summaryrefslogtreecommitdiffstats
path: root/tool_bin/lib/linux/z3/include/z3++.h
blob: 7d45c970796c3027c8cc69bdcbee05b467379c81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
/*++
Copyright (c) 2012 Microsoft Corporation

    Thin C++ layer on top of the Z3 C API.
    Main features:
      - Smart pointers for all Z3 objects.
      - Object-Oriented interface.
      - Operator overloading.
      - Exceptions for signining Z3 errors

    The C API can be used simultaneously with the C++ layer.
    However, if you use the C API directly, you will have to check the error conditions manually.
    Of course, you can invoke the method check_error() of the context object.
Author:

    Leonardo (leonardo) 2012-03-28

Notes:

--*/
#ifndef Z3PP_H_
#define Z3PP_H_

#include<cassert>
#include<iostream>
#include<string>
#include<sstream>
#include<z3.h>
#include<limits.h>

#undef min
#undef max

/**
   \defgroup cppapi C++ API

*/
/*@{*/

/**
   @name C++ API classes and functions
*/
/*@{*/

/**
   \brief Z3 C++ namespace
*/
namespace z3 {

    class exception;
    class config;
    class context;
    class symbol;
    class params;
    class param_descrs;
    class ast;
    class sort;
    class func_decl;
    class expr;
    class solver;
    class goal;
    class tactic;
    class probe;
    class model;
    class func_interp;
    class func_entry;
    class statistics;
    class apply_result;
    template<typename T> class ast_vector_tpl;
    typedef ast_vector_tpl<ast>       ast_vector;
    typedef ast_vector_tpl<expr>      expr_vector;
    typedef ast_vector_tpl<sort>      sort_vector;
    typedef ast_vector_tpl<func_decl> func_decl_vector;

    inline void set_param(char const * param, char const * value) { Z3_global_param_set(param, value); }
    inline void set_param(char const * param, bool value) { Z3_global_param_set(param, value ? "true" : "false"); }
    inline void set_param(char const * param, int value) { std::ostringstream oss; oss << value; Z3_global_param_set(param, oss.str().c_str()); }
    inline void reset_params() { Z3_global_param_reset_all(); }

    /**
       \brief Exception used to sign API usage errors.
    */
    class exception {
        std::string m_msg;
    public:
        exception(char const * msg):m_msg(msg) {}
        char const * msg() const { return m_msg.c_str(); }
        friend std::ostream & operator<<(std::ostream & out, exception const & e);
    };
    inline std::ostream & operator<<(std::ostream & out, exception const & e) { out << e.msg(); return out; }

#if !defined(Z3_THROW)
#if __cpp_exceptions || _CPPUNWIND || __EXCEPTIONS
#define Z3_THROW(x) throw x
#else
#define Z3_THROW(x) {}
#endif
#endif // !defined(Z3_THROW)

    /**
       \brief Z3 global configuration object.
    */
    class config {
        Z3_config    m_cfg;
        config(config const & s);
        config & operator=(config const & s);
    public:
        config() { m_cfg = Z3_mk_config(); }
        ~config() { Z3_del_config(m_cfg); }
        operator Z3_config() const { return m_cfg; }
        /**
           \brief Set global parameter \c param with string \c value.
        */
        void set(char const * param, char const * value) { Z3_set_param_value(m_cfg, param, value); }
        /**
           \brief Set global parameter \c param with Boolean \c value.
        */
        void set(char const * param, bool value) { Z3_set_param_value(m_cfg, param, value ? "true" : "false"); }
        /**
           \brief Set global parameter \c param with integer \c value.
        */
        void set(char const * param, int value) {
            std::ostringstream oss;
            oss << value;
            Z3_set_param_value(m_cfg, param, oss.str().c_str());
        }
    };

    enum check_result {
        unsat, sat, unknown
    };

    enum rounding_mode {
        RNA,
        RNE,
        RTP,
        RTN,
        RTZ
    };

    inline check_result to_check_result(Z3_lbool l) {
        if (l == Z3_L_TRUE) return sat;
        else if (l == Z3_L_FALSE) return unsat;
        return unknown;
    }


    /**
       \brief A Context manages all other Z3 objects, global configuration options, etc.
    */


    class context {
    private:
        bool       m_enable_exceptions;
        rounding_mode m_rounding_mode;
        Z3_context m_ctx;
        void init(config & c) {
            m_ctx = Z3_mk_context_rc(c);
            m_enable_exceptions = true;
            m_rounding_mode = RNA;
            Z3_set_error_handler(m_ctx, 0);
            Z3_set_ast_print_mode(m_ctx, Z3_PRINT_SMTLIB2_COMPLIANT);
        }


        context(context const & s);
        context & operator=(context const & s);
    public:
        context() { config c; init(c); }
        context(config & c) { init(c); }
        ~context() { Z3_del_context(m_ctx); }
        operator Z3_context() const { return m_ctx; }

        /**
           \brief Auxiliary method used to check for API usage errors.
        */
        Z3_error_code check_error() const {
            Z3_error_code e = Z3_get_error_code(m_ctx);
            if (e != Z3_OK && enable_exceptions())
                Z3_THROW(exception(Z3_get_error_msg(m_ctx, e)));
            return e;
        }

        void check_parser_error() const {
            check_error();
        }

        /**
           \brief The C++ API uses by defaults exceptions on errors.
           For applications that don't work well with exceptions (there should be only few)
           you have the ability to turn off exceptions. The tradeoffs are that applications
           have to be very careful about using check_error() after calls that may result in an
           erroneous state.
         */
        void set_enable_exceptions(bool f) { m_enable_exceptions = f; }

        bool enable_exceptions() const { return m_enable_exceptions; }

        /**
           \brief Update global parameter \c param with string \c value.
        */
        void set(char const * param, char const * value) { Z3_update_param_value(m_ctx, param, value); }
        /**
           \brief Update global parameter \c param with Boolean \c value.
        */
        void set(char const * param, bool value) { Z3_update_param_value(m_ctx, param, value ? "true" : "false"); }
        /**
           \brief Update global parameter \c param with Integer \c value.
        */
        void set(char const * param, int value) {
            std::ostringstream oss;
            oss << value;
            Z3_update_param_value(m_ctx, param, oss.str().c_str());
        }

        /**
           \brief Interrupt the current procedure being executed by any object managed by this context.
           This is a soft interruption: there is no guarantee the object will actually stop.
        */
        void interrupt() { Z3_interrupt(m_ctx); }

        /**
           \brief Create a Z3 symbol based on the given string.
        */
        symbol str_symbol(char const * s);
        /**
           \brief Create a Z3 symbol based on the given integer.
        */
        symbol int_symbol(int n);
        /**
           \brief Return the Boolean sort.
        */
        sort bool_sort();
        /**
           \brief Return the integer sort.
        */
        sort int_sort();
        /**
           \brief Return the Real sort.
        */
        sort real_sort();
        /**
           \brief Return the Bit-vector sort of size \c sz. That is, the sort for bit-vectors of size \c sz.
        */
        sort bv_sort(unsigned sz);
        /**
           \brief Return the sort for ASCII strings.
         */
        sort string_sort();
        /**
           \brief Return a sequence sort over base sort \c s.
         */
        sort seq_sort(sort& s);
        /**
           \brief Return a regular expression sort over sequences \c seq_sort.
         */
        sort re_sort(sort& seq_sort);
        /**
           \brief Return an array sort for arrays from \c d to \c r.

           Example: Given a context \c c, <tt>c.array_sort(c.int_sort(), c.bool_sort())</tt> is an array sort from integer to Boolean.
        */
        sort array_sort(sort d, sort r);
        sort array_sort(sort_vector const& d, sort r);
        /**
           \brief Return a floating point sort.
           \c ebits is a number of exponent bits,
           \c sbits	is a number of significand bits,
           \pre where ebits must be larger than 1 and sbits must be larger than 2.
         */
        sort fpa_sort(unsigned ebits, unsigned sbits);
        /**
           \brief Return a FloatingPoint sort with given precision bitwidth (16, 32, 64 or 128).
         */
        template<size_t precision>
        sort fpa_sort();
        /**
           \brief Return a RoundingMode sort.
         */
        sort fpa_rounding_mode();
        /**
           \brief Sets RoundingMode of FloatingPoints.
         */
        void set_rounding_mode(rounding_mode rm);
        /**
           \brief Return an enumeration sort: enum_names[0], ..., enum_names[n-1].
           \c cs and \c ts are output parameters. The method stores in \c cs the constants corresponding to the enumerated elements,
           and in \c ts the predicates for testing if terms of the enumeration sort correspond to an enumeration.
        */
        sort enumeration_sort(char const * name, unsigned n, char const * const * enum_names, func_decl_vector & cs, func_decl_vector & ts);

        /**
           \brief Return a tuple constructor.
           \c name is the name of the returned constructor,
           \c n are the number of arguments, \c names and \c sorts are their projected sorts.
           \c projs is an output parameter. It contains the set of projection functions.
        */
        func_decl tuple_sort(char const * name, unsigned n, char const * const * names, sort const* sorts, func_decl_vector & projs);

        /**
           \brief create an uninterpreted sort with the name given by the string or symbol.
         */
        sort uninterpreted_sort(char const* name);
        sort uninterpreted_sort(symbol const& name);

        func_decl function(symbol const & name, unsigned arity, sort const * domain, sort const & range);
        func_decl function(char const * name, unsigned arity, sort const * domain, sort const & range);
        func_decl function(symbol const&  name, sort_vector const& domain, sort const& range);
        func_decl function(char const * name, sort_vector const& domain, sort const& range);
        func_decl function(char const * name, sort const & domain, sort const & range);
        func_decl function(char const * name, sort const & d1, sort const & d2, sort const & range);
        func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range);
        func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range);
        func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range);

        func_decl recfun(symbol const & name, unsigned arity, sort const * domain, sort const & range);
        func_decl recfun(char const * name, unsigned arity, sort const * domain, sort const & range);
        func_decl recfun(char const * name, sort const & domain, sort const & range);
        func_decl recfun(char const * name, sort const & d1, sort const & d2, sort const & range);

        void      recdef(func_decl, expr_vector const& args, expr const& body);

        expr constant(symbol const & name, sort const & s);
        expr constant(char const * name, sort const & s);
        expr bool_const(char const * name);
        expr int_const(char const * name);
        expr real_const(char const * name);
        expr bv_const(char const * name, unsigned sz);
        expr fpa_const(char const * name, unsigned ebits, unsigned sbits);

        template<size_t precision>
        expr fpa_const(char const * name);

        expr bool_val(bool b);

        expr int_val(int n);
        expr int_val(unsigned n);
        expr int_val(int64_t n);
        expr int_val(uint64_t n);
        expr int_val(char const * n);

        expr real_val(int n, int d);
        expr real_val(int n);
        expr real_val(unsigned n);
        expr real_val(int64_t n);
        expr real_val(uint64_t n);
        expr real_val(char const * n);

        expr bv_val(int n, unsigned sz);
        expr bv_val(unsigned n, unsigned sz);
        expr bv_val(int64_t n, unsigned sz);
        expr bv_val(uint64_t n, unsigned sz);
        expr bv_val(char const * n, unsigned sz);
        expr bv_val(unsigned n, bool const* bits);

        expr fpa_val(double n);
        expr fpa_val(float n);

        expr string_val(char const* s);
        expr string_val(std::string const& s);

        expr num_val(int n, sort const & s);

        /**
           \brief parsing
         */
        expr_vector parse_string(char const* s);
        expr_vector parse_file(char const* file);

        expr_vector parse_string(char const* s, sort_vector const& sorts, func_decl_vector const& decls);
        expr_vector parse_file(char const* s, sort_vector const& sorts, func_decl_vector const& decls);


    };




    template<typename T>
    class array {
        T *      m_array;
        unsigned m_size;
        array(array const & s);
        array & operator=(array const & s);
    public:
        array(unsigned sz):m_size(sz) { m_array = new T[sz]; }
        template<typename T2>
        array(ast_vector_tpl<T2> const & v);
        ~array() { delete[] m_array; }
        unsigned size() const { return m_size; }
        T & operator[](int i) { assert(0 <= i); assert(static_cast<unsigned>(i) < m_size); return m_array[i]; }
        T const & operator[](int i) const { assert(0 <= i); assert(static_cast<unsigned>(i) < m_size); return m_array[i]; }
        T const * ptr() const { return m_array; }
        T * ptr() { return m_array; }
    };

    class object {
    protected:
        context * m_ctx;
    public:
        object(context & c):m_ctx(&c) {}
        object(object const & s):m_ctx(s.m_ctx) {}
        context & ctx() const { return *m_ctx; }
        Z3_error_code check_error() const { return m_ctx->check_error(); }
        friend void check_context(object const & a, object const & b);
    };
    inline void check_context(object const & a, object const & b) { (void)a; (void)b; assert(a.m_ctx == b.m_ctx); }

    class symbol : public object {
        Z3_symbol m_sym;
    public:
        symbol(context & c, Z3_symbol s):object(c), m_sym(s) {}
        symbol(symbol const & s):object(s), m_sym(s.m_sym) {}
        symbol & operator=(symbol const & s) { m_ctx = s.m_ctx; m_sym = s.m_sym; return *this; }
        operator Z3_symbol() const { return m_sym; }
        Z3_symbol_kind kind() const { return Z3_get_symbol_kind(ctx(), m_sym); }
        std::string str() const { assert(kind() == Z3_STRING_SYMBOL); return Z3_get_symbol_string(ctx(), m_sym); }
        int to_int() const { assert(kind() == Z3_INT_SYMBOL); return Z3_get_symbol_int(ctx(), m_sym); }
        friend std::ostream & operator<<(std::ostream & out, symbol const & s);
    };

    inline std::ostream & operator<<(std::ostream & out, symbol const & s) {
        if (s.kind() == Z3_INT_SYMBOL)
            out << "k!" << s.to_int();
        else
            out << s.str().c_str();
        return out;
    }


    class param_descrs : public object {
        Z3_param_descrs m_descrs;
    public:
        param_descrs(context& c, Z3_param_descrs d): object(c), m_descrs(d) { Z3_param_descrs_inc_ref(c, d); }
        param_descrs(param_descrs const& o): object(o.ctx()), m_descrs(o.m_descrs) { Z3_param_descrs_inc_ref(ctx(), m_descrs); }
        param_descrs& operator=(param_descrs const& o) {
            Z3_param_descrs_inc_ref(o.ctx(), o.m_descrs);
            Z3_param_descrs_dec_ref(ctx(), m_descrs);
            m_descrs = o.m_descrs;
            m_ctx = o.m_ctx;
            return *this;
        }
        ~param_descrs() { Z3_param_descrs_dec_ref(ctx(), m_descrs); }
        static param_descrs simplify_param_descrs(context& c) { return param_descrs(c, Z3_simplify_get_param_descrs(c)); }

        unsigned size() { return Z3_param_descrs_size(ctx(), m_descrs); }
        symbol name(unsigned i) { return symbol(ctx(), Z3_param_descrs_get_name(ctx(), m_descrs, i)); }
        Z3_param_kind kind(symbol const& s) { return Z3_param_descrs_get_kind(ctx(), m_descrs, s); }
        std::string documentation(symbol const& s) { char const* r = Z3_param_descrs_get_documentation(ctx(), m_descrs, s); check_error(); return r; }
        std::string to_string() const { return Z3_param_descrs_to_string(ctx(), m_descrs); }
    };

    inline std::ostream& operator<<(std::ostream & out, param_descrs const & d) { return out << d.to_string(); }

    class params : public object {
        Z3_params m_params;
    public:
        params(context & c):object(c) { m_params = Z3_mk_params(c); Z3_params_inc_ref(ctx(), m_params); }
        params(params const & s):object(s), m_params(s.m_params) { Z3_params_inc_ref(ctx(), m_params); }
        ~params() { Z3_params_dec_ref(ctx(), m_params); }
        operator Z3_params() const { return m_params; }
        params & operator=(params const & s) {
            Z3_params_inc_ref(s.ctx(), s.m_params);
            Z3_params_dec_ref(ctx(), m_params);
            m_ctx = s.m_ctx;
            m_params = s.m_params;
            return *this;
        }
        void set(char const * k, bool b) { Z3_params_set_bool(ctx(), m_params, ctx().str_symbol(k), b); }
        void set(char const * k, unsigned n) { Z3_params_set_uint(ctx(), m_params, ctx().str_symbol(k), n); }
        void set(char const * k, double n) { Z3_params_set_double(ctx(), m_params, ctx().str_symbol(k), n); }
        void set(char const * k, symbol const & s) { Z3_params_set_symbol(ctx(), m_params, ctx().str_symbol(k), s); }
        void set(char const * k, char const* s) { Z3_params_set_symbol(ctx(), m_params, ctx().str_symbol(k), ctx().str_symbol(s)); }
        friend std::ostream & operator<<(std::ostream & out, params const & p);
    };

    inline std::ostream & operator<<(std::ostream & out, params const & p) {
        out << Z3_params_to_string(p.ctx(), p); return out;
    }

    class ast : public object {
    protected:
        Z3_ast    m_ast;
    public:
        ast(context & c):object(c), m_ast(0) {}
        ast(context & c, Z3_ast n):object(c), m_ast(n) { Z3_inc_ref(ctx(), m_ast); }
        ast(ast const & s):object(s), m_ast(s.m_ast) { Z3_inc_ref(ctx(), m_ast); }
        ~ast() { if (m_ast) Z3_dec_ref(*m_ctx, m_ast); }
        operator Z3_ast() const { return m_ast; }
        operator bool() const { return m_ast != 0; }
        ast & operator=(ast const & s) { Z3_inc_ref(s.ctx(), s.m_ast); if (m_ast) Z3_dec_ref(ctx(), m_ast); m_ctx = s.m_ctx; m_ast = s.m_ast; return *this; }
        Z3_ast_kind kind() const { Z3_ast_kind r = Z3_get_ast_kind(ctx(), m_ast); check_error(); return r; }
        unsigned hash() const { unsigned r = Z3_get_ast_hash(ctx(), m_ast); check_error(); return r; }
        friend std::ostream & operator<<(std::ostream & out, ast const & n);
        std::string to_string() const { return std::string(Z3_ast_to_string(ctx(), m_ast)); }


