summaryrefslogtreecommitdiffstats
path: root/README.md
blob: 7c9cc95eca29ee75909449ad88f25a9aac14a8ee (plain)
1
meta-agl.md
a id='n310' href='#n310'>310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
 * Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de>
 * Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
 * Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com>
 * Copyright (C) 2013 by Elias Oenal <EliasOenal@gmail.com>
 * Copyright (C) 2016, 2017 Konsulko Group
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Note that this version replaces the standalone main() with separate
 * init/start/stop API calls to allow building into another application.
 * Other than removing the separate controller thread and adding an output
 * function callback, other changes have been kept to a minimum to
 * potentially allow using other rtl_fm features by modifying rtl_fm_init.
 *
 * December 2016, Scott Murray <scott.murray@konsulko.com>
 */

/*
 * written because people could not do real time
 * FM demod on Atom hardware with GNU radio
 * based on rtl_sdr.c and rtl_tcp.c
 *
 * lots of locks, but that is okay
 * (no many-to-many locks)
 *
 * todo:
 *       sanity checks
 *       scale squelch to other input parameters
 *       test all the demodulations
 *       pad output on hop
 *       frequency ranges could be stored better
 *       scaled AM demod amplification
 *       auto-hop after time limit
 *       peak detector to tune onto stronger signals
 *       fifo for active hop frequency
 *       clips
 *       noise squelch
 *       merge stereo patch
 *       merge soft agc patch
 *       merge udp patch
 *       testmode to detect overruns
 *       watchdog to reset bad dongle
 *       fix oversampling
 */

#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include <pthread.h>

#include "rtl-sdr.h"
#include "rtl_fm.h"
#include "convenience/convenience.h"

#define DEFAULT_SAMPLE_RATE		24000
#define DEFAULT_BUF_LENGTH		RTL_FM_DEFAULT_BUF_LENGTH
#define MAXIMUM_OVERSAMPLE		RTL_FM_MAXIMUM_OVERSAMPLE
#define MAXIMUM_BUF_LENGTH		RTL_FM_MAXIMUM_BUF_LENGTH
#define AUTO_GAIN			-100
#define BUFFER_DUMP			4096

#define FREQUENCIES_LIMIT		1000

#define DEFAULT_SQUELCH_LEVEL		140
#define DEFAULT_CONSEQ_SQUELCH		10

static volatile int do_exit = 0;
static int lcm_post[17] = {1,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15,1};
static int ACTUAL_BUF_LENGTH;

static int *atan_lut = NULL;
static int atan_lut_size = 131072; /* 512 KB */
static int atan_lut_coef = 8;

struct dongle_state
{
	int      exit_flag;
	pthread_t thread;
	rtlsdr_dev_t *dev;
	int      dev_index;
	uint32_t freq;
	uint32_t rate;
	int      gain;
	uint16_t buf16[MAXIMUM_BUF_LENGTH];
	uint32_t buf_len;
	int      ppm_error;
	int      offset_tuning;
	int      direct_sampling;
	int      mute;
	struct demod_state *demod_target;
};

struct demod_state
{
	int      exit_flag;
	pthread_t thread;
	int16_t  lowpassed[MAXIMUM_BUF_LENGTH];
	int      lp_len;
	int16_t  lp_i_hist[10][6];
	int16_t  lp_q_hist[10][6];
	int16_t  result[MAXIMUM_BUF_LENGTH];
	int16_t  droop_i_hist[9];
	int16_t  droop_q_hist[9];
	int      result_len;
	int      rate_in;
	int      rate_out;
	int      rate_out2;
	int      now_r, now_j;
	int      pre_r, pre_j;
	int      prev_index;
	int      downsample;    /* min 1, max 256 */
	int      post_downsample;
	int      output_scale;
	int      squelch_level, conseq_squelch, squelch_hits, terminate_on_squelch;
	int      downsample_passes;
	int      comp_fir_size;
	int      custom_atan;
	int      deemph, deemph_a;
	int      now_lpr;
	int      prev_lpr_index;
	int      dc_block, dc_avg;
	void     (*mode_demod)(struct demod_state*);
	pthread_rwlock_t rw;
	pthread_cond_t ready;
	pthread_mutex_t ready_m;
	struct output_state *output_target;
};

