ }
+ }
+
+ helper_compute_fprf_float128(env, t.f128);
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}
+
+void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = { };
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+
+ tstat = env->fp_status;
+ if (unlikely(Rc(opcode) != 0)) {
+ tstat.float_rounding_mode = float_round_to_odd;
+ }
+
+ set_float_exception_flags(0, &tstat);
+ t.f128 = float128_sqrt(xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ if (float128_is_signaling_nan(xb->f128, &tstat)) {
+ float_invalid_op_vxsnan(env, GETPC());
+ t.f128 = float128_snan_to_qnan(xb->f128);
+ } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
+ t.f128 = xb->f128;
+ } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
+ float_invalid_op_vxsqrt(env, 1, GETPC());
+ t.f128 = float128_default_nan(&env->fp_status);
+ }
+ }
+
+ helper_compute_fprf_float128(env, t.f128);
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}
+
+void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
+ ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
+{
+ ppc_vsr_t t = *xt;
+ float_status tstat;
+
+ helper_reset_fpstatus(env);
+
+ tstat = env->fp_status;
+ if (unlikely(Rc(opcode) != 0)) {
+ tstat.float_rounding_mode = float_round_to_odd;
+ }
+
+ set_float_exception_flags(0, &tstat);
+ t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
+ env->fp_status.float_exception_flags |= tstat.float_exception_flags;
+
+ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
+ float_invalid_op_addsub(env, 1, GETPC(),
+ float128_classify(xa->f128) |
+ float128_classify(xb->f128));
+ }
+
+ helper_compute_fprf_float128(env, t.f128);
+ *xt = t;
+ do_float_check_status(env, GETPC());
+}