        /**
           \brief Return true if the ASTs are structurally identical.
        */
        friend bool eq(ast const & a, ast const & b);
    };
    inline std::ostream & operator<<(std::ostream & out, ast const & n) {
        out << Z3_ast_to_string(n.ctx(), n.m_ast); return out;
    }

    inline bool eq(ast const & a, ast const & b) { return Z3_is_eq_ast(a.ctx(), a, b); }


    /**
       \brief A Z3 sort (aka type). Every expression (i.e., formula or term) in Z3 has a sort.
    */
    class sort : public ast {
    public:
        sort(context & c):ast(c) {}
        sort(context & c, Z3_sort s):ast(c, reinterpret_cast<Z3_ast>(s)) {}
        sort(context & c, Z3_ast a):ast(c, a) {}
        sort(sort const & s):ast(s) {}
        operator Z3_sort() const { return reinterpret_cast<Z3_sort>(m_ast); }
        /**
           \brief Return true if this sort and \c s are equal.
        */
        sort & operator=(sort const & s) { return static_cast<sort&>(ast::operator=(s)); }
        /**
           \brief Return the internal sort kind.
        */
        Z3_sort_kind sort_kind() const { return Z3_get_sort_kind(*m_ctx, *this); }
        /**
           \brief Return name of sort.
        */
        symbol name() const { Z3_symbol s = Z3_get_sort_name(ctx(), *this); check_error(); return symbol(ctx(), s); }
        /**
            \brief Return true if this sort is the Boolean sort.
        */
        bool is_bool() const { return sort_kind() == Z3_BOOL_SORT; }
        /**
            \brief Return true if this sort is the Integer sort.
        */
        bool is_int() const { return sort_kind() == Z3_INT_SORT; }
        /**
            \brief Return true if this sort is the Real sort.
        */
        bool is_real() const { return sort_kind() == Z3_REAL_SORT; }
        /**
            \brief Return true if this sort is the Integer or Real sort.
        */
        bool is_arith() const { return is_int() || is_real(); }
        /**
            \brief Return true if this sort is a Bit-vector sort.
        */
        bool is_bv() const { return sort_kind() == Z3_BV_SORT; }
        /**
            \brief Return true if this sort is a Array sort.
        */
        bool is_array() const { return sort_kind() == Z3_ARRAY_SORT; }
        /**
            \brief Return true if this sort is a Datatype sort.
        */
        bool is_datatype() const { return sort_kind() == Z3_DATATYPE_SORT; }
        /**
            \brief Return true if this sort is a Relation sort.
        */
        bool is_relation() const { return sort_kind() == Z3_RELATION_SORT; }
        /**
            \brief Return true if this sort is a Sequence sort.
        */
        bool is_seq() const { return sort_kind() == Z3_SEQ_SORT; }
        /**
            \brief Return true if this sort is a regular expression sort.
        */
        bool is_re() const { return sort_kind() == Z3_RE_SORT; }
        /**
            \brief Return true if this sort is a Finite domain sort.
        */
        bool is_finite_domain() const { return sort_kind() == Z3_FINITE_DOMAIN_SORT; }
        /**
            \brief Return true if this sort is a Floating point sort.
        */
        bool is_fpa() const { return sort_kind() == Z3_FLOATING_POINT_SORT; }

        /**
            \brief Return the size of this Bit-vector sort.

            \pre is_bv()
        */
        unsigned bv_size() const { assert(is_bv()); unsigned r = Z3_get_bv_sort_size(ctx(), *this); check_error(); return r; }

        unsigned fpa_ebits() const { assert(is_fpa()); unsigned r = Z3_fpa_get_ebits(ctx(), *this); check_error(); return r; }

        unsigned fpa_sbits() const { assert(is_fpa()); unsigned r = Z3_fpa_get_sbits(ctx(), *this); check_error(); return r; }
        /**
            \brief Return the domain of this Array sort.

            \pre is_array()
        */
        sort array_domain() const { assert(is_array()); Z3_sort s = Z3_get_array_sort_domain(ctx(), *this); check_error(); return sort(ctx(), s); }
        /**
            \brief Return the range of this Array sort.

            \pre is_array()
        */
        sort array_range() const { assert(is_array()); Z3_sort s = Z3_get_array_sort_range(ctx(), *this); check_error(); return sort(ctx(), s); }
    };

    /**
       \brief Function declaration (aka function definition). It is the signature of interpreted and uninterpreted functions in Z3.
       The basic building block in Z3 is the function application.
    */
    class func_decl : public ast {
    public:
        func_decl(context & c):ast(c) {}
        func_decl(context & c, Z3_func_decl n):ast(c, reinterpret_cast<Z3_ast>(n)) {}
        func_decl(func_decl const & s):ast(s) {}
        operator Z3_func_decl() const { return reinterpret_cast<Z3_func_decl>(m_ast); }
        func_decl & operator=(func_decl const & s) { return static_cast<func_decl&>(ast::operator=(s)); }

        unsigned arity() const { return Z3_get_arity(ctx(), *this); }
        sort domain(unsigned i) const { assert(i < arity()); Z3_sort r = Z3_get_domain(ctx(), *this, i); check_error(); return sort(ctx(), r); }
        sort range() const { Z3_sort r = Z3_get_range(ctx(), *this); check_error(); return sort(ctx(), r); }
        symbol name() const { Z3_symbol s = Z3_get_decl_name(ctx(), *this); check_error(); return symbol(ctx(), s); }
        Z3_decl_kind decl_kind() const { return Z3_get_decl_kind(ctx(), *this); }

        bool is_const() const { return arity() == 0; }

        expr operator()() const;
        expr operator()(unsigned n, expr const * args) const;
        expr operator()(expr_vector const& v) const;
        expr operator()(expr const & a) const;
        expr operator()(int a) const;
        expr operator()(expr const & a1, expr const & a2) const;
        expr operator()(expr const & a1, int a2) const;
        expr operator()(int a1, expr const & a2) const;
        expr operator()(expr const & a1, expr const & a2, expr const & a3) const;
        expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const;
        expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const;
    };

    /**
       \brief A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean.
       Every expression has a sort.
    */
    class expr : public ast {
    public:
        expr(context & c):ast(c) {}
        expr(context & c, Z3_ast n):ast(c, reinterpret_cast<Z3_ast>(n)) {}
        expr(expr const & n):ast(n) {}
        expr & operator=(expr const & n) { return static_cast<expr&>(ast::operator=(n)); }

        /**
           \brief Return the sort of this expression.
        */
        sort get_sort() const { Z3_sort s = Z3_get_sort(*m_ctx, m_ast); check_error(); return sort(*m_ctx, s); }

        /**
           \brief Return true if this is a Boolean expression.
        */
        bool is_bool() const { return get_sort().is_bool(); }
        /**
           \brief Return true if this is an integer expression.
        */
        bool is_int() const { return get_sort().is_int(); }
        /**
           \brief Return true if this is a real expression.
        */
        bool is_real() const { return get_sort().is_real(); }
        /**
           \brief Return true if this is an integer or real expression.
        */
        bool is_arith() const { return get_sort().is_arith(); }
        /**
           \brief Return true if this is a Bit-vector expression.
        */
        bool is_bv() const { return get_sort().is_bv(); }
        /**
           \brief Return true if this is a Array expression.
        */
        bool is_array() const { return get_sort().is_array(); }
        /**
           \brief Return true if this is a Datatype expression.
        */
        bool is_datatype() const { return get_sort().is_datatype(); }
        /**
           \brief Return true if this is a Relation expression.
        */
        bool is_relation() const { return get_sort().is_relation(); }
        /**
           \brief Return true if this is a sequence expression.
        */
        bool is_seq() const { return get_sort().is_seq(); }
        /**
           \brief Return true if this is a regular expression.
        */
        bool is_re() const { return get_sort().is_re(); }

        /**
           \brief Return true if this is a Finite-domain expression.

           \remark Finite-domain is special kind of interpreted sort:
           is_bool(), is_bv() and is_finite_domain() are mutually
           exclusive.

        */
        bool is_finite_domain() const { return get_sort().is_finite_domain(); }
        /**
            \brief Return true if this is a FloatingPoint expression. .
        */
        bool is_fpa() const { return get_sort().is_fpa(); }

        /**
           \brief Return true if this expression is a numeral.
           Specialized functions also return representations for the numerals as
           small integers, 64 bit integers or rational or decimal strings.
        */
        bool is_numeral() const { return kind() == Z3_NUMERAL_AST; }
        bool is_numeral_i64(int64_t& i) const { bool r = Z3_get_numeral_int64(ctx(), m_ast, &i); check_error(); return r;}
        bool is_numeral_u64(uint64_t& i) const { bool r = Z3_get_numeral_uint64(ctx(), m_ast, &i); check_error(); return r;}
        bool is_numeral_i(int& i) const { bool r = Z3_get_numeral_int(ctx(), m_ast, &i); check_error(); return r;}
        bool is_numeral_u(unsigned& i) const { bool r = Z3_get_numeral_uint(ctx(), m_ast, &i); check_error(); return r;}
        bool is_numeral(std::string& s) const { if (!is_numeral()) return false; s = Z3_get_numeral_string(ctx(), m_ast); check_error(); return true; }
        bool is_numeral(std::string& s, unsigned precision) const { if (!is_numeral()) return false; s = Z3_get_numeral_decimal_string(ctx(), m_ast, precision); check_error(); return true; }
        bool is_numeral(double& d) const { if (!is_numeral()) return false; d = Z3_get_numeral_double(ctx(), m_ast); check_error(); return true; }
        /**
           \brief Return true if this expression is an application.
        */
        bool is_app() const { return kind() == Z3_APP_AST || kind() == Z3_NUMERAL_AST; }
        /**
           \brief Return true if this expression is a constant (i.e., an application with 0 arguments).
        */
        bool is_const() const { return is_app() && num_args() == 0; }
        /**
           \brief Return true if this expression is a quantifier.
        */
        bool is_quantifier() const { return kind() == Z3_QUANTIFIER_AST; }

        /**
           \brief Return true if this expression is a universal quantifier.
        */
        bool is_forall() const { return Z3_is_quantifier_forall(ctx(), m_ast); }
        /**
           \brief Return true if this expression is an existential quantifier.
        */
        bool is_exists() const { return Z3_is_quantifier_exists(ctx(), m_ast); }
        /**
           \brief Return true if this expression is a lambda expression.
        */
        bool is_lambda() const { return Z3_is_lambda(ctx(), m_ast); }
        /**

           \brief Return true if this expression is a variable.
        */
        bool is_var() const { return kind() == Z3_VAR_AST; }
        /**
           \brief Return true if expression is an algebraic number.
        */
        bool is_algebraic() const { return Z3_is_algebraic_number(ctx(), m_ast); }

        /**
           \brief Return true if this expression is well sorted (aka type correct).
        */
        bool is_well_sorted() const { bool r = Z3_is_well_sorted(ctx(), m_ast); check_error(); return r; }

        /**
           \brief Return string representation of numeral or algebraic number
           This method assumes the expression is numeral or algebraic

           \pre is_numeral() || is_algebraic()
        */
        std::string get_decimal_string(int precision) const {
            assert(is_numeral() || is_algebraic());
            return std::string(Z3_get_numeral_decimal_string(ctx(), m_ast, precision));
        }

        /**
           \brief Return int value of numeral, throw if result cannot fit in
           machine int

           It only makes sense to use this function if the caller can ensure that
           the result is an integer or if exceptions are enabled.
           If exceptions are disabled, then use the is_numeral_i function.

           \pre is_numeral()
        */
        int get_numeral_int() const {
            int result = 0;
            if (!is_numeral_i(result)) {
                assert(ctx().enable_exceptions());
                if (!ctx().enable_exceptions()) return 0;
                Z3_THROW(exception("numeral does not fit in machine int"));
            }
            return result;
        }

        /**
           \brief Return uint value of numeral, throw if result cannot fit in
           machine uint

           It only makes sense to use this function if the caller can ensure that
           the result is an integer or if exceptions are enabled.
           If exceptions are disabled, then use the is_numeral_u function.
           \pre is_numeral()
        */
        unsigned get_numeral_uint() const {
            assert(is_numeral());
            unsigned result = 0;
            if (!is_numeral_u(result)) {
                assert(ctx().enable_exceptions());
                if (!ctx().enable_exceptions()) return 0;
                Z3_THROW(exception("numeral does not fit in machine uint"));
            }
            return result;
        }

        /**
           \brief Return \c int64_t value of numeral, throw if result cannot fit in
           \c int64_t.

           \pre is_numeral()
        */
        int64_t get_numeral_int64() const {
            assert(is_numeral());
            int64_t result = 0;
            if (!is_numeral_i64(result)) {
                assert(ctx().enable_exceptions());
                if (!ctx().enable_exceptions()) return 0;
                Z3_THROW(exception("numeral does not fit in machine int64_t"));
            }
            return result;
        }

        /**
           \brief Return \c uint64_t value of numeral, throw if result cannot fit in
           \c uint64_t.

           \pre is_numeral()
        */
        uint64_t get_numeral_uint64() const {
            assert(is_numeral());
            uint64_t result = 0;
            if (!is_numeral_u64(result)) {
                assert(ctx().enable_exceptions());
                if (!ctx().enable_exceptions()) return 0;
                Z3_THROW(exception("numeral does not fit in machine uint64_t"));
            }
            return result;
        }

        Z3_lbool bool_value() const {
            return Z3_get_bool_value(ctx(), m_ast);
        }

        expr numerator() const {
            assert(is_numeral());
            Z3_ast r = Z3_get_numerator(ctx(), m_ast);
            check_error();
            return expr(ctx(),r);
        }


        expr denominator() const {
            assert(is_numeral());
            Z3_ast r = Z3_get_denominator(ctx(), m_ast);
            check_error();
            return expr(ctx(),r);
        }

        operator Z3_app() const { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }

        /**
           \brief Return a RoundingMode sort.
         */
        sort fpa_rounding_mode() {
            assert(is_fpa());
            Z3_sort s = ctx().fpa_rounding_mode();
            check_error();
            return sort(ctx(), s);
        }


        /**
           \brief Return the declaration associated with this application.
           This method assumes the expression is an application.