struct output_state
{
	int      exit_flag;
	pthread_t thread;
	rtl_fm_output_fn_t output_fn;
	void     *output_fn_data;
	int16_t  result[MAXIMUM_BUF_LENGTH];
	int      result_len;
	int      rate;
	pthread_rwlock_t rw;
	pthread_cond_t ready;
	pthread_mutex_t ready_m;
};

struct controller_state
{
	int      exit_flag;
	pthread_t thread;
	uint32_t freqs[FREQUENCIES_LIMIT];
	int      freq_len;
	int      freq_now;
	int      edge;
	int      wb_mode;
	pthread_cond_t hop;
	pthread_mutex_t hop_m;

	void (*freq_callback)(uint32_t, void*);
	void *freq_callback_data;

	int scanning;
	int scan_direction;
	void (*scan_callback)(uint32_t, void*);
	void *scan_callback_data;
	uint32_t scan_step;
	uint32_t scan_min;
	uint32_t scan_max;
	int scan_squelch_level;
	int scan_squelch_count;
};

// multiple of these, eventually
struct dongle_state dongle;
struct demod_state demod;
struct output_state output;
struct controller_state controller;

#if 0
static void sighandler(int signum)
{
	fprintf(stderr, "Signal caught, exiting!\n");
	do_exit = 1;
	rtlsdr_cancel_async(dongle.dev);
}
#endif

/* more cond dumbness */
#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m)
#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m)

/* {length, coef, coef, coef}  and scaled by 2^15
   for now, only length 9, optimal way to get +85% bandwidth */
#define CIC_TABLE_MAX 10
int cic_9_tables[][10] = {
	{0,},
	{9, -156,  -97, 2798, -15489, 61019, -15489, 2798,  -97, -156},
	{9, -128, -568, 5593, -24125, 74126, -24125, 5593, -568, -128},
	{9, -129, -639, 6187, -26281, 77511, -26281, 6187, -639, -129},
	{9, -122, -612, 6082, -26353, 77818, -26353, 6082, -612, -122},
	{9, -120, -602, 6015, -26269, 77757, -26269, 6015, -602, -120},
	{9, -120, -582, 5951, -26128, 77542, -26128, 5951, -582, -120},
	{9, -119, -580, 5931, -26094, 77505, -26094, 5931, -580, -119},
	{9, -119, -578, 5921, -26077, 77484, -26077, 5921, -578, -119},
	{9, -119, -577, 5917, -26067, 77473, -26067, 5917, -577, -119},
	{9, -199, -362, 5303, -25505, 77489, -25505, 5303, -362, -199},
};

void rotate_90(unsigned char *buf, uint32_t len)
/* 90 rotation is 1+0j, 0+1j, -1+0j, 0-1j
   or [0, 1, -3, 2, -4, -5, 7, -6] */
{
	uint32_t i;
	unsigned char tmp;
	for (i=0; i<len; i+=8) {
		/* uint8_t negation = 255 - x */
		tmp = 255 - buf[i+3];
		buf[i+3] = buf[i+2];
		buf[i+2] = tmp;

		buf[i+4] = 255 - buf[i+4];
		buf[i+5] = 255 - buf[i+5];

		tmp = 255 - buf[i+6];
		buf[i+6] = buf[i+7];
		buf[i+7] = tmp;
	}
}

void low_pass(struct demod_state *d)
/* simple square window FIR */
{
	int i=0, i2=0;
	while (i < d->lp_len) {
		d->now_r += d->lowpassed[i];
		d->now_j += d->lowpassed[i+1];
		i += 2;
		d->prev_index++;
		if (d->prev_index < d->downsample) {
			continue;
		}
		d->lowpassed[i2]   = d->now_r; // * d->output_scale;
		d->lowpassed[i2+1] = d->now_j; // * d->output_scale;
		d->prev_index = 0;
		d->now_r = 0;
		d->now_j = 0;
		i2 += 2;
	}
	d->lp_len = i2;
}

int low_pass_simple(int16_t *signal2, int len, int step)
// no wrap around, length must be multiple of step
{
	int i, i2, sum;
	for(i=0; i < len; i+=step) {
		sum = 0;
		for(i2=0; i2<step; i2++) {
			sum += (int)signal2[i + i2];
		}
		//signal2[i/step] = (int16_t)(sum / step);
		signal2[i/step] = (int16_t)(sum);
	}
	signal2[i/step + 1] = signal2[i/step];
	return len / step;
}

