1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
---
title: CARLA with AGL
---
# CARLA with AGL
![Playback Demo](images/AGL-Demo-Control-Panel/CARLA_CAN.gif)
As part of the [agl-demo-control-panel](https://gerrit.automotivelinux.org/gerrit/admin/repos/src/agl-demo-control-panel,general) application, `carla_to_CAN` and `record_playback.py` scripts provide a way to record CAN messages generated during a CARLA simulation. The `can_messages.txt` playback file generated, can then be used to to playback the messages via CLI or GUI.
![Playback Demo](images/AGL-Demo-Control-Panel/PlaybackDemo.gif)
## Setting up CARLA
You can follow the steps provided in the [CARLA documentation](https://carla.readthedocs.io/en/latest/start_quickstart/#carla-installation) for installing CARLA.
We recommend using the [CARLA V0.9.15](https://github.com/carla-simulator/carla/releases/tag/0.9.15), and using the supported Python version to run the `carla_to_CAN.py` script (Other releases have not been validated).
_Note_: Use a version of python compatible with CARLA to create the venv **(Python 3.9 tested with CARLA V0.9.15)**
1. Running the CARLA Server
```bash
# Move to the installation directory
$ cd /path/to/CARLA_<version>
# Start the CARLA Server
$ ./CarlaUE4.sh
# To run using minimum resources
$ ./CarlaUE4.sh -quality-level=Low -prefernvidia
```
You may also add the `-RenderOffScreen` flag to start CARLA in off-screen mode. Refer to the various [rendering options](https://carla.readthedocs.io/en/latest/adv_rendering_options/#no-rendering-mode) for more details.
Another way of running the CARLA server without a display is by using [CARLA in Docker](https://carla.readthedocs.io/en/latest/build_docker/).
2. Starting a Manual Simulation
```bash
# Navigate to directory containing the demo python scripts
#
$ cd /path/to/CARLA_<version>/PythonAPI/examples
```
Create a Python virtual environment and resolve dependencies
```bash
$ python3 -m venv carlavenv
$ source carlavenv/bin/activate
$ pip3 install -r requirements.txt
# Start the manual_control.py script
$ python3 manual_control.py
```
_Tip_: If facing issues running the `manual_control.py` script, you may try removing `numpy` version from `requirements.txt` and comment out line `385` from the script.
```python
.
.
.
class KeyboardControl(object):
"""Class that handles keyboard input."""
def __init__(self, world, start_in_autopilot):
self._autopilot_enabled = start_in_autopilot
self._ackermann_enabled = False
self._ackermann_reverse = 1
if isinstance(world.player, carla.Vehicle):
self._control = carla.VehicleControl()
self._ackermann_control = carla.VehicleAckermannControl()
self._lights = carla.VehicleLightState.NONE
# world.player.set_autopilot(self._autopilot_enabled) <<------ # disable autopilot
world.player.set_light_state(self._lights)
elif isinstance(world.player, carla.Walker):
.
.
.
```
## Converting CARLA data into CAN
The `carla_to_CAN.py` script can be run run alongside an existing CARLA simulation to fetch data and convert it into CAN messages based on the [agl-vcar.dbc](https://git.automotivelinux.org/src/agl-dbc/plain/agl-vcar.dbc) file.
While the `record_playback.py` script is responsible for recording amd playing back the CAN data for later sessions.
_NOTE_: This does **not** require the CARLA server to be running.
To access these scripts, clone the [AGL Demo Control Panel](https://gerrit.automotivelinux.org/gerrit/admin/repos/src/agl-demo-control-panel,general) project.
```bash
# Move to the Scripts directory
$ cd /path/to/agl-demo-control-panel/
# Fetch the agl-vcar.dbc file
$ wget -nd -c -P Scripts "https://git.automotivelinux.org/src/agl-dbc/plain/agl-vcar.dbc"
$ cd Scripts/
```
Create a Python (3.9) virtual environment and resolve dependencies.
```bash
$ python3 -m venv carlavenv
$ source carlavenv/bin/activate
$ pip3 install -r requirements.txt
# Optionally, set up the vcan0 interface
$ ./vcan.sh
```
1. Converting CARLA Data into CAN
```bash
$ python -u carla_to_CAN.py --interface vcan0
# OR
$ python -u carla_to_CAN.py --interface vcan0 --host <carla_server_ip> --port <carla_server_port>
```
2. Recording and Playback of CAN messages
```bash
$ python -u record_playback.py
# OR
$ python -u record_playback.py --interface (or) -i can0 # default vcan0
```
CLI Options:
- 1: Captures CAN messages and writes them into 'can_messages.txt'
- 2: Replays captured CAN messages
- 3: Exit
## CAN interface to AGL Demo Platform
To use the **`carla_to_CAN.py`** and **`record_playback.py`** scripts to send messages on the CAN interface, one can use the CAN bus or use CAN over Ethernet using **cannelloni**.
**cannelloni** is available in AGL, just add `IMAGE_INSTALL:append = " cannelloni"` to your `conf/local.conf`.
To set up the CAN interface between the Host system and the target machine(s) refer to the [cannelloni docs](https://github.com/mguentner/cannelloni).
|