           \pre is_app()
        */
        func_decl decl() const { Z3_func_decl f = Z3_get_app_decl(ctx(), *this); check_error(); return func_decl(ctx(), f); }
        /**
           \brief Return the number of arguments in this application.
           This method assumes the expression is an application.

           \pre is_app()
        */
        unsigned num_args() const { unsigned r = Z3_get_app_num_args(ctx(), *this); check_error(); return r; }
        /**
           \brief Return the i-th argument of this application.
           This method assumes the expression is an application.

           \pre is_app()
           \pre i < num_args()
        */
        expr arg(unsigned i) const { Z3_ast r = Z3_get_app_arg(ctx(), *this, i); check_error(); return expr(ctx(), r); }

        /**
           \brief Return the 'body' of this quantifier.

           \pre is_quantifier()
        */
        expr body() const { assert(is_quantifier()); Z3_ast r = Z3_get_quantifier_body(ctx(), *this); check_error(); return expr(ctx(), r); }

        /**
           \brief Return an expression representing <tt>not(a)</tt>.

           \pre a.is_bool()
        */
        friend expr operator!(expr const & a);

        /**
           \brief Return an expression representing <tt>a and b</tt>.

           \pre a.is_bool()
           \pre b.is_bool()
        */
        friend expr operator&&(expr const & a, expr const & b);


        /**
           \brief Return an expression representing <tt>a and b</tt>.
           The C++ Boolean value \c b is automatically converted into a Z3 Boolean constant.

           \pre a.is_bool()
        */
        friend expr operator&&(expr const & a, bool b);
        /**
           \brief Return an expression representing <tt>a and b</tt>.
           The C++ Boolean value \c a is automatically converted into a Z3 Boolean constant.

           \pre b.is_bool()
        */
        friend expr operator&&(bool a, expr const & b);

        /**
           \brief Return an expression representing <tt>a or b</tt>.

           \pre a.is_bool()
           \pre b.is_bool()
        */
        friend expr operator||(expr const & a, expr const & b);
        /**
           \brief Return an expression representing <tt>a or b</tt>.
           The C++ Boolean value \c b is automatically converted into a Z3 Boolean constant.

           \pre a.is_bool()
        */
        friend expr operator||(expr const & a, bool b);

        /**
           \brief Return an expression representing <tt>a or b</tt>.
           The C++ Boolean value \c a is automatically converted into a Z3 Boolean constant.

           \pre b.is_bool()
        */
        friend expr operator||(bool a, expr const & b);

        friend expr implies(expr const & a, expr const & b);
        friend expr implies(expr const & a, bool b);
        friend expr implies(bool a, expr const & b);

        friend expr mk_or(expr_vector const& args);
        friend expr mk_and(expr_vector const& args);

        friend expr ite(expr const & c, expr const & t, expr const & e);

        bool is_true() const { return is_app() && Z3_OP_TRUE == decl().decl_kind(); }
        bool is_false() const { return is_app() && Z3_OP_FALSE == decl().decl_kind(); }
        bool is_not() const { return is_app() && Z3_OP_NOT == decl().decl_kind(); }
        bool is_and() const { return is_app() && Z3_OP_AND == decl().decl_kind(); }
        bool is_or() const  { return is_app() && Z3_OP_OR  == decl().decl_kind(); }
        bool is_xor() const { return is_app() && Z3_OP_XOR  == decl().decl_kind(); }
        bool is_implies() const { return is_app() && Z3_OP_IMPLIES  == decl().decl_kind(); }
        bool is_eq() const { return is_app() && Z3_OP_EQ == decl().decl_kind(); }
        bool is_ite() const { return is_app() && Z3_OP_ITE == decl().decl_kind(); }

        friend expr distinct(expr_vector const& args);
        friend expr concat(expr const& a, expr const& b);
        friend expr concat(expr_vector const& args);

        friend expr operator==(expr const & a, expr const & b);
        friend expr operator==(expr const & a, int b);
        friend expr operator==(int a, expr const & b);

        friend expr operator!=(expr const & a, expr const & b);
        friend expr operator!=(expr const & a, int b);
        friend expr operator!=(int a, expr const & b);

        friend expr operator+(expr const & a, expr const & b);
        friend expr operator+(expr const & a, int b);
        friend expr operator+(int a, expr const & b);
        friend expr sum(expr_vector const& args);

        friend expr operator*(expr const & a, expr const & b);
        friend expr operator*(expr const & a, int b);
        friend expr operator*(int a, expr const & b);

        /*  \brief Power operator  */
        friend expr pw(expr const & a, expr const & b);
        friend expr pw(expr const & a, int b);
        friend expr pw(int a, expr const & b);

        /* \brief mod operator */
        friend expr mod(expr const& a, expr const& b);
        friend expr mod(expr const& a, int b);
        friend expr mod(int a, expr const& b);

        /* \brief rem operator */
        friend expr rem(expr const& a, expr const& b);
        friend expr rem(expr const& a, int b);
        friend expr rem(int a, expr const& b);

        friend expr is_int(expr const& e);

        friend expr operator/(expr const & a, expr const & b);
        friend expr operator/(expr const & a, int b);
        friend expr operator/(int a, expr const & b);

        friend expr operator-(expr const & a);

        friend expr operator-(expr const & a, expr const & b);
        friend expr operator-(expr const & a, int b);
        friend expr operator-(int a, expr const & b);

        friend expr operator<=(expr const & a, expr const & b);
        friend expr operator<=(expr const & a, int b);
        friend expr operator<=(int a, expr const & b);


        friend expr operator>=(expr const & a, expr const & b);
        friend expr operator>=(expr const & a, int b);
        friend expr operator>=(int a, expr const & b);

        friend expr operator<(expr const & a, expr const & b);
        friend expr operator<(expr const & a, int b);
        friend expr operator<(int a, expr const & b);

        friend expr operator>(expr const & a, expr const & b);
        friend expr operator>(expr const & a, int b);
        friend expr operator>(int a, expr const & b);

        friend expr pble(expr_vector const& es, int const * coeffs, int bound);
        friend expr pbge(expr_vector const& es, int const * coeffs, int bound);
        friend expr pbeq(expr_vector const& es, int const * coeffs, int bound);
        friend expr atmost(expr_vector const& es, unsigned bound);
        friend expr atleast(expr_vector const& es, unsigned bound);

        friend expr operator&(expr const & a, expr const & b);
        friend expr operator&(expr const & a, int b);
        friend expr operator&(int a, expr const & b);

        friend expr operator^(expr const & a, expr const & b);
        friend expr operator^(expr const & a, int b);
        friend expr operator^(int a, expr const & b);

        friend expr operator|(expr const & a, expr const & b);
        friend expr operator|(expr const & a, int b);
        friend expr operator|(int a, expr const & b);
        friend expr nand(expr const& a, expr const& b);
        friend expr nor(expr const& a, expr const& b);
        friend expr xnor(expr const& a, expr const& b);

        friend expr min(expr const& a, expr const& b);
        friend expr max(expr const& a, expr const& b);

        expr rotate_left(unsigned i) { Z3_ast r = Z3_mk_rotate_left(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
        expr rotate_right(unsigned i) { Z3_ast r = Z3_mk_rotate_right(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
        expr repeat(unsigned i) { Z3_ast r = Z3_mk_repeat(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }

        friend expr abs(expr const & a);
        friend expr sqrt(expr const & a, expr const & rm);

        friend expr operator~(expr const & a);
        expr extract(unsigned hi, unsigned lo) const { Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
        unsigned lo() const { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 1)); }
        unsigned hi() const { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 0)); }

        /**
           \brief FloatingPoint fused multiply-add.
          */
        friend expr fma(expr const& a, expr const& b, expr const& c);

        /**
           \brief sequence and regular expression operations.
           + is overloaded as sequence concatenation and regular expression union.
           concat is overloaded to handle sequences and regular expressions
        */
        expr extract(expr const& offset, expr const& length) const {
            check_context(*this, offset); check_context(offset, length);
            Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
        }
        expr replace(expr const& src, expr const& dst) const {
            check_context(*this, src); check_context(src, dst);
            Z3_ast r = Z3_mk_seq_replace(ctx(), *this, src, dst);
            check_error();
            return expr(ctx(), r);
        }
        expr unit() const {
            Z3_ast r = Z3_mk_seq_unit(ctx(), *this);
            check_error();
            return expr(ctx(), r);
        }
        expr contains(expr const& s) {
            check_context(*this, s);
            Z3_ast r = Z3_mk_seq_contains(ctx(), *this, s);
            check_error();
            return expr(ctx(), r);
        }
        expr at(expr const& index) const {
            check_context(*this, index);
            Z3_ast r = Z3_mk_seq_at(ctx(), *this, index);
            check_error();
            return expr(ctx(), r);
        }
        expr length() const {
            Z3_ast r = Z3_mk_seq_length(ctx(), *this);
            check_error();
            return expr(ctx(), r);
        }
        expr stoi() const {
            Z3_ast r = Z3_mk_str_to_int(ctx(), *this);
            check_error();
            return expr(ctx(), r);
        }
        expr itos() const {
            Z3_ast r = Z3_mk_int_to_str(ctx(), *this);
            check_error();
            return expr(ctx(), r);
        }

        friend expr range(expr const& lo, expr const& hi);
        /**
           \brief create a looping regular expression.
        */
        expr loop(unsigned lo) {
            Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
            check_error();
            return expr(ctx(), r);
        }
        expr loop(unsigned lo, unsigned hi) {
            Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
            check_error();
            return expr(ctx(), r);
        }


        /**
           \brief Return a simplified version of this expression.
        */
        expr simplify() const { Z3_ast r = Z3_simplify(ctx(), m_ast); check_error(); return expr(ctx(), r); }
        /**
           \brief Return a simplified version of this expression. The parameter \c p is a set of parameters for the Z3 simplifier.
        */
        expr simplify(params const & p) const { Z3_ast r = Z3_simplify_ex(ctx(), m_ast, p); check_error(); return expr(ctx(), r); }

        /**
           \brief Apply substitution. Replace src expressions by dst.
        */
        expr substitute(expr_vector const& src, expr_vector const& dst);

        /**
           \brief Apply substitution. Replace bound variables by expressions.
        */
        expr substitute(expr_vector const& dst);

   };

#define _Z3_MK_BIN_(a, b, binop)                        \
    check_context(a, b);                                \
    Z3_ast r = binop(a.ctx(), a, b);                    \
    a.check_error();                                    \
    return expr(a.ctx(), r);                            \


    inline expr implies(expr const & a, expr const & b) {
        assert(a.is_bool() && b.is_bool());
        _Z3_MK_BIN_(a, b, Z3_mk_implies);
    }
    inline expr implies(expr const & a, bool b) { return implies(a, a.ctx().bool_val(b)); }
    inline expr implies(bool a, expr const & b) { return implies(b.ctx().bool_val(a), b); }


    inline expr pw(expr const & a, expr const & b) { _Z3_MK_BIN_(a, b, Z3_mk_power);   }
    inline expr pw(expr const & a, int b) { return pw(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr pw(int a, expr const & b) { return pw(b.ctx().num_val(a, b.get_sort()), b); }

    inline expr mod(expr const& a, expr const& b) { _Z3_MK_BIN_(a, b, Z3_mk_mod);   }
    inline expr mod(expr const & a, int b) { return mod(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr mod(int a, expr const & b) { return mod(b.ctx().num_val(a, b.get_sort()), b); }

    inline expr rem(expr const& a, expr const& b) {
        if (a.is_fpa() && b.is_fpa()) {
            _Z3_MK_BIN_(a, b, Z3_mk_fpa_rem);
        } else {
            _Z3_MK_BIN_(a, b, Z3_mk_rem);
        }
    }
    inline expr rem(expr const & a, int b) { return rem(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr rem(int a, expr const & b) { return rem(b.ctx().num_val(a, b.get_sort()), b); }

#undef _Z3_MK_BIN_

#define _Z3_MK_UN_(a, mkun)                     \
    Z3_ast r = mkun(a.ctx(), a);                \
    a.check_error();                            \
    return expr(a.ctx(), r);                    \


    inline expr operator!(expr const & a) { assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }

    inline expr is_int(expr const& e) { _Z3_MK_UN_(e, Z3_mk_is_int); }

#undef _Z3_MK_UN_

    inline expr operator&&(expr const & a, expr const & b) {
        check_context(a, b);
        assert(a.is_bool() && b.is_bool());
        Z3_ast args[2] = { a, b };
        Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr operator&&(expr const & a, bool b) { return a && a.ctx().bool_val(b); }
    inline expr operator&&(bool a, expr const & b) { return b.ctx().bool_val(a) && b; }

    inline expr operator||(expr const & a, expr const & b) {
        check_context(a, b);
        assert(a.is_bool() && b.is_bool());
        Z3_ast args[2] = { a, b };
        Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr operator||(expr const & a, bool b) { return a || a.ctx().bool_val(b); }

    inline expr operator||(bool a, expr const & b) { return b.ctx().bool_val(a) || b; }

    inline expr operator==(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator==(expr const & a, int b) { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }
    inline expr operator==(int a, expr const & b) { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }

    inline expr operator!=(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast args[2] = { a, b };
        Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator!=(expr const & a, int b) { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }
    inline expr operator!=(int a, expr const & b) { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }

    inline expr operator+(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            Z3_ast args[2] = { a, b };
            r = Z3_mk_add(a.ctx(), 2, args);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvadd(a.ctx(), a, b);
        }
        else if (a.is_seq() && b.is_seq()) {
            return concat(a, b);
        }
        else if (a.is_re() && b.is_re()) {
            Z3_ast _args[2] = { a, b };
            r = Z3_mk_re_union(a.ctx(), 2, _args);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator+(expr const & a, int b) { return a + a.ctx().num_val(b, a.get_sort()); }
    inline expr operator+(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) + b; }

    inline expr operator*(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            Z3_ast args[2] = { a, b };
            r = Z3_mk_mul(a.ctx(), 2, args);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvmul(a.ctx(), a, b);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator*(expr const & a, int b) { return a * a.ctx().num_val(b, a.get_sort()); }
    inline expr operator*(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) * b; }


    inline expr operator>=(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            r = Z3_mk_ge(a.ctx(), a, b);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvsge(a.ctx(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr operator/(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            r = Z3_mk_div(a.ctx(), a, b);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvsdiv(a.ctx(), a, b);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator/(expr const & a, int b) { return a / a.ctx().num_val(b, a.get_sort()); }
    inline expr operator/(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) / b; }

    inline expr operator-(expr const & a) {
        Z3_ast r = 0;
        if (a.is_arith()) {
            r = Z3_mk_unary_minus(a.ctx(), a);
        }
        else if (a.is_bv()) {
            r = Z3_mk_bvneg(a.ctx(), a);
        }
        else if (a.is_fpa()) {
            r = Z3_mk_fpa_neg(a.ctx(), a);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr operator-(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            Z3_ast args[2] = { a, b };
            r = Z3_mk_sub(a.ctx(), 2, args);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvsub(a.ctx(), a, b);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator-(expr const & a, int b) { return a - a.ctx().num_val(b, a.get_sort()); }
    inline expr operator-(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) - b; }

    inline expr operator<=(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            r = Z3_mk_le(a.ctx(), a, b);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvsle(a.ctx(), a, b);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_leq(a.ctx(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator<=(expr const & a, int b) { return a <= a.ctx().num_val(b, a.get_sort()); }
    inline expr operator<=(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) <= b; }

    inline expr operator>=(expr const & a, int b) { return a >= a.ctx().num_val(b, a.get_sort()); }
    inline expr operator>=(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) >= b; }

    inline expr operator<(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            r = Z3_mk_lt(a.ctx(), a, b);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvslt(a.ctx(), a, b);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_lt(a.ctx(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator<(expr const & a, int b) { return a < a.ctx().num_val(b, a.get_sort()); }
    inline expr operator<(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) < b; }