void low_pass_real(struct demod_state *s)
/* simple square window FIR */
// add support for upsampling?
{
	int i=0, i2=0;
	int fast = (int)s->rate_out;
	int slow = s->rate_out2;
	while (i < s->result_len) {
		s->now_lpr += s->result[i];
		i++;
		s->prev_lpr_index += slow;
		if (s->prev_lpr_index < fast) {
			continue;
		}
		s->result[i2] = (int16_t)(s->now_lpr / (fast/slow));
		s->prev_lpr_index -= fast;
		s->now_lpr = 0;
		i2 += 1;
	}
	s->result_len = i2;
}

void fifth_order(int16_t *data, int length, int16_t *hist)
/* for half of interleaved data */
{
	int i;
	int16_t a, b, c, d, e, f;
	a = hist[1];
	b = hist[2];
	c = hist[3];
	d = hist[4];
	e = hist[5];
	f = data[0];
	/* a downsample should improve resolution, so don't fully shift */
	data[0] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
	for (i=4; i<length; i+=4) {
		a = c;
		b = d;
		c = e;
		d = f;
		e = data[i-2];
		f = data[i];
		data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
	}
	/* archive */
	hist[0] = a;
	hist[1] = b;
	hist[2] = c;
	hist[3] = d;
	hist[4] = e;
	hist[5] = f;
}

void generic_fir(int16_t *data, int length, int *fir, int16_t *hist)
/* Okay, not at all generic.  Assumes length 9, fix that eventually. */
{
	int d, temp, sum;
	for (d=0; d<length; d+=2) {
		temp = data[d];
		sum = 0;
		sum += (hist[0] + hist[8]) * fir[1];
		sum += (hist[1] + hist[7]) * fir[2];
		sum += (hist[2] + hist[6]) * fir[3];
		sum += (hist[3] + hist[5]) * fir[4];
		sum +=            hist[4]  * fir[5];
		data[d] = sum >> 15 ;
		hist[0] = hist[1];
		hist[1] = hist[2];
		hist[2] = hist[3];
		hist[3] = hist[4];
		hist[4] = hist[5];
		hist[5] = hist[6];
		hist[6] = hist[7];
		hist[7] = hist[8];
		hist[8] = temp;
	}
}

/* define our own complex math ops
   because ARMv5 has no hardware float */

void multiply(int ar, int aj, int br, int bj, int *cr, int *cj)
{
	*cr = ar*br - aj*bj;
	*cj = aj*br + ar*bj;
}

int polar_discriminant(int ar, int aj, int br, int bj)
{
	int cr, cj;
	double angle;
	multiply(ar, aj, br, -bj, &cr, &cj);
	angle = atan2((double)cj, (double)cr);
	return (int)(angle / 3.14159 * (1<<14));
}

int fast_atan2(int y, int x)
/* pre scaled for int16 */
{
	int yabs, angle;
	int pi4=(1<<12), pi34=3*(1<<12);  // note pi = 1<<14
	if (x==0 && y==0) {
		return 0;
	}
	yabs = y;
	if (yabs < 0) {
		yabs = -yabs;
	}
	if (x >= 0) {
		angle = pi4  - pi4 * (x-yabs) / (x+yabs);
	} else {
		angle = pi34 - pi4 * (x+yabs) / (yabs-x);
	}
	if (y < 0) {
		return -angle;
	}
	return angle;
}

int polar_disc_fast(int ar, int aj, int br, int bj)
{
	int cr, cj;
	multiply(ar, aj, br, -bj, &cr, &cj);
	return fast_atan2(cj, cr);
}

int atan_lut_init(void)
{
	int i = 0;

	atan_lut = malloc(atan_lut_size * sizeof(int));

	for (i = 0; i < atan_lut_size; i++) {
		atan_lut[i] = (int) (atan((double) i / (1<<atan_lut_coef)) / 3.14159 * (1<<14));
	}

	return 0;
}

int polar_disc_lut(int ar, int aj, int br, int bj)
{
	int cr, cj, x, x_abs;

	multiply(ar, aj, br, -bj, &cr, &cj);