    inline expr operator>(expr const & a, expr const & b) {
        check_context(a, b);
        Z3_ast r = 0;
        if (a.is_arith() && b.is_arith()) {
            r = Z3_mk_gt(a.ctx(), a, b);
        }
        else if (a.is_bv() && b.is_bv()) {
            r = Z3_mk_bvsgt(a.ctx(), a, b);
        }
        else if (a.is_fpa() && b.is_fpa()) {
            r = Z3_mk_fpa_gt(a.ctx(), a, b);
        }
        else {
            // operator is not supported by given arguments.
            assert(false);
        }
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr operator>(expr const & a, int b) { return a > a.ctx().num_val(b, a.get_sort()); }
    inline expr operator>(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) > b; }

    inline expr operator&(expr const & a, expr const & b) { check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); return expr(a.ctx(), r); }
    inline expr operator&(expr const & a, int b) { return a & a.ctx().num_val(b, a.get_sort()); }
    inline expr operator&(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) & b; }

    inline expr operator^(expr const & a, expr const & b) { check_context(a, b); Z3_ast r = Z3_mk_bvxor(a.ctx(), a, b); return expr(a.ctx(), r); }
    inline expr operator^(expr const & a, int b) { return a ^ a.ctx().num_val(b, a.get_sort()); }
    inline expr operator^(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) ^ b; }

    inline expr operator|(expr const & a, expr const & b) { check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); return expr(a.ctx(), r); }
    inline expr operator|(expr const & a, int b) { return a | a.ctx().num_val(b, a.get_sort()); }
    inline expr operator|(int a, expr const & b) { return b.ctx().num_val(a, b.get_sort()) | b; }

    inline expr nand(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); return expr(a.ctx(), r); }
    inline expr nor(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); return expr(a.ctx(), r); }
    inline expr xnor(expr const& a, expr const& b) { check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); return expr(a.ctx(), r); }
    inline expr min(expr const& a, expr const& b) { 
        check_context(a, b); 
        Z3_ast r;
        if (a.is_arith()) {
            r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
        }
        else if (a.is_bv()) {
            r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
        }
        else {
            assert(a.is_fpa());
            r = Z3_mk_fpa_min(a.ctx(), a, b); 
        }
        return expr(a.ctx(), r); 
    }
    inline expr max(expr const& a, expr const& b) { 
        check_context(a, b); 
        Z3_ast r;
        if (a.is_arith()) {
            r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
        }
        else if (a.is_bv()) {
            r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
        }
        else {
            assert(a.is_fpa());
            r = Z3_mk_fpa_max(a.ctx(), a, b); 
        }
        return expr(a.ctx(), r); 
    }
    inline expr abs(expr const & a) { 
        Z3_ast r;
        if (a.is_int()) {
            expr zero = a.ctx().int_val(0);
            r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
        }
        else if (a.is_real()) {
            expr zero = a.ctx().real_val(0);
            r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
        }
        else {
            r = Z3_mk_fpa_abs(a.ctx(), a); 
        }
        return expr(a.ctx(), r); 
    }
    inline expr sqrt(expr const & a, expr const& rm) {
        check_context(a, rm);
        assert(a.is_fpa());
        Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
        return expr(a.ctx(), r);
    }
    inline expr operator~(expr const & a) { Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }

    inline expr fma(expr const& a, expr const& b, expr const& c, expr const& rm) {
        check_context(a, b); check_context(a, c); check_context(a, rm);
        assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
        Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
        a.check_error();
        return expr(a.ctx(), r);
    }

    /**
       \brief Create the if-then-else expression <tt>ite(c, t, e)</tt>

       \pre c.is_bool()
    */
    inline expr ite(expr const & c, expr const & t, expr const & e) {
        check_context(c, t); check_context(c, e);
        assert(c.is_bool());
        Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
        c.check_error();
        return expr(c.ctx(), r);
    }


    /**
       \brief Wraps a Z3_ast as an expr object. It also checks for errors.
       This function allows the user to use the whole C API with the C++ layer defined in this file.
    */
    inline expr to_expr(context & c, Z3_ast a) {
        c.check_error();
        assert(Z3_get_ast_kind(c, a) == Z3_APP_AST ||
               Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST ||
               Z3_get_ast_kind(c, a) == Z3_VAR_AST ||
               Z3_get_ast_kind(c, a) == Z3_QUANTIFIER_AST);
        return expr(c, a);
    }

    inline sort to_sort(context & c, Z3_sort s) {
        c.check_error();
        return sort(c, s);
    }

    inline func_decl to_func_decl(context & c, Z3_func_decl f) {
        c.check_error();
        return func_decl(c, f);
    }

    /**
       \brief unsigned less than or equal to operator for bitvectors.
    */
    inline expr ule(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvule(a.ctx(), a, b)); }
    inline expr ule(expr const & a, int b) { return ule(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr ule(int a, expr const & b) { return ule(b.ctx().num_val(a, b.get_sort()), b); }
    /**
       \brief unsigned less than operator for bitvectors.
    */
    inline expr ult(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvult(a.ctx(), a, b)); }
    inline expr ult(expr const & a, int b) { return ult(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr ult(int a, expr const & b) { return ult(b.ctx().num_val(a, b.get_sort()), b); }
    /**
       \brief unsigned greater than or equal to operator for bitvectors.
    */
    inline expr uge(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b)); }
    inline expr uge(expr const & a, int b) { return uge(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr uge(int a, expr const & b) { return uge(b.ctx().num_val(a, b.get_sort()), b); }
    /**
       \brief unsigned greater than operator for bitvectors.
    */
    inline expr ugt(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvugt(a.ctx(), a, b)); }
    inline expr ugt(expr const & a, int b) { return ugt(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr ugt(int a, expr const & b) { return ugt(b.ctx().num_val(a, b.get_sort()), b); }
    /**
       \brief unsigned division operator for bitvectors.
    */
    inline expr udiv(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvudiv(a.ctx(), a, b)); }
    inline expr udiv(expr const & a, int b) { return udiv(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr udiv(int a, expr const & b) { return udiv(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief signed remainder operator for bitvectors
    */
    inline expr srem(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvsrem(a.ctx(), a, b)); }
    inline expr srem(expr const & a, int b) { return srem(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr srem(int a, expr const & b) { return srem(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief signed modulus operator for bitvectors
    */
    inline expr smod(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvsmod(a.ctx(), a, b)); }
    inline expr smod(expr const & a, int b) { return smod(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr smod(int a, expr const & b) { return smod(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief unsigned reminder operator for bitvectors
    */
    inline expr urem(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvurem(a.ctx(), a, b)); }
    inline expr urem(expr const & a, int b) { return urem(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr urem(int a, expr const & b) { return urem(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief shift left operator for bitvectors
    */
    inline expr shl(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvshl(a.ctx(), a, b)); }
    inline expr shl(expr const & a, int b) { return shl(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr shl(int a, expr const & b) { return shl(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief logic shift right operator for bitvectors
    */
    inline expr lshr(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvlshr(a.ctx(), a, b)); }
    inline expr lshr(expr const & a, int b) { return lshr(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr lshr(int a, expr const & b) { return lshr(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief arithmetic shift right operator for bitvectors
    */
    inline expr ashr(expr const & a, expr const & b) { return to_expr(a.ctx(), Z3_mk_bvashr(a.ctx(), a, b)); }
    inline expr ashr(expr const & a, int b) { return ashr(a, a.ctx().num_val(b, a.get_sort())); }
    inline expr ashr(int a, expr const & b) { return ashr(b.ctx().num_val(a, b.get_sort()), b); }

    /**
       \brief Extend the given bit-vector with zeros to the (unsigned) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
    */
    inline expr zext(expr const & a, unsigned i) { return to_expr(a.ctx(), Z3_mk_zero_ext(a.ctx(), i, a)); }

    /**
       \brief Sign-extend of the given bit-vector to the (signed) equivalent bitvector of size m+i, where m is the size of the given bit-vector.
    */
    inline expr sext(expr const & a, unsigned i) { return to_expr(a.ctx(), Z3_mk_sign_ext(a.ctx(), i, a)); }

    template<typename T> class cast_ast;

    template<> class cast_ast<ast> {
    public:
        ast operator()(context & c, Z3_ast a) { return ast(c, a); }
    };

    template<> class cast_ast<expr> {
    public:
        expr operator()(context & c, Z3_ast a) {
            assert(Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST ||
                   Z3_get_ast_kind(c, a) == Z3_APP_AST ||
                   Z3_get_ast_kind(c, a) == Z3_QUANTIFIER_AST ||
                   Z3_get_ast_kind(c, a) == Z3_VAR_AST);
            return expr(c, a);
        }
    };

    template<> class cast_ast<sort> {
    public:
        sort operator()(context & c, Z3_ast a) {
            assert(Z3_get_ast_kind(c, a) == Z3_SORT_AST);
            return sort(c, reinterpret_cast<Z3_sort>(a));
        }
    };

    template<> class cast_ast<func_decl> {
    public:
        func_decl operator()(context & c, Z3_ast a) {
            assert(Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST);
            return func_decl(c, reinterpret_cast<Z3_func_decl>(a));
        }
    };

    template<typename T>
    class ast_vector_tpl : public object {
        Z3_ast_vector m_vector;
        void init(Z3_ast_vector v) { Z3_ast_vector_inc_ref(ctx(), v); m_vector = v; }
    public:
        ast_vector_tpl(context & c):object(c) { init(Z3_mk_ast_vector(c)); }
        ast_vector_tpl(context & c, Z3_ast_vector v):object(c) { init(v); }
        ast_vector_tpl(ast_vector_tpl const & s):object(s), m_vector(s.m_vector) { Z3_ast_vector_inc_ref(ctx(), m_vector); }
        ~ast_vector_tpl() { Z3_ast_vector_dec_ref(ctx(), m_vector); }
        operator Z3_ast_vector() const { return m_vector; }
        unsigned size() const { return Z3_ast_vector_size(ctx(), m_vector); }
        T operator[](int i) const { assert(0 <= i); Z3_ast r = Z3_ast_vector_get(ctx(), m_vector, i); check_error(); return cast_ast<T>()(ctx(), r); }
        void push_back(T const & e) { Z3_ast_vector_push(ctx(), m_vector, e); check_error(); }
        void resize(unsigned sz) { Z3_ast_vector_resize(ctx(), m_vector, sz); check_error(); }
        T back() const { return operator[](size() - 1); }
        void pop_back() { assert(size() > 0); resize(size() - 1); }
        bool empty() const { return size() == 0; }
        ast_vector_tpl & operator=(ast_vector_tpl const & s) {
            Z3_ast_vector_inc_ref(s.ctx(), s.m_vector);
            Z3_ast_vector_dec_ref(ctx(), m_vector);
            m_ctx = s.m_ctx;
            m_vector = s.m_vector;
            return *this;
        }
        /*
          Disabled pending C++98 build upgrade
        bool contains(T const& x) const {
            for (T y : *this) if (eq(x, y)) return true;
            return false;
        }
        */

        class iterator {
            ast_vector_tpl const* m_vector;
            unsigned m_index;
        public:
            iterator(ast_vector_tpl const* v, unsigned i): m_vector(v), m_index(i) {}
            iterator(iterator& other): m_vector(other.m_vector), m_index(other.m_index) {}
            iterator operator=(iterator const& other) { m_vector = other.m_vector; m_index = other.m_index; return *this; }

            bool operator==(iterator const& other) {
                return other.m_index == m_index;
            };
            bool operator!=(iterator const& other) {
                return other.m_index != m_index;
            };
            iterator& operator++() {
                ++m_index;
                return *this;
            }
            iterator operator++(int) { iterator tmp = *this; ++m_index; return tmp; }
            T * operator->() const { return &(operator*()); }
            T operator*() const { return (*m_vector)[m_index]; }
        };
        iterator begin() const { return iterator(this, 0); }
        iterator end() const { return iterator(this, size()); }
        friend std::ostream & operator<<(std::ostream & out, ast_vector_tpl const & v) { out << Z3_ast_vector_to_string(v.ctx(), v); return out; }
    };


    template<typename T>
    template<typename T2>
    array<T>::array(ast_vector_tpl<T2> const & v) {
        m_array = new T[v.size()];
        m_size  = v.size();
        for (unsigned i = 0; i < m_size; i++) {
            m_array[i] = v[i];
        }
    }

    // Basic functions for creating quantified formulas.
    // The C API should be used for creating quantifiers with patterns, weights, many variables, etc.
    inline expr forall(expr const & x, expr const & b) {
        check_context(x, b);
        Z3_app vars[] = {(Z3_app) x};
        Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr forall(expr const & x1, expr const & x2, expr const & b) {
        check_context(x1, b); check_context(x2, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
        Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr forall(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
        check_context(x1, b); check_context(x2, b); check_context(x3, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
        Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr forall(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
        check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
        Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr forall(expr_vector const & xs, expr const & b) {
        array<Z3_app> vars(xs);
        Z3_ast r = Z3_mk_forall_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr exists(expr const & x, expr const & b) {
        check_context(x, b);
        Z3_app vars[] = {(Z3_app) x};
        Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 1, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr exists(expr const & x1, expr const & x2, expr const & b) {
        check_context(x1, b); check_context(x2, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
        Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 2, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr exists(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
        check_context(x1, b); check_context(x2, b); check_context(x3, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
        Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 3, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr exists(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
        check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
        Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, 4, vars, 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr exists(expr_vector const & xs, expr const & b) {
        array<Z3_app> vars(xs);
        Z3_ast r = Z3_mk_exists_const(b.ctx(), 0, vars.size(), vars.ptr(), 0, 0, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr lambda(expr const & x, expr const & b) {
        check_context(x, b);
        Z3_app vars[] = {(Z3_app) x};
        Z3_ast r = Z3_mk_lambda_const(b.ctx(), 1, vars, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr lambda(expr const & x1, expr const & x2, expr const & b) {
        check_context(x1, b); check_context(x2, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2};
        Z3_ast r = Z3_mk_lambda_const(b.ctx(), 2, vars, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr lambda(expr const & x1, expr const & x2, expr const & x3, expr const & b) {
        check_context(x1, b); check_context(x2, b); check_context(x3, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3 };
        Z3_ast r = Z3_mk_lambda_const(b.ctx(), 3, vars, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr lambda(expr const & x1, expr const & x2, expr const & x3, expr const & x4, expr const & b) {
        check_context(x1, b); check_context(x2, b); check_context(x3, b); check_context(x4, b);
        Z3_app vars[] = {(Z3_app) x1, (Z3_app) x2, (Z3_app) x3, (Z3_app) x4 };
        Z3_ast r = Z3_mk_lambda_const(b.ctx(), 4, vars, b); b.check_error(); return expr(b.ctx(), r);
    }
    inline expr lambda(expr_vector const & xs, expr const & b) {
        array<Z3_app> vars(xs);
        Z3_ast r = Z3_mk_lambda_const(b.ctx(), vars.size(), vars.ptr(), b); b.check_error(); return expr(b.ctx(), r);
    }

    inline expr pble(expr_vector const& es, int const* coeffs, int bound) {
        assert(es.size() > 0);
        context& ctx = es[0].ctx();
        array<Z3_ast> _es(es);
        Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
        ctx.check_error();
        return expr(ctx, r);
    }
    inline expr pbge(expr_vector const& es, int const* coeffs, int bound) {
        assert(es.size() > 0);
        context& ctx = es[0].ctx();
        array<Z3_ast> _es(es);
        Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
        ctx.check_error();
        return expr(ctx, r);
    }
    inline expr pbeq(expr_vector const& es, int const* coeffs, int bound) {
        assert(es.size() > 0);
        context& ctx = es[0].ctx();
        array<Z3_ast> _es(es);
        Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
        ctx.check_error();
        return expr(ctx, r);
    }
    inline expr atmost(expr_vector const& es, unsigned bound) {
        assert(es.size() > 0);
        context& ctx = es[0].ctx();
        array<Z3_ast> _es(es);
        Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
        ctx.check_error();
        return expr(ctx, r);
    }
    inline expr atleast(expr_vector const& es, unsigned bound) {
        assert(es.size() > 0);
        context& ctx = es[0].ctx();
        array<Z3_ast> _es(es);
        Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
        ctx.check_error();
        return expr(ctx, r);
    }
    inline expr sum(expr_vector const& args) {
        assert(args.size() > 0);
        context& ctx = args[0].ctx();
        array<Z3_ast> _args(args);
        Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
        ctx.check_error();
        return expr(ctx, r);
    }

    inline expr distinct(expr_vector const& args) {
        assert(args.size() > 0);
        context& ctx = args[0].ctx();
        array<Z3_ast> _args(args);
        Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
        ctx.check_error();
        return expr(ctx, r);
    }

    inline expr concat(expr const& a, expr const& b) {
        check_context(a, b);
        Z3_ast r;
        if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
            Z3_ast _args[2] = { a, b };
            r = Z3_mk_seq_concat(a.ctx(), 2, _args);
        }
        else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
            Z3_ast _args[2] = { a, b };
            r = Z3_mk_re_concat(a.ctx(), 2, _args);
        }
        else {
            r = Z3_mk_concat(a.ctx(), a, b);
        }
        a.ctx().check_error();
        return expr(a.ctx(), r);
    }

    inline expr concat(expr_vector const& args) {
        Z3_ast r;
        assert(args.size() > 0);
        if (args.size() == 1) {
            return args[0];
        }
        context& ctx = args[0].ctx();
        array<Z3_ast> _args(args);
        if (Z3_is_seq_sort(ctx, args[0].get_sort())) {
            r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
        }
        else if (Z3_is_re_sort(ctx, args[0].get_sort())) {
            r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
        }
        else {
            r = _args[args.size()-1];
            for (unsigned i = args.size()-1; i > 0; ) {
                --i;
                r = Z3_mk_concat(ctx, _args[i], r);
                ctx.check_error();
            }
        }
        ctx.check_error();
        return expr(ctx, r);
    }

    inline expr mk_or(expr_vector const& args) {
        array<Z3_ast> _args(args);
        Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
        args.check_error();
        return expr(args.ctx(), r);
    }
    inline expr mk_and(expr_vector const& args) {
        array<Z3_ast> _args(args);
        Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
        args.check_error();
        return expr(args.ctx(), r);
    }


    class func_entry : public object {
        Z3_func_entry m_entry;
        void init(Z3_func_entry e) {
            m_entry = e;
            Z3_func_entry_inc_ref(ctx(), m_entry);
        }
    public:
        func_entry(context & c, Z3_func_entry e):object(c) { init(e); }
        func_entry(func_entry const & s):object(s) { init(s.m_entry); }
        ~func_entry() { Z3_func_entry_dec_ref(ctx(), m_entry); }
        operator Z3_func_entry() const { return m_entry; }
        func_entry & operator=(func_entry const & s) {
            Z3_func_entry_inc_ref(s.ctx(), s.m_entry);
            Z3_func_entry_dec_ref(ctx(), m_entry);
            m_ctx = s.m_ctx;
            m_entry = s.m_entry;
            return *this;
        }
        expr value() const { Z3_ast r = Z3_func_entry_get_value(ctx(), m_entry); check_error(); return expr(ctx(), r); }
        unsigned num_args() const { unsigned r = Z3_func_entry_get_num_args(ctx(), m_entry); check_error(); return r; }
        expr arg(unsigned i) const { Z3_ast r = Z3_func_entry_get_arg(ctx(), m_entry, i); check_error(); return expr(ctx(), r); }
    };

    class func_interp : public object {
        Z3_func_interp m_interp;
        void init(Z3_func_interp e) {
            m_interp = e;
            Z3_func_interp_inc_ref(ctx(), m_interp);
        }
    public:
        func_interp(context & c, Z3_func_interp e):object(c) { init(e); }
        func_interp(func_interp const & s):object(s) { init(s.m_interp); }
        ~func_interp() { Z3_func_interp_dec_ref(ctx(), m_interp); }
        operator Z3_func_interp() const { return m_interp; }
        func_interp & operator=(func_interp const & s) {
            Z3_func_interp_inc_ref(s.ctx(), s.m_interp);
            Z3_func_interp_dec_ref(ctx(), m_interp);
            m_ctx = s.m_ctx;
            m_interp = s.m_interp;
            return *this;
        }
        expr else_value() const { Z3_ast r = Z3_func_interp_get_else(ctx(), m_interp); check_error(); return expr(ctx(), r); }
        unsigned num_entries() const { unsigned r = Z3_func_interp_get_num_entries(ctx(), m_interp); check_error(); return r; }
        func_entry entry(unsigned i) const { Z3_func_entry e = Z3_func_interp_get_entry(ctx(), m_interp, i); check_error(); return func_entry(ctx(), e); }
        void add_entry(expr_vector const& args, expr& value) {
            Z3_func_interp_add_entry(ctx(), m_interp, args, value);
            check_error();
        }
        void set_else(expr& value) {
            Z3_func_interp_set_else(ctx(), m_interp, value);
            check_error();
        }
    };

    class model : public object {
        Z3_model m_model;
        void init(Z3_model m) {
            m_model = m;
            Z3_model_inc_ref(ctx(), m);
        }
    public:
        struct translate {};
        model(context & c):object(c) { init(Z3_mk_model(c)); }
        model(context & c, Z3_model m):object(c) { init(m); }
        model(model const & s):object(s) { init(s.m_model); }
        model(model& src, context& dst, translate) : object(dst) { init(Z3_model_translate(src.ctx(), src, dst)); }
        ~model() { Z3_model_dec_ref(ctx(), m_model); }
        operator Z3_model() const { return m_model; }
        model & operator=(model const & s) {
            Z3_model_inc_ref(s.ctx(), s.m_model);
            Z3_model_dec_ref(ctx(), m_model);
            m_ctx = s.m_ctx;
            m_model = s.m_model;
            return *this;
        }

        expr eval(expr const & n, bool model_completion=false) const {
            check_context(*this, n);
            Z3_ast r = 0;
            bool status = Z3_model_eval(ctx(), m_model, n, model_completion, &r);
            check_error();
            if (status == false && ctx().enable_exceptions())
                Z3_THROW(exception("failed to evaluate expression"));
            return expr(ctx(), r);
        }

        unsigned num_consts() const { return Z3_model_get_num_consts(ctx(), m_model); }
        unsigned num_funcs() const { return Z3_model_get_num_funcs(ctx(), m_model); }
        func_decl get_const_decl(unsigned i) const { Z3_func_decl r = Z3_model_get_const_decl(ctx(), m_model, i); check_error(); return func_decl(ctx(), r); }
        func_decl get_func_decl(unsigned i) const { Z3_func_decl r = Z3_model_get_func_decl(ctx(), m_model, i); check_error(); return func_decl(ctx(), r); }
        unsigned size() const { return num_consts() + num_funcs(); }
        func_decl operator[](int i) const {
            assert(0 <= i);
            return static_cast<unsigned>(i) < num_consts() ? get_const_decl(i) : get_func_decl(i - num_consts());
        }

        // returns interpretation of constant declaration c.
        // If c is not assigned any value in the model it returns
        // an expression with a null ast reference.
        expr get_const_interp(func_decl c) const {
            check_context(*this, c);
            Z3_ast r = Z3_model_get_const_interp(ctx(), m_model, c);
            check_error();
            return expr(ctx(), r);
        }
        func_interp get_func_interp(func_decl f) const {
            check_context(*this, f);
            Z3_func_interp r = Z3_model_get_func_interp(ctx(), m_model, f);
            check_error();
            return func_interp(ctx(), r);
        }

        // returns true iff the model contains an interpretation
        // for function f.
        bool has_interp(func_decl f) const {
            check_context(*this, f);
            return Z3_model_has_interp(ctx(), m_model, f);
        }

        func_interp add_func_interp(func_decl& f, expr& else_val) {
            Z3_func_interp r = Z3_add_func_interp(ctx(), m_model, f, else_val);
            check_error();
            return func_interp(ctx(), r);
        }

        void add_const_interp(func_decl& f, expr& value) {
            Z3_add_const_interp(ctx(), m_model, f, value);
            check_error();
        }

        friend std::ostream & operator<<(std::ostream & out, model const & m);
    };
    inline std::ostream & operator<<(std::ostream & out, model const & m) { out << Z3_model_to_string(m.ctx(), m); return out; }

    class stats : public object {
        Z3_stats m_stats;
        void init(Z3_stats e) {
            m_stats = e;
            Z3_stats_inc_ref(ctx(), m_stats);
        }
    public:
        stats(context & c):object(c), m_stats(0) {}
        stats(context & c, Z3_stats e):object(c) { init(e); }
        stats(stats const & s):object(s) { init(s.m_stats); }
        ~stats() { if (m_stats) Z3_stats_dec_ref(ctx(), m_stats); }
        operator Z3_stats() const { return m_stats; }
        stats & operator=(stats const & s) {
            Z3_stats_inc_ref(s.ctx(), s.m_stats);
            if (m_stats) Z3_stats_dec_ref(ctx(), m_stats);
            m_ctx = s.m_ctx;
            m_stats = s.m_stats;
            return *this;
        }
        unsigned size() const { return Z3_stats_size(ctx(), m_stats); }
        std::string key(unsigned i) const { Z3_string s = Z3_stats_get_key(ctx(), m_stats, i); check_error(); return s; }
        bool is_uint(unsigned i) const { bool r = Z3_stats_is_uint(ctx(), m_stats, i); check_error(); return r; }
        bool is_double(unsigned i) const { bool r = Z3_stats_is_double(ctx(), m_stats, i); check_error(); return r; }
        unsigned uint_value(unsigned i) const { unsigned r = Z3_stats_get_uint_value(ctx(), m_stats, i); check_error(); return r; }
        double double_value(unsigned i) const { double r = Z3_stats_get_double_value(ctx(), m_stats, i); check_error(); return r; }
        friend std::ostream & operator<<(std::ostream & out, stats const & s);
    };
    inline std::ostream & operator<<(std::ostream & out, stats const & s) { out << Z3_stats_to_string(s.ctx(), s); return out; }


    inline std::ostream & operator<<(std::ostream & out, check_result r) {
        if (r == unsat) out << "unsat";
        else if (r == sat) out << "sat";
        else out << "unknown";
        return out;
    }


    class solver : public object {
        Z3_solver m_solver;
        void init(Z3_solver s) {
            m_solver = s;
            Z3_solver_inc_ref(ctx(), s);
        }
    public:
        struct simple {};
        struct translate {};
        solver(context & c):object(c) { init(Z3_mk_solver(c)); }
        solver(context & c, simple):object(c) { init(Z3_mk_simple_solver(c)); }
        solver(context & c, Z3_solver s):object(c) { init(s); }
        solver(context & c, char const * logic):object(c) { init(Z3_mk_solver_for_logic(c, c.str_symbol(logic))); }
        solver(context & c, solver const& src, translate): object(c) { init(Z3_solver_translate(src.ctx(), src, c)); }
        solver(solver const & s):object(s) { init(s.m_solver); }
        ~solver() { Z3_solver_dec_ref(ctx(), m_solver); }
        operator Z3_solver() const { return m_solver; }
        solver & operator=(solver const & s) {
            Z3_solver_inc_ref(s.ctx(), s.m_solver);
            Z3_solver_dec_ref(ctx(), m_solver);
            m_ctx = s.m_ctx;
            m_solver = s.m_solver;
            return *this;
        }
        void set(params const & p) { Z3_solver_set_params(ctx(), m_solver, p); check_error(); }
        void set(char const * k, bool v) { params p(ctx()); p.set(k, v); set(p); }
        void set(char const * k, unsigned v) { params p(ctx()); p.set(k, v); set(p); }
        void set(char const * k, double v) { params p(ctx()); p.set(k, v); set(p); }
        void set(char const * k, symbol const & v) { params p(ctx()); p.set(k, v); set(p); }
        void set(char const * k, char const* v) { params p(ctx()); p.set(k, v); set(p); }
        void push() { Z3_solver_push(ctx(), m_solver); check_error(); }
        void pop(unsigned n = 1) { Z3_solver_pop(ctx(), m_solver, n); check_error(); }
        void reset() { Z3_solver_reset(ctx(), m_solver); check_error(); }
        void add(expr const & e) { assert(e.is_bool()); Z3_solver_assert(ctx(), m_solver, e); check_error(); }
        void add(expr const & e, expr const & p) {
            assert(e.is_bool()); assert(p.is_bool()); assert(p.is_const());
            Z3_solver_assert_and_track(ctx(), m_solver, e, p);
            check_error();
        }
        void add(expr const & e, char const * p) {
            add(e, ctx().bool_const(p));
        }
        // fails for some compilers:
        // void add(expr_vector const& v) { check_context(*this, v); for (expr e : v) add(e); }
        void from_file(char const* file) { Z3_solver_from_file(ctx(), m_solver, file); ctx().check_parser_error(); }
        void from_string(char const* s) { Z3_solver_from_string(ctx(), m_solver, s); ctx().check_parser_error(); }

        check_result check() { Z3_lbool r = Z3_solver_check(ctx(), m_solver); check_error(); return to_check_result(r); }
        check_result check(unsigned n, expr * const assumptions) {
            array<Z3_ast> _assumptions(n);
            for (unsigned i = 0; i < n; i++) {
                check_context(*this, assumptions[i]);
                _assumptions[i] = assumptions[i];
            }
            Z3_lbool r = Z3_solver_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
            check_error();
            return to_check_result(r);
        }
        check_result check(expr_vector assumptions) {
            unsigned n = assumptions.size();
            array<Z3_ast> _assumptions(n);
            for (unsigned i = 0; i < n; i++) {
                check_context(*this, assumptions[i]);
                _assumptions[i] = assumptions[i];
            }
            Z3_lbool r = Z3_solver_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
            check_error();
            return to_check_result(r);
        }
        model get_model() const { Z3_model m = Z3_solver_get_model(ctx(), m_solver); check_error(); return model(ctx(), m); }
        check_result consequences(expr_vector& assumptions, expr_vector& vars, expr_vector& conseq) {
            Z3_lbool r = Z3_solver_get_consequences(ctx(), m_solver, assumptions, vars, conseq);
            check_error();
            return to_check_result(r);
        }
        std::string reason_unknown() const { Z3_string r = Z3_solver_get_reason_unknown(ctx(), m_solver); check_error(); return r; }
        stats statistics() const { Z3_stats r = Z3_solver_get_statistics(ctx(), m_solver); check_error(); return stats(ctx(), r); }
        expr_vector unsat_core() const { Z3_ast_vector r = Z3_solver_get_unsat_core(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
        expr_vector assertions() const { Z3_ast_vector r = Z3_solver_get_assertions(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
        expr_vector non_units() const { Z3_ast_vector r = Z3_solver_get_non_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
        expr_vector units() const { Z3_ast_vector r = Z3_solver_get_units(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
        expr proof() const { Z3_ast r = Z3_solver_get_proof(ctx(), m_solver); check_error(); return expr(ctx(), r); }
        friend std::ostream & operator<<(std::ostream & out, solver const & s);

        std::string to_smt2(char const* status = "unknown") {
            array<Z3_ast> es(assertions());
            Z3_ast const* fmls = es.ptr();
            Z3_ast fml = 0;
            unsigned sz = es.size();
            if (sz > 0) {
                --sz;
                fml = fmls[sz];
            }
            else {
                fml = ctx().bool_val(true);
            }
            return std::string(Z3_benchmark_to_smtlib_string(
                                   ctx(),
                                   "", "", status, "",
                                   sz,
                                   fmls,
                                   fml));
        }

        param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_solver_get_param_descrs(ctx(), m_solver)); }


        expr_vector cube(expr_vector& vars, unsigned cutoff) {
            Z3_ast_vector r = Z3_solver_cube(ctx(), m_solver, vars, cutoff);
            check_error();
            return expr_vector(ctx(), r);
        }

        class cube_iterator {
            solver&      m_solver;
            unsigned&    m_cutoff;
            expr_vector& m_vars;
            expr_vector  m_cube;
            bool         m_end;
            bool         m_empty;

            void inc() {
                assert(!m_end && !m_empty);
                m_cube = m_solver.cube(m_vars, m_cutoff);
                m_cutoff = 0xFFFFFFFF;
                if (m_cube.size() == 1 && m_cube[0].is_false()) {
                    m_cube = z3::expr_vector(m_solver.ctx());
                    m_end = true;
                }
                else if (m_cube.empty()) {
                    m_empty = true;
                }
            }
        public:
            cube_iterator(solver& s, expr_vector& vars, unsigned& cutoff, bool end):
                m_solver(s),
                m_cutoff(cutoff),
                m_vars(vars),
                m_cube(s.ctx()),
                m_end(end),
                m_empty(false) {
                if (!m_end) {
                    inc();
                }
            }

            cube_iterator& operator++() {
                assert(!m_end);
                if (m_empty) {
                    m_end = true;
                }
                else {
                    inc();
                }
                return *this;
            }
            cube_iterator operator++(int) { assert(false); return *this; }
            expr_vector const * operator->() const { return &(operator*()); }
            expr_vector const& operator*() const { return m_cube; }

            bool operator==(cube_iterator const& other) {
                return other.m_end == m_end;
            };
            bool operator!=(cube_iterator const& other) {
                return other.m_end != m_end;
            };