	/* special cases */
	if (cr == 0 || cj == 0) {
		if (cr == 0 && cj == 0)
			{return 0;}
		if (cr == 0 && cj > 0)
			{return 1 << 13;}
		if (cr == 0 && cj < 0)
			{return -(1 << 13);}
		if (cj == 0 && cr > 0)
			{return 0;}
		if (cj == 0 && cr < 0)
			{return 1 << 14;}
	}

	/* real range -32768 - 32768 use 64x range -> absolute maximum: 2097152 */
	x = (cj << atan_lut_coef) / cr;
	x_abs = abs(x);

	if (x_abs >= atan_lut_size) {
		/* we can use linear range, but it is not necessary */
		return (cj > 0) ? 1<<13 : -1<<13;
	}

	if (x > 0) {
		return (cj > 0) ? atan_lut[x] : atan_lut[x] - (1<<14);
	} else {
		return (cj > 0) ? (1<<14) - atan_lut[-x] : -atan_lut[-x];
	}

	return 0;
}

void fm_demod(struct demod_state *fm)
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	pcm = polar_discriminant(lp[0], lp[1],
		fm->pre_r, fm->pre_j);
	fm->result[0] = (int16_t)pcm;
	for (i = 2; i < (fm->lp_len-1); i += 2) {
		switch (fm->custom_atan) {
		case 0:
			pcm = polar_discriminant(lp[i], lp[i+1],
				lp[i-2], lp[i-1]);
			break;
		case 1:
			pcm = polar_disc_fast(lp[i], lp[i+1],
				lp[i-2], lp[i-1]);
			break;
		case 2:
			pcm = polar_disc_lut(lp[i], lp[i+1],
				lp[i-2], lp[i-1]);
			break;
		}
		fm->result[i/2] = (int16_t)pcm;
	}
	fm->pre_r = lp[fm->lp_len - 2];
	fm->pre_j = lp[fm->lp_len - 1];
	fm->result_len = fm->lp_len/2;
}

void am_demod(struct demod_state *fm)
// todo, fix this extreme laziness
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	int16_t *r  = fm->result;
	for (i = 0; i < fm->lp_len; i += 2) {
		// hypot uses floats but won't overflow
		//r[i/2] = (int16_t)hypot(lp[i], lp[i+1]);
		pcm = lp[i] * lp[i];
		pcm += lp[i+1] * lp[i+1];
		r[i/2] = (int16_t)sqrt(pcm) * fm->output_scale;
	}
	fm->result_len = fm->lp_len/2;
	// lowpass? (3khz)  highpass?  (dc)
}

void usb_demod(struct demod_state *fm)
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	int16_t *r  = fm->result;
	for (i = 0; i < fm->lp_len; i += 2) {
		pcm = lp[i] + lp[i+1];
		r[i/2] = (int16_t)pcm * fm->output_scale;
	}
	fm->result_len = fm->lp_len/2;
}

void lsb_demod(struct demod_state *fm)
{
	int i, pcm;
	int16_t *lp = fm->lowpassed;
	int16_t *r  = fm->result;
	for (i = 0; i < fm->lp_len; i += 2) {
		pcm = lp[i] - lp[i+1];
		r[i/2] = (int16_t)pcm * fm->output_scale;
	}
	fm->result_len = fm->lp_len/2;
}

void raw_demod(struct demod_state *fm)
{
	int i;
	for (i = 0; i < fm->lp_len; i++) {
		fm->result[i] = (int16_t)fm->lowpassed[i];
	}
	fm->result_len = fm->lp_len;
}

void deemph_filter(struct demod_state *fm)
{
	static int avg;  // cheating...
	int i, d;
	// de-emph IIR
	// avg = avg * (1 - alpha) + sample * alpha;
	for (i = 0; i < fm->result_len; i++) {
		d = fm->result[i] - avg;
		if (d > 0) {
			avg += (d + fm->deemph_a/2) / fm->deemph_a;
		} else {
			avg += (d - fm->deemph_a/2) / fm->deemph_a;
		}
		fm->result[i] = (int16_t)avg;
	}
}

void dc_block_filter(struct demod_state *fm)
{
	int i, avg;
	int64_t sum = 0;
	for (i=0; i < fm->result_len; i++) {
		sum += fm->result[i];
	}
	avg = sum / fm->result_len;
	avg = (avg + fm->dc_avg * 9) / 10;
	for (i=0; i < fm->result_len; i++) {
		fm->result[i] -= avg;
	}
	fm->dc_avg = avg;
}