        };

        class cube_generator {
            solver&      m_solver;
            unsigned     m_cutoff;
            expr_vector  m_default_vars;
            expr_vector& m_vars;
        public:
            cube_generator(solver& s):
                m_solver(s),
                m_cutoff(0xFFFFFFFF),
                m_default_vars(s.ctx()),
                m_vars(m_default_vars)
            {}

            cube_generator(solver& s, expr_vector& vars):
                m_solver(s),
                m_cutoff(0xFFFFFFFF),
                m_default_vars(s.ctx()),
                m_vars(vars)
            {}

            cube_iterator begin() { return cube_iterator(m_solver, m_vars, m_cutoff, false); }
            cube_iterator end() { return cube_iterator(m_solver, m_vars, m_cutoff, true); }
            void set_cutoff(unsigned c) { m_cutoff = c; }
        };

        cube_generator cubes() { return cube_generator(*this); }
        cube_generator cubes(expr_vector& vars) { return cube_generator(*this, vars); }

    };
    inline std::ostream & operator<<(std::ostream & out, solver const & s) { out << Z3_solver_to_string(s.ctx(), s); return out; }

    class goal : public object {
        Z3_goal m_goal;
        void init(Z3_goal s) {
            m_goal = s;
            Z3_goal_inc_ref(ctx(), s);
        }
    public:
        goal(context & c, bool models=true, bool unsat_cores=false, bool proofs=false):object(c) { init(Z3_mk_goal(c, models, unsat_cores, proofs)); }
        goal(context & c, Z3_goal s):object(c) { init(s); }
        goal(goal const & s):object(s) { init(s.m_goal); }
        ~goal() { Z3_goal_dec_ref(ctx(), m_goal); }
        operator Z3_goal() const { return m_goal; }
        goal & operator=(goal const & s) {
            Z3_goal_inc_ref(s.ctx(), s.m_goal);
            Z3_goal_dec_ref(ctx(), m_goal);
            m_ctx = s.m_ctx;
            m_goal = s.m_goal;
            return *this;
        }
        void add(expr const & f) { check_context(*this, f); Z3_goal_assert(ctx(), m_goal, f); check_error(); }
        // void add(expr_vector const& v) { check_context(*this, v); for (expr e : v) add(e); }
        unsigned size() const { return Z3_goal_size(ctx(), m_goal); }
        expr operator[](int i) const { assert(0 <= i); Z3_ast r = Z3_goal_formula(ctx(), m_goal, i); check_error(); return expr(ctx(), r); }
        Z3_goal_prec precision() const { return Z3_goal_precision(ctx(), m_goal); }
        bool inconsistent() const { return Z3_goal_inconsistent(ctx(), m_goal); }
        unsigned depth() const { return Z3_goal_depth(ctx(), m_goal); }
        void reset() { Z3_goal_reset(ctx(), m_goal); }
        unsigned num_exprs() const { return Z3_goal_num_exprs(ctx(), m_goal); }
        bool is_decided_sat() const { return Z3_goal_is_decided_sat(ctx(), m_goal); }
        bool is_decided_unsat() const { return Z3_goal_is_decided_unsat(ctx(), m_goal); }
        model convert_model(model const & m) const {
            check_context(*this, m);
            Z3_model new_m = Z3_goal_convert_model(ctx(), m_goal, m);
            check_error();
            return model(ctx(), new_m);
        }
        model get_model() const {
            Z3_model new_m = Z3_goal_convert_model(ctx(), m_goal, 0);
            check_error();
            return model(ctx(), new_m);
        }
        expr as_expr() const {
            unsigned n = size();
            if (n == 0)
                return ctx().bool_val(true);
            else if (n == 1)
                return operator[](0);
            else {
                array<Z3_ast> args(n);
                for (unsigned i = 0; i < n; i++)
                    args[i] = operator[](i);
                return expr(ctx(), Z3_mk_and(ctx(), n, args.ptr()));
            }
        }
        std::string dimacs() const { return std::string(Z3_goal_to_dimacs_string(ctx(), m_goal)); }
        friend std::ostream & operator<<(std::ostream & out, goal const & g);
    };
    inline std::ostream & operator<<(std::ostream & out, goal const & g) { out << Z3_goal_to_string(g.ctx(), g); return out; }

    class apply_result : public object {
        Z3_apply_result m_apply_result;
        void init(Z3_apply_result s) {
            m_apply_result = s;
            Z3_apply_result_inc_ref(ctx(), s);
        }
    public:
        apply_result(context & c, Z3_apply_result s):object(c) { init(s); }
        apply_result(apply_result const & s):object(s) { init(s.m_apply_result); }
        ~apply_result() { Z3_apply_result_dec_ref(ctx(), m_apply_result); }
        operator Z3_apply_result() const { return m_apply_result; }
        apply_result & operator=(apply_result const & s) {
            Z3_apply_result_inc_ref(s.ctx(), s.m_apply_result);
            Z3_apply_result_dec_ref(ctx(), m_apply_result);
            m_ctx = s.m_ctx;
            m_apply_result = s.m_apply_result;
            return *this;
        }
        unsigned size() const { return Z3_apply_result_get_num_subgoals(ctx(), m_apply_result); }
        goal operator[](int i) const { assert(0 <= i); Z3_goal r = Z3_apply_result_get_subgoal(ctx(), m_apply_result, i); check_error(); return goal(ctx(), r); }
        friend std::ostream & operator<<(std::ostream & out, apply_result const & r);
    };
    inline std::ostream & operator<<(std::ostream & out, apply_result const & r) { out << Z3_apply_result_to_string(r.ctx(), r); return out; }

    class tactic : public object {
        Z3_tactic m_tactic;
        void init(Z3_tactic s) {
            m_tactic = s;
            Z3_tactic_inc_ref(ctx(), s);
        }
    public:
        tactic(context & c, char const * name):object(c) { Z3_tactic r = Z3_mk_tactic(c, name); check_error(); init(r); }
        tactic(context & c, Z3_tactic s):object(c) { init(s); }
        tactic(tactic const & s):object(s) { init(s.m_tactic); }
        ~tactic() { Z3_tactic_dec_ref(ctx(), m_tactic); }
        operator Z3_tactic() const { return m_tactic; }
        tactic & operator=(tactic const & s) {
            Z3_tactic_inc_ref(s.ctx(), s.m_tactic);
            Z3_tactic_dec_ref(ctx(), m_tactic);
            m_ctx = s.m_ctx;
            m_tactic = s.m_tactic;
            return *this;
        }
        solver mk_solver() const { Z3_solver r = Z3_mk_solver_from_tactic(ctx(), m_tactic); check_error(); return solver(ctx(), r);  }
        apply_result apply(goal const & g) const {
            check_context(*this, g);
            Z3_apply_result r = Z3_tactic_apply(ctx(), m_tactic, g);
            check_error();
            return apply_result(ctx(), r);
        }
        apply_result operator()(goal const & g) const {
            return apply(g);
        }
        std::string help() const { char const * r = Z3_tactic_get_help(ctx(), m_tactic); check_error();  return r; }
        friend tactic operator&(tactic const & t1, tactic const & t2);
        friend tactic operator|(tactic const & t1, tactic const & t2);
        friend tactic repeat(tactic const & t, unsigned max);
        friend tactic with(tactic const & t, params const & p);
        friend tactic try_for(tactic const & t, unsigned ms);
        friend tactic par_or(unsigned n, tactic const* tactics);
        friend tactic par_and_then(tactic const& t1, tactic const& t2);
        param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_tactic_get_param_descrs(ctx(), m_tactic)); }
    };

    inline tactic operator&(tactic const & t1, tactic const & t2) {
        check_context(t1, t2);
        Z3_tactic r = Z3_tactic_and_then(t1.ctx(), t1, t2);
        t1.check_error();
        return tactic(t1.ctx(), r);
    }

    inline tactic operator|(tactic const & t1, tactic const & t2) {
        check_context(t1, t2);
        Z3_tactic r = Z3_tactic_or_else(t1.ctx(), t1, t2);
        t1.check_error();
        return tactic(t1.ctx(), r);
    }

    inline tactic repeat(tactic const & t, unsigned max=UINT_MAX) {
        Z3_tactic r = Z3_tactic_repeat(t.ctx(), t, max);
        t.check_error();
        return tactic(t.ctx(), r);
    }

    inline tactic with(tactic const & t, params const & p) {
        Z3_tactic r = Z3_tactic_using_params(t.ctx(), t, p);
        t.check_error();
        return tactic(t.ctx(), r);
    }
    inline tactic try_for(tactic const & t, unsigned ms) {
        Z3_tactic r = Z3_tactic_try_for(t.ctx(), t, ms);
        t.check_error();
        return tactic(t.ctx(), r);
    }
    inline tactic par_or(unsigned n, tactic const* tactics) {
        if (n == 0) {
            Z3_THROW(exception("a non-zero number of tactics need to be passed to par_or"));
        }
        array<Z3_tactic> buffer(n);
        for (unsigned i = 0; i < n; ++i) buffer[i] = tactics[i];
        return tactic(tactics[0].ctx(), Z3_tactic_par_or(tactics[0].ctx(), n, buffer.ptr()));
    }

    inline tactic par_and_then(tactic const & t1, tactic const & t2) {
        check_context(t1, t2);
        Z3_tactic r = Z3_tactic_par_and_then(t1.ctx(), t1, t2);
        t1.check_error();
        return tactic(t1.ctx(), r);
    }

    class probe : public object {
        Z3_probe m_probe;
        void init(Z3_probe s) {
            m_probe = s;
            Z3_probe_inc_ref(ctx(), s);
        }
    public:
        probe(context & c, char const * name):object(c) { Z3_probe r = Z3_mk_probe(c, name); check_error(); init(r); }
        probe(context & c, double val):object(c) { Z3_probe r = Z3_probe_const(c, val); check_error(); init(r); }
        probe(context & c, Z3_probe s):object(c) { init(s); }
        probe(probe const & s):object(s) { init(s.m_probe); }
        ~probe() { Z3_probe_dec_ref(ctx(), m_probe); }
        operator Z3_probe() const { return m_probe; }
        probe & operator=(probe const & s) {
            Z3_probe_inc_ref(s.ctx(), s.m_probe);
            Z3_probe_dec_ref(ctx(), m_probe);
            m_ctx = s.m_ctx;
            m_probe = s.m_probe;
            return *this;
        }
        double apply(goal const & g) const { double r = Z3_probe_apply(ctx(), m_probe, g); check_error(); return r; }
        double operator()(goal const & g) const { return apply(g); }
        friend probe operator<=(probe const & p1, probe const & p2);
        friend probe operator<=(probe const & p1, double p2);
        friend probe operator<=(double p1, probe const & p2);
        friend probe operator>=(probe const & p1, probe const & p2);
        friend probe operator>=(probe const & p1, double p2);
        friend probe operator>=(double p1, probe const & p2);
        friend probe operator<(probe const & p1, probe const & p2);
        friend probe operator<(probe const & p1, double p2);
        friend probe operator<(double p1, probe const & p2);
        friend probe operator>(probe const & p1, probe const & p2);
        friend probe operator>(probe const & p1, double p2);
        friend probe operator>(double p1, probe const & p2);
        friend probe operator==(probe const & p1, probe const & p2);
        friend probe operator==(probe const & p1, double p2);
        friend probe operator==(double p1, probe const & p2);
        friend probe operator&&(probe const & p1, probe const & p2);
        friend probe operator||(probe const & p1, probe const & p2);
        friend probe operator!(probe const & p);
    };

    inline probe operator<=(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator<=(probe const & p1, double p2) { return p1 <= probe(p1.ctx(), p2); }
    inline probe operator<=(double p1, probe const & p2) { return probe(p2.ctx(), p1) <= p2; }
    inline probe operator>=(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator>=(probe const & p1, double p2) { return p1 >= probe(p1.ctx(), p2); }
    inline probe operator>=(double p1, probe const & p2) { return probe(p2.ctx(), p1) >= p2; }
    inline probe operator<(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator<(probe const & p1, double p2) { return p1 < probe(p1.ctx(), p2); }
    inline probe operator<(double p1, probe const & p2) { return probe(p2.ctx(), p1) < p2; }
    inline probe operator>(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator>(probe const & p1, double p2) { return p1 > probe(p1.ctx(), p2); }
    inline probe operator>(double p1, probe const & p2) { return probe(p2.ctx(), p1) > p2; }
    inline probe operator==(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator==(probe const & p1, double p2) { return p1 == probe(p1.ctx(), p2); }
    inline probe operator==(double p1, probe const & p2) { return probe(p2.ctx(), p1) == p2; }
    inline probe operator&&(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator||(probe const & p1, probe const & p2) {
        check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
    }
    inline probe operator!(probe const & p) {
        Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
    }

    class optimize : public object {
        Z3_optimize m_opt;

    public:
        class handle {
            unsigned m_h;
        public:
            handle(unsigned h): m_h(h) {}
            unsigned h() const { return m_h; }
        };
        optimize(context& c):object(c) { m_opt = Z3_mk_optimize(c); Z3_optimize_inc_ref(c, m_opt); }
        optimize(optimize& o):object(o)  {
            Z3_optimize_inc_ref(o.ctx(), o.m_opt);
            m_opt = o.m_opt;
        }
        optimize& operator=(optimize const& o) {
            Z3_optimize_inc_ref(o.ctx(), o.m_opt);
            Z3_optimize_dec_ref(ctx(), m_opt);
            m_opt = o.m_opt;
            m_ctx = o.m_ctx;
            return *this;
        }
        ~optimize() { Z3_optimize_dec_ref(ctx(), m_opt); }
        operator Z3_optimize() const { return m_opt; }
        void add(expr const& e) {
            assert(e.is_bool());
            Z3_optimize_assert(ctx(), m_opt, e);
        }
        handle add(expr const& e, unsigned weight) {
            assert(e.is_bool());
            std::stringstream strm;
            strm << weight;
            return handle(Z3_optimize_assert_soft(ctx(), m_opt, e, strm.str().c_str(), 0));
        }
        handle add(expr const& e, char const* weight) {
            assert(e.is_bool());
            return handle(Z3_optimize_assert_soft(ctx(), m_opt, e, weight, 0));
        }
        handle maximize(expr const& e) {
            return handle(Z3_optimize_maximize(ctx(), m_opt, e));
        }
        handle minimize(expr const& e) {
            return handle(Z3_optimize_minimize(ctx(), m_opt, e));
        }
        void push() {
            Z3_optimize_push(ctx(), m_opt);
        }
        void pop() {
            Z3_optimize_pop(ctx(), m_opt);
        }
        check_result check() { Z3_lbool r = Z3_optimize_check(ctx(), m_opt, 0, 0); check_error(); return to_check_result(r); }
        check_result check(expr_vector const& asms) {
            unsigned n = asms.size();
            array<Z3_ast> _asms(n);
            for (unsigned i = 0; i < n; i++) {
                check_context(*this, asms[i]);
                _asms[i] = asms[i];
            }
            Z3_lbool r = Z3_optimize_check(ctx(), m_opt, n, _asms.ptr());
            check_error();
            return to_check_result(r);
        }
        model get_model() const { Z3_model m = Z3_optimize_get_model(ctx(), m_opt); check_error(); return model(ctx(), m); }
        expr_vector unsat_core() const { Z3_ast_vector r = Z3_optimize_get_unsat_core(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
        void set(params const & p) { Z3_optimize_set_params(ctx(), m_opt, p); check_error(); }
        expr lower(handle const& h) {
            Z3_ast r = Z3_optimize_get_lower(ctx(), m_opt, h.h());
            check_error();
            return expr(ctx(), r);
        }
        expr upper(handle const& h) {
            Z3_ast r = Z3_optimize_get_upper(ctx(), m_opt, h.h());
            check_error();
            return expr(ctx(), r);
        }
        expr_vector assertions() const { Z3_ast_vector r = Z3_optimize_get_assertions(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
        expr_vector objectives() const { Z3_ast_vector r = Z3_optimize_get_objectives(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
        stats statistics() const { Z3_stats r = Z3_optimize_get_statistics(ctx(), m_opt); check_error(); return stats(ctx(), r); }
        friend std::ostream & operator<<(std::ostream & out, optimize const & s);
        void from_file(char const* filename) { Z3_optimize_from_file(ctx(), m_opt, filename); check_error(); }
        void from_string(char const* constraints) { Z3_optimize_from_string(ctx(), m_opt, constraints); check_error(); }
        std::string help() const { char const * r = Z3_optimize_get_help(ctx(), m_opt); check_error();  return r; }
    };
    inline std::ostream & operator<<(std::ostream & out, optimize const & s) { out << Z3_optimize_to_string(s.ctx(), s.m_opt); return out; }

    class fixedpoint : public object {
        Z3_fixedpoint m_fp;
    public:
        fixedpoint(context& c):object(c) { m_fp = Z3_mk_fixedpoint(c); Z3_fixedpoint_inc_ref(c, m_fp); }
        ~fixedpoint() { Z3_fixedpoint_dec_ref(ctx(), m_fp); }
        operator Z3_fixedpoint() const { return m_fp; }
        void from_string(char const* s) { Z3_fixedpoint_from_string(ctx(), m_fp, s); check_error(); }
        void from_file(char const* s) { Z3_fixedpoint_from_file(ctx(), m_fp, s); check_error(); }
        void add_rule(expr& rule, symbol const& name) { Z3_fixedpoint_add_rule(ctx(), m_fp, rule, name); check_error(); }
        void add_fact(func_decl& f, unsigned * args) { Z3_fixedpoint_add_fact(ctx(), m_fp, f, f.arity(), args); check_error(); }
        check_result query(expr& q) { Z3_lbool r = Z3_fixedpoint_query(ctx(), m_fp, q); check_error(); return to_check_result(r); }
        check_result query(func_decl_vector& relations) {
            array<Z3_func_decl> rs(relations);
            Z3_lbool r = Z3_fixedpoint_query_relations(ctx(), m_fp, rs.size(), rs.ptr());
            check_error();
            return to_check_result(r);
        }
        expr get_answer() { Z3_ast r = Z3_fixedpoint_get_answer(ctx(), m_fp); check_error(); return expr(ctx(), r); }
        std::string reason_unknown() { return Z3_fixedpoint_get_reason_unknown(ctx(), m_fp); }
        void update_rule(expr& rule, symbol const& name) { Z3_fixedpoint_update_rule(ctx(), m_fp, rule, name); check_error(); }
        unsigned get_num_levels(func_decl& p) { unsigned r = Z3_fixedpoint_get_num_levels(ctx(), m_fp, p); check_error(); return r; }
        expr get_cover_delta(int level, func_decl& p) {
            Z3_ast r = Z3_fixedpoint_get_cover_delta(ctx(), m_fp, level, p);
            check_error();
            return expr(ctx(), r);
        }
        void add_cover(int level, func_decl& p, expr& property) { Z3_fixedpoint_add_cover(ctx(), m_fp, level, p, property); check_error();  }
        stats statistics() const { Z3_stats r = Z3_fixedpoint_get_statistics(ctx(), m_fp); check_error(); return stats(ctx(), r); }
        void register_relation(func_decl& p) { Z3_fixedpoint_register_relation(ctx(), m_fp, p); }
        expr_vector assertions() const { Z3_ast_vector r = Z3_fixedpoint_get_assertions(ctx(), m_fp); check_error(); return expr_vector(ctx(), r); }
        expr_vector rules() const { Z3_ast_vector r = Z3_fixedpoint_get_rules(ctx(), m_fp); check_error(); return expr_vector(ctx(), r); }
        void set(params const & p) { Z3_fixedpoint_set_params(ctx(), m_fp, p); check_error(); }
        std::string help() const { return Z3_fixedpoint_get_help(ctx(), m_fp); }
        param_descrs get_param_descrs() { return param_descrs(ctx(), Z3_fixedpoint_get_param_descrs(ctx(), m_fp)); }
        std::string to_string() { return Z3_fixedpoint_to_string(ctx(), m_fp, 0, 0); }
        std::string to_string(expr_vector const& queries) {
            array<Z3_ast> qs(queries);
            return Z3_fixedpoint_to_string(ctx(), m_fp, qs.size(), qs.ptr());
        }
        void push() { Z3_fixedpoint_push(ctx(), m_fp); check_error(); }
        void pop() { Z3_fixedpoint_pop(ctx(), m_fp); check_error(); }
    };
    inline std::ostream & operator<<(std::ostream & out, fixedpoint const & f) { return out << Z3_fixedpoint_to_string(f.ctx(), f, 0, 0); }

    inline tactic fail_if(probe const & p) {
        Z3_tactic r = Z3_tactic_fail_if(p.ctx(), p);
        p.check_error();
        return tactic(p.ctx(), r);
    }
    inline tactic when(probe const & p, tactic const & t) {
        check_context(p, t);
        Z3_tactic r = Z3_tactic_when(t.ctx(), p, t);
        t.check_error();
        return tactic(t.ctx(), r);
    }
    inline tactic cond(probe const & p, tactic const & t1, tactic const & t2) {
        check_context(p, t1); check_context(p, t2);
        Z3_tactic r = Z3_tactic_cond(t1.ctx(), p, t1, t2);
        t1.check_error();
        return tactic(t1.ctx(), r);
    }

    inline symbol context::str_symbol(char const * s) { Z3_symbol r = Z3_mk_string_symbol(m_ctx, s); check_error(); return symbol(*this, r); }
    inline symbol context::int_symbol(int n) { Z3_symbol r = Z3_mk_int_symbol(m_ctx, n); check_error(); return symbol(*this, r); }

    inline sort context::bool_sort() { Z3_sort s = Z3_mk_bool_sort(m_ctx); check_error(); return sort(*this, s); }
    inline sort context::int_sort() { Z3_sort s = Z3_mk_int_sort(m_ctx); check_error(); return sort(*this, s); }
    inline sort context::real_sort() { Z3_sort s = Z3_mk_real_sort(m_ctx); check_error(); return sort(*this, s); }
    inline sort context::bv_sort(unsigned sz) { Z3_sort s = Z3_mk_bv_sort(m_ctx, sz); check_error(); return sort(*this, s); }
    inline sort context::string_sort() { Z3_sort s = Z3_mk_string_sort(m_ctx); check_error(); return sort(*this, s); }
    inline sort context::seq_sort(sort& s) { Z3_sort r = Z3_mk_seq_sort(m_ctx, s); check_error(); return sort(*this, r); }
    inline sort context::re_sort(sort& s) { Z3_sort r = Z3_mk_re_sort(m_ctx, s); check_error(); return sort(*this, r); }
    inline sort context::fpa_sort(unsigned ebits, unsigned sbits) { Z3_sort s = Z3_mk_fpa_sort(m_ctx, ebits, sbits); check_error(); return sort(*this, s); }

    template<>
    inline sort context::fpa_sort<16>() { return fpa_sort(5, 11); }

    template<>
    inline sort context::fpa_sort<32>() { return fpa_sort(8, 24); }

    template<>
    inline sort context::fpa_sort<64>() { return fpa_sort(11, 53); }

    template<>
    inline sort context::fpa_sort<128>() { return fpa_sort(15, 113); }

    inline sort context::fpa_rounding_mode() {
        switch (m_rounding_mode) {
        case RNA: return sort(*this, Z3_mk_fpa_rna(m_ctx));
        case RNE: return sort(*this, Z3_mk_fpa_rne(m_ctx));
        case RTP: return sort(*this, Z3_mk_fpa_rtp(m_ctx));
        case RTN: return sort(*this, Z3_mk_fpa_rtn(m_ctx));
        case RTZ: return sort(*this, Z3_mk_fpa_rtz(m_ctx));
        default: return sort(*this); 
        }
    }

    inline void context::set_rounding_mode(rounding_mode rm) { m_rounding_mode = rm; }

    inline sort context::array_sort(sort d, sort r) { Z3_sort s = Z3_mk_array_sort(m_ctx, d, r); check_error(); return sort(*this, s); }
    inline sort context::array_sort(sort_vector const& d, sort r) {
        array<Z3_sort> dom(d);
        Z3_sort s = Z3_mk_array_sort_n(m_ctx, dom.size(), dom.ptr(), r); check_error(); return sort(*this, s);
    }
    inline sort context::enumeration_sort(char const * name, unsigned n, char const * const * enum_names, func_decl_vector & cs, func_decl_vector & ts) {
        array<Z3_symbol> _enum_names(n);
        for (unsigned i = 0; i < n; i++) { _enum_names[i] = Z3_mk_string_symbol(*this, enum_names[i]); }
        array<Z3_func_decl> _cs(n);
        array<Z3_func_decl> _ts(n);
        Z3_symbol _name = Z3_mk_string_symbol(*this, name);
        sort s = to_sort(*this, Z3_mk_enumeration_sort(*this, _name, n, _enum_names.ptr(), _cs.ptr(), _ts.ptr()));
        check_error();
        for (unsigned i = 0; i < n; i++) { cs.push_back(func_decl(*this, _cs[i])); ts.push_back(func_decl(*this, _ts[i])); }
        return s;
    }
    inline func_decl context::tuple_sort(char const * name, unsigned n, char const * const * names, sort const* sorts, func_decl_vector & projs) {
        array<Z3_symbol> _names(n);
        array<Z3_sort> _sorts(n);
        for (unsigned i = 0; i < n; i++) { _names[i] = Z3_mk_string_symbol(*this, names[i]); _sorts[i] = sorts[i]; }
        array<Z3_func_decl> _projs(n);
        Z3_symbol _name = Z3_mk_string_symbol(*this, name);
        Z3_func_decl tuple;
        sort _ignore_s = to_sort(*this, Z3_mk_tuple_sort(*this, _name, n, _names.ptr(), _sorts.ptr(), &tuple, _projs.ptr()));
        check_error();
        for (unsigned i = 0; i < n; i++) { projs.push_back(func_decl(*this, _projs[i])); }
        return func_decl(*this, tuple);
    }

    inline sort context::uninterpreted_sort(char const* name) {
        Z3_symbol _name = Z3_mk_string_symbol(*this, name);
        return to_sort(*this, Z3_mk_uninterpreted_sort(*this, _name));
    }
    inline sort context::uninterpreted_sort(symbol const& name) {
        return to_sort(*this, Z3_mk_uninterpreted_sort(*this, name));
    }

    inline func_decl context::function(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
        array<Z3_sort> args(arity);
        for (unsigned i = 0; i < arity; i++) {
            check_context(domain[i], range);
            args[i] = domain[i];
        }
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, name, arity, args.ptr(), range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::function(char const * name, unsigned arity, sort const * domain, sort const & range) {
        return function(range.ctx().str_symbol(name), arity, domain, range);
    }

    inline func_decl context::function(symbol const& name, sort_vector const& domain, sort const& range) {
        array<Z3_sort> args(domain.size());
        for (unsigned i = 0; i < domain.size(); i++) {
            check_context(domain[i], range);
            args[i] = domain[i];
        }
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, name, domain.size(), args.ptr(), range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::function(char const * name, sort_vector const& domain, sort const& range) {
        return function(range.ctx().str_symbol(name), domain, range);
    }


    inline func_decl context::function(char const * name, sort const & domain, sort const & range) {
        check_context(domain, range);
        Z3_sort args[1] = { domain };
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 1, args, range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & range) {
        check_context(d1, range); check_context(d2, range);
        Z3_sort args[2] = { d1, d2 };
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 2, args, range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range) {
        check_context(d1, range); check_context(d2, range); check_context(d3, range);
        Z3_sort args[3] = { d1, d2, d3 };
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 3, args, range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range) {
        check_context(d1, range); check_context(d2, range); check_context(d3, range); check_context(d4, range);
        Z3_sort args[4] = { d1, d2, d3, d4 };
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 4, args, range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range) {
        check_context(d1, range); check_context(d2, range); check_context(d3, range); check_context(d4, range); check_context(d5, range);
        Z3_sort args[5] = { d1, d2, d3, d4, d5 };
        Z3_func_decl f = Z3_mk_func_decl(m_ctx, str_symbol(name), 5, args, range);
        check_error();
        return func_decl(*this, f);
    }

    inline func_decl context::recfun(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
        array<Z3_sort> args(arity);
        for (unsigned i = 0; i < arity; i++) {
            check_context(domain[i], range);
            args[i] = domain[i];
        }
        Z3_func_decl f = Z3_mk_rec_func_decl(m_ctx, name, arity, args.ptr(), range);
        check_error();
        return func_decl(*this, f);