int mad(int16_t *samples, int len, int step)
/* mean average deviation */
{
	int i=0, sum=0, ave=0;
	if (len == 0)
		{return 0;}
	for (i=0; i<len; i+=step) {
		sum += samples[i];
	}
	ave = sum / (len * step);
	sum = 0;
	for (i=0; i<len; i+=step) {
		sum += abs(samples[i] - ave);
	}
	return sum / (len / step);
}

int rms(int16_t *samples, int len, int step)
/* largely lifted from rtl_power */
{
	int i;
	long p, t, s;
	double dc, err;

	p = t = 0L;
	for (i=0; i<len; i+=step) {
		s = (long)samples[i];
		t += s;
		p += s * s;
	}
	/* correct for dc offset in squares */
	dc = (double)(t*step) / (double)len;
	err = t * 2 * dc - dc * dc * len;

	return (int)sqrt((p-err) / len);
}

void arbitrary_upsample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* linear interpolation, len1 < len2 */
{
	int i = 1;
	int j = 0;
	int tick = 0;
	double frac;  // use integers...
	while (j < len2) {
		frac = (double)tick / (double)len2;
		buf2[j] = (int16_t)(buf1[i-1]*(1-frac) + buf1[i]*frac);
		j++;
		tick += len1;
		if (tick > len2) {
			tick -= len2;
			i++;
		}
		if (i >= len1) {
			i = len1 - 1;
			tick = len2;
		}
	}
}

void arbitrary_downsample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* fractional boxcar lowpass, len1 > len2 */
{
	int i = 1;
	int j = 0;
	int tick = 0;
	double remainder = 0;
	double frac;  // use integers...
	buf2[0] = 0;
	while (j < len2) {
		frac = 1.0;
		if ((tick + len2) > len1) {
			frac = (double)(len1 - tick) / (double)len2;}
		buf2[j] += (int16_t)((double)buf1[i] * frac + remainder);
		remainder = (double)buf1[i] * (1.0-frac);
		tick += len2;
		i++;
		if (tick > len1) {
			j++;
			buf2[j] = 0;
			tick -= len1;
		}
		if (i >= len1) {
			i = len1 - 1;
			tick = len1;
		}
	}
	for (j=0; j<len2; j++) {
		buf2[j] = buf2[j] * len2 / len1;}
}

void arbitrary_resample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* up to you to calculate lengths and make sure it does not go OOB
 * okay for buffers to overlap, if you are downsampling */
{
	if (len1 < len2) {
		arbitrary_upsample(buf1, buf2, len1, len2);
	} else {
		arbitrary_downsample(buf1, buf2, len1, len2);
	}
}

void full_demod(struct demod_state *d)
{
	int i, ds_p;
	int sr = 0;
	ds_p = d->downsample_passes;
	if (ds_p) {
		for (i=0; i < ds_p; i++) {
			fifth_order(d->lowpassed,   (d->lp_len >> i), d->lp_i_hist[i]);
			fifth_order(d->lowpassed+1, (d->lp_len >> i) - 1, d->lp_q_hist[i]);
		}
		d->lp_len = d->lp_len >> ds_p;
		/* droop compensation */
		if (d->comp_fir_size == 9 && ds_p <= CIC_TABLE_MAX) {
			generic_fir(d->lowpassed, d->lp_len,
				cic_9_tables[ds_p], d->droop_i_hist);
			generic_fir(d->lowpassed+1, d->lp_len-1,
				cic_9_tables[ds_p], d->droop_q_hist);
		}
	} else {
		low_pass(d);
	}
	/* power squelch */
	if (d->squelch_level) {
		sr = rms(d->lowpassed, d->lp_len, 1);
		if (sr < d->squelch_level) {
			d->squelch_hits++;
			for (i=0; i< d->lp_len; i++) {
				d->lowpassed[i] = 0;
			}
		} else {
			d->squelch_hits = 0;
		}
	}
	d->mode_demod(d);  /* lowpassed -> result */
	if (d->mode_demod == &raw_demod) {
		return;
	}
	/* todo, fm noise squelch */
	// use nicer filter here too?
	if (d->post_downsample > 1) {
		d->result_len = low_pass_simple(d->result, d->result_len, d->post_downsample);}
	if (d->deemph) {
		deemph_filter(d);}
	if (d->dc_block) {
		dc_block_filter(d);}
	if (d->rate_out2 > 0) {
		low_pass_real(d);
		//arbitrary_resample(d->result, d->result, d->result_len, d->result_len * d->rate_out2 / d->rate_out);
	}
}