    }

    inline func_decl context::recfun(char const * name, unsigned arity, sort const * domain, sort const & range) {
        return recfun(str_symbol(name), arity, domain, range);
    }

    inline func_decl context::recfun(char const * name, sort const& d1, sort const & range) {
        return recfun(str_symbol(name), 1, &d1, range);
    }

    inline func_decl context::recfun(char const * name, sort const& d1, sort const& d2, sort const & range) {
        sort dom[2] = { d1, d2 };
        return recfun(str_symbol(name), 2, dom, range);
    }

    inline void context::recdef(func_decl f, expr_vector const& args, expr const& body) {
        check_context(f, args); check_context(f, body);
        array<Z3_ast> vars(args);
        Z3_add_rec_def(f.ctx(), f, vars.size(), vars.ptr(), body);
    }

    inline expr context::constant(symbol const & name, sort const & s) {
        Z3_ast r = Z3_mk_const(m_ctx, name, s);
        check_error();
        return expr(*this, r);
    }
    inline expr context::constant(char const * name, sort const & s) { return constant(str_symbol(name), s); }
    inline expr context::bool_const(char const * name) { return constant(name, bool_sort()); }
    inline expr context::int_const(char const * name) { return constant(name, int_sort()); }
    inline expr context::real_const(char const * name) { return constant(name, real_sort()); }
    inline expr context::bv_const(char const * name, unsigned sz) { return constant(name, bv_sort(sz)); }
    inline expr context::fpa_const(char const * name, unsigned ebits, unsigned sbits) { return constant(name, fpa_sort(ebits, sbits)); }

    template<size_t precision>
    inline expr context::fpa_const(char const * name) { return constant(name, fpa_sort<precision>()); }

    inline expr context::bool_val(bool b) { return b ? expr(*this, Z3_mk_true(m_ctx)) : expr(*this, Z3_mk_false(m_ctx)); }

    inline expr context::int_val(int n) { Z3_ast r = Z3_mk_int(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
    inline expr context::int_val(unsigned n) { Z3_ast r = Z3_mk_unsigned_int(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
    inline expr context::int_val(int64_t n) { Z3_ast r = Z3_mk_int64(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
    inline expr context::int_val(uint64_t n) { Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }
    inline expr context::int_val(char const * n) { Z3_ast r = Z3_mk_numeral(m_ctx, n, int_sort()); check_error(); return expr(*this, r); }

    inline expr context::real_val(int n, int d) { Z3_ast r = Z3_mk_real(m_ctx, n, d); check_error(); return expr(*this, r); }
    inline expr context::real_val(int n) { Z3_ast r = Z3_mk_int(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
    inline expr context::real_val(unsigned n) { Z3_ast r = Z3_mk_unsigned_int(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
    inline expr context::real_val(int64_t n) { Z3_ast r = Z3_mk_int64(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
    inline expr context::real_val(uint64_t n) { Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }
    inline expr context::real_val(char const * n) { Z3_ast r = Z3_mk_numeral(m_ctx, n, real_sort()); check_error(); return expr(*this, r); }

    inline expr context::bv_val(int n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_int(m_ctx, n, s); check_error(); return expr(*this, r); }
    inline expr context::bv_val(unsigned n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_unsigned_int(m_ctx, n, s); check_error(); return expr(*this, r); }
    inline expr context::bv_val(int64_t n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_int64(m_ctx, n, s); check_error(); return expr(*this, r); }
    inline expr context::bv_val(uint64_t n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_unsigned_int64(m_ctx, n, s); check_error(); return expr(*this, r); }
    inline expr context::bv_val(char const * n, unsigned sz) { sort s = bv_sort(sz); Z3_ast r = Z3_mk_numeral(m_ctx, n, s); check_error(); return expr(*this, r); }
    inline expr context::bv_val(unsigned n, bool const* bits) {
        array<bool> _bits(n);
        for (unsigned i = 0; i < n; ++i) _bits[i] = bits[i] ? 1 : 0;
        Z3_ast r = Z3_mk_bv_numeral(m_ctx, n, _bits.ptr()); check_error(); return expr(*this, r);
    }

    inline expr context::fpa_val(double n) { sort s = fpa_sort<64>(); Z3_ast r = Z3_mk_fpa_numeral_double(m_ctx, n, s); check_error(); return expr(*this, r); }
    inline expr context::fpa_val(float n) { sort s = fpa_sort<32>(); Z3_ast r = Z3_mk_fpa_numeral_float(m_ctx, n, s); check_error(); return expr(*this, r); }

    inline expr context::string_val(char const* s) { Z3_ast r = Z3_mk_string(m_ctx, s); check_error(); return expr(*this, r); }
    inline expr context::string_val(std::string const& s) { Z3_ast r = Z3_mk_string(m_ctx, s.c_str()); check_error(); return expr(*this, r); }

    inline expr context::num_val(int n, sort const & s) { Z3_ast r = Z3_mk_int(m_ctx, n, s); check_error(); return expr(*this, r); }

    inline expr func_decl::operator()(unsigned n, expr const * args) const {
        array<Z3_ast> _args(n);
        for (unsigned i = 0; i < n; i++) {
            check_context(*this, args[i]);
            _args[i] = args[i];
        }
        Z3_ast r = Z3_mk_app(ctx(), *this, n, _args.ptr());
        check_error();
        return expr(ctx(), r);

    }
    inline expr func_decl::operator()(expr_vector const& args) const {
        array<Z3_ast> _args(args.size());
        for (unsigned i = 0; i < args.size(); i++) {
            check_context(*this, args[i]);
            _args[i] = args[i];
        }
        Z3_ast r = Z3_mk_app(ctx(), *this, args.size(), _args.ptr());
        check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()() const {
        Z3_ast r = Z3_mk_app(ctx(), *this, 0, 0);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(expr const & a) const {
        check_context(*this, a);
        Z3_ast args[1] = { a };
        Z3_ast r = Z3_mk_app(ctx(), *this, 1, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(int a) const {
        Z3_ast args[1] = { ctx().num_val(a, domain(0)) };
        Z3_ast r = Z3_mk_app(ctx(), *this, 1, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(expr const & a1, expr const & a2) const {
        check_context(*this, a1); check_context(*this, a2);
        Z3_ast args[2] = { a1, a2 };
        Z3_ast r = Z3_mk_app(ctx(), *this, 2, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(expr const & a1, int a2) const {
        check_context(*this, a1);
        Z3_ast args[2] = { a1, ctx().num_val(a2, domain(1)) };
        Z3_ast r = Z3_mk_app(ctx(), *this, 2, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(int a1, expr const & a2) const {
        check_context(*this, a2);
        Z3_ast args[2] = { ctx().num_val(a1, domain(0)), a2 };
        Z3_ast r = Z3_mk_app(ctx(), *this, 2, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3) const {
        check_context(*this, a1); check_context(*this, a2); check_context(*this, a3);
        Z3_ast args[3] = { a1, a2, a3 };
        Z3_ast r = Z3_mk_app(ctx(), *this, 3, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const {
        check_context(*this, a1); check_context(*this, a2); check_context(*this, a3); check_context(*this, a4);
        Z3_ast args[4] = { a1, a2, a3, a4 };
        Z3_ast r = Z3_mk_app(ctx(), *this, 4, args);
        ctx().check_error();
        return expr(ctx(), r);
    }
    inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const {
        check_context(*this, a1); check_context(*this, a2); check_context(*this, a3); check_context(*this, a4); check_context(*this, a5);
        Z3_ast args[5] = { a1, a2, a3, a4, a5 };
        Z3_ast r = Z3_mk_app(ctx(), *this, 5, args);
        ctx().check_error();
        return expr(ctx(), r);
    }

    inline expr to_real(expr const & a) { Z3_ast r = Z3_mk_int2real(a.ctx(), a); a.check_error(); return expr(a.ctx(), r); }

    inline func_decl function(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
        return range.ctx().function(name, arity, domain, range);
    }
    inline func_decl function(char const * name, unsigned arity, sort const * domain, sort const & range) {
        return range.ctx().function(name, arity, domain, range);
    }
    inline func_decl function(char const * name, sort const & domain, sort const & range) {
        return range.ctx().function(name, domain, range);
    }
    inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & range) {
        return range.ctx().function(name, d1, d2, range);
    }
    inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range) {
        return range.ctx().function(name, d1, d2, d3, range);
    }
    inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range) {
        return range.ctx().function(name, d1, d2, d3, d4, range);
    }
    inline func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range) {
        return range.ctx().function(name, d1, d2, d3, d4, d5, range);
    }
    inline func_decl function(char const* name, sort_vector const& domain, sort const& range) {
        return range.ctx().function(name, domain, range);
    }
    inline func_decl function(std::string const& name, sort_vector const& domain, sort const& range) {
        return range.ctx().function(name.c_str(), domain, range);
    }

    inline func_decl recfun(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
        return range.ctx().recfun(name, arity, domain, range);
    }
    inline func_decl recfun(char const * name, unsigned arity, sort const * domain, sort const & range) {
        return range.ctx().recfun(name, arity, domain, range);
    }
    inline func_decl recfun(char const * name, sort const& d1, sort const & range) {
        return range.ctx().recfun(name, d1, range);
    }
    inline func_decl recfun(char const * name, sort const& d1, sort const& d2, sort const & range) {
        return range.ctx().recfun(name, d1, d2, range);
    }

    inline expr select(expr const & a, expr const & i) {
        check_context(a, i);
        Z3_ast r = Z3_mk_select(a.ctx(), a, i);
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr select(expr const & a, int i) {
        return select(a, a.ctx().num_val(i, a.get_sort().array_domain()));
    }
    inline expr select(expr const & a, expr_vector const & i) {
        check_context(a, i);
        array<Z3_ast> idxs(i);
        Z3_ast r = Z3_mk_select_n(a.ctx(), a, idxs.size(), idxs.ptr());
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr store(expr const & a, expr const & i, expr const & v) {
        check_context(a, i); check_context(a, v);
        Z3_ast r = Z3_mk_store(a.ctx(), a, i, v);
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr store(expr const & a, int i, expr const & v) { return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), v); }
    inline expr store(expr const & a, expr i, int v) { return store(a, i, a.ctx().num_val(v, a.get_sort().array_range())); }
    inline expr store(expr const & a, int i, int v) {
        return store(a, a.ctx().num_val(i, a.get_sort().array_domain()), a.ctx().num_val(v, a.get_sort().array_range()));
    }
    inline expr store(expr const & a, expr_vector const & i, expr const & v) {
        check_context(a, i); check_context(a, v);
        array<Z3_ast> idxs(i);
        Z3_ast r = Z3_mk_store_n(a.ctx(), a, idxs.size(), idxs.ptr(), v);
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr as_array(func_decl & f) {
        Z3_ast r = Z3_mk_as_array(f.ctx(), f);
        f.check_error();
        return expr(f.ctx(), r);
    }

#define MK_EXPR1(_fn, _arg)                     \
    Z3_ast r = _fn(_arg.ctx(), _arg);           \
    _arg.check_error();                         \
    return expr(_arg.ctx(), r);

#define MK_EXPR2(_fn, _arg1, _arg2)             \
    check_context(_arg1, _arg2);                \
    Z3_ast r = _fn(_arg1.ctx(), _arg1, _arg2);  \
    _arg1.check_error();                        \
    return expr(_arg1.ctx(), r);

    inline expr const_array(sort const & d, expr const & v) {
        MK_EXPR2(Z3_mk_const_array, d, v);
    }

    inline expr empty_set(sort const& s) {
        MK_EXPR1(Z3_mk_empty_set, s);
    }

    inline expr full_set(sort const& s) {
        MK_EXPR1(Z3_mk_full_set, s);
    }

    inline expr set_add(expr const& s, expr const& e) {
        MK_EXPR2(Z3_mk_set_add, s, e);
    }

    inline expr set_del(expr const& s, expr const& e) {
        MK_EXPR2(Z3_mk_set_del, s, e);
    }

    inline expr set_union(expr const& a, expr const& b) {
        check_context(a, b);
        Z3_ast es[2] = { a, b };
        Z3_ast r = Z3_mk_set_union(a.ctx(), 2, es);
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr set_intersect(expr const& a, expr const& b) {
        check_context(a, b);
        Z3_ast es[2] = { a, b };
        Z3_ast r = Z3_mk_set_intersect(a.ctx(), 2, es);
        a.check_error();
        return expr(a.ctx(), r);
    }

    inline expr set_difference(expr const& a, expr const& b) {
        MK_EXPR2(Z3_mk_set_difference, a, b);
    }

    inline expr set_complement(expr const& a) {
        MK_EXPR1(Z3_mk_set_complement, a);
    }

    inline expr set_member(expr const& s, expr const& e) {
        MK_EXPR2(Z3_mk_set_member, s, e);
    }

    inline expr set_subset(expr const& a, expr const& b) {
        MK_EXPR2(Z3_mk_set_subset, a, b);
    }

    // sequence and regular expression operations.
    // union is +
    // concat is overloaded to handle sequences and regular expressions

    inline expr empty(sort const& s) {
        Z3_ast r = Z3_mk_seq_empty(s.ctx(), s);
        s.check_error();
        return expr(s.ctx(), r);
    }
    inline expr suffixof(expr const& a, expr const& b) {
        check_context(a, b);
        Z3_ast r = Z3_mk_seq_suffix(a.ctx(), a, b);
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr prefixof(expr const& a, expr const& b) {
        check_context(a, b);
        Z3_ast r = Z3_mk_seq_prefix(a.ctx(), a, b);
        a.check_error();
        return expr(a.ctx(), r);
    }
    inline expr indexof(expr const& s, expr const& substr, expr const& offset) {
        check_context(s, substr); check_context(s, offset);
        Z3_ast r = Z3_mk_seq_index(s.ctx(), s, substr, offset);
        s.check_error();
        return expr(s.ctx(), r);
    }
    inline expr to_re(expr const& s) {
        MK_EXPR1(Z3_mk_seq_to_re, s);
    }
    inline expr in_re(expr const& s, expr const& re) {
        MK_EXPR2(Z3_mk_seq_in_re, s, re);
    }
    inline expr plus(expr const& re) {
        MK_EXPR1(Z3_mk_re_plus, re);
    }
    inline expr option(expr const& re) {
        MK_EXPR1(Z3_mk_re_option, re);
    }
    inline expr star(expr const& re) {
        MK_EXPR1(Z3_mk_re_star, re);
    }
    inline expr re_empty(sort const& s) {
        Z3_ast r = Z3_mk_re_empty(s.ctx(), s);
        s.check_error();
        return expr(s.ctx(), r);
    }
    inline expr re_full(sort const& s) {
        Z3_ast r = Z3_mk_re_full(s.ctx(), s);
        s.check_error();
        return expr(s.ctx(), r);
    }
    inline expr re_intersect(expr_vector const& args) {
        assert(args.size() > 0);
        context& ctx = args[0].ctx();
        array<Z3_ast> _args(args);
        Z3_ast r = Z3_mk_re_intersect(ctx, _args.size(), _args.ptr());
        ctx.check_error();
        return expr(ctx, r);
    }
    inline expr re_complement(expr const& a) {
        MK_EXPR1(Z3_mk_re_complement, a);
    }
    inline expr range(expr const& lo, expr const& hi) {
        check_context(lo, hi);
        Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
        lo.check_error();
        return expr(lo.ctx(), r);
    }





    inline expr_vector context::parse_string(char const* s) {
        Z3_ast_vector r = Z3_parse_smtlib2_string(*this, s, 0, 0, 0, 0, 0, 0);
        check_error();
        return expr_vector(*this, r);

    }
    inline expr_vector context::parse_file(char const* s) {
        Z3_ast_vector r = Z3_parse_smtlib2_file(*this, s, 0, 0, 0, 0, 0, 0);
        check_error();
        return expr_vector(*this, r);
    }

    inline expr_vector context::parse_string(char const* s, sort_vector const& sorts, func_decl_vector const& decls) {
        array<Z3_symbol> sort_names(sorts.size());
        array<Z3_symbol> decl_names(decls.size());
        array<Z3_sort>   sorts1(sorts);
        array<Z3_func_decl> decls1(decls);
        for (unsigned i = 0; i < sorts.size(); ++i) {
            sort_names[i] = sorts[i].name();
        }
        for (unsigned i = 0; i < decls.size(); ++i) {
            decl_names[i] = decls[i].name();
        }

        Z3_ast_vector r = Z3_parse_smtlib2_string(*this, s, sorts.size(), sort_names.ptr(), sorts1.ptr(), decls.size(), decl_names.ptr(), decls1.ptr());
        check_error();
        return expr_vector(*this, r);
    }

    inline expr_vector context::parse_file(char const* s, sort_vector const& sorts, func_decl_vector const& decls) {
        array<Z3_symbol> sort_names(sorts.size());
        array<Z3_symbol> decl_names(decls.size());
        array<Z3_sort>   sorts1(sorts);
        array<Z3_func_decl> decls1(decls);
        for (unsigned i = 0; i < sorts.size(); ++i) {
            sort_names[i] = sorts[i].name();
        }
        for (unsigned i = 0; i < decls.size(); ++i) {
            decl_names[i] = decls[i].name();
        }
        Z3_ast_vector r = Z3_parse_smtlib2_file(*this, s, sorts.size(), sort_names.ptr(), sorts1.ptr(), decls.size(), decl_names.ptr(), decls1.ptr());
        check_error();
        return expr_vector(*this, r);
    }


    inline expr expr::substitute(expr_vector const& src, expr_vector const& dst) {
        assert(src.size() == dst.size());
        array<Z3_ast> _src(src.size());
        array<Z3_ast> _dst(dst.size());
        for (unsigned i = 0; i < src.size(); ++i) {
            _src[i] = src[i];
            _dst[i] = dst[i];
        }
        Z3_ast r = Z3_substitute(ctx(), m_ast, src.size(), _src.ptr(), _dst.ptr());
        check_error();
        return expr(ctx(), r);
    }

    inline expr expr::substitute(expr_vector const& dst) {
        array<Z3_ast> _dst(dst.size());
        for (unsigned i = 0; i < dst.size(); ++i) {
            _dst[i] = dst[i];
        }
        Z3_ast r = Z3_substitute_vars(ctx(), m_ast, dst.size(), _dst.ptr());
        check_error();
        return expr(ctx(), r);
    }



}

/*@}*/
/*@}*/
#undef Z3_THROW
#endif