static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
{
	int i;
	struct dongle_state *s = ctx;
	struct demod_state *d = s->demod_target;

	if (do_exit) {
		return;}
	if (!ctx) {
		return;}
	if (s->mute) {
		for (i=0; i<s->mute; i++) {
			buf[i] = 127;}
		s->mute = 0;
	}
	if (!s->offset_tuning) {
		rotate_90(buf, len);}
	for (i=0; i<(int)len; i++) {
		s->buf16[i] = (int16_t)buf[i] - 127;}
	pthread_rwlock_wrlock(&d->rw);
	memcpy(d->lowpassed, s->buf16, 2*len);
	d->lp_len = len;
	pthread_rwlock_unlock(&d->rw);
	safe_cond_signal(&d->ready, &d->ready_m);
}

static void *dongle_thread_fn(void *arg)
{
	struct dongle_state *s = arg;
	fprintf(stderr, "dongle_thread_fn running\n");
	rtlsdr_read_async(s->dev, rtlsdr_callback, s, 0, s->buf_len);
	fprintf(stderr, "dongle_thread_fn exited!\n");
	return 0;
}

static void rtl_fm_scan_callback(void)
{
	struct controller_state *s = &controller;
	uint32_t frequency = rtl_fm_get_freq();

	if(!s->scanning)
		return;

	if(!s->scan_direction) {
		frequency += s->scan_step;
		if(frequency > s->scan_max)
			frequency = s->scan_min;
	} else {
		frequency -= s->scan_step;
		if(frequency < s->scan_min)
			frequency = s->scan_max;
	}

	rtl_fm_set_freq(frequency);
}

static void rtl_fm_scan_end_callback(void)
{
	struct controller_state *s = &controller;

	if(!s->scanning)
		return;

	rtl_fm_scan_stop();

	if(s->scan_callback)
		s->scan_callback(rtl_fm_get_freq(), s->scan_callback_data);
}

static void *demod_thread_fn(void *arg)
{
	struct demod_state *d = arg;
	struct output_state *o = d->output_target;
	fprintf(stderr, "demod_thread_fn running\n");
	while (!do_exit) {
		safe_cond_wait(&d->ready, &d->ready_m);
		pthread_rwlock_wrlock(&d->rw);
		full_demod(d);
		pthread_rwlock_unlock(&d->rw);
		if (d->exit_flag) {
			do_exit = 1;
		}
		if (d->squelch_level) {
			if(d->squelch_hits > d->conseq_squelch) {
				d->squelch_hits = d->conseq_squelch + 1;  /* hair trigger */
				//safe_cond_signal(&controller.hop, &controller.hop_m);
				rtl_fm_scan_callback();
				continue;
			} else if(!d->squelch_hits) {
				rtl_fm_scan_end_callback();
			}
		}
		pthread_rwlock_wrlock(&o->rw);
		memcpy(o->result, d->result, 2*d->result_len);
		o->result_len = d->result_len;
		pthread_rwlock_unlock(&o->rw);
		safe_cond_signal(&o->ready, &o->ready_m);
	}
	fprintf(stderr, "demod_thread_fn exited!\n");
	return 0;
}

static void *output_thread_fn(void *arg)
{
	struct output_state *s = arg;
	fprintf(stderr, "output_thread_fn running\n");
	while (!do_exit) {
		// use timedwait and pad out under runs
		safe_cond_wait(&s->ready, &s->ready_m);
		pthread_rwlock_rdlock(&s->rw);
		if(s->output_fn) {
			s->output_fn(s->result, s->result_len, s->output_fn_data);
		}
		pthread_rwlock_unlock(&s->rw);
	}
	fprintf(stderr, "output_thread_fn exited!\n");
	return 0;
}

static void optimal_settings(int freq, int rate)
{
	// giant ball of hacks
	// seems unable to do a single pass, 2:1
	int capture_freq, capture_rate;
	struct dongle_state *d = &dongle;
	struct demod_state *dm = &demod;
	struct controller_state *cs = &controller;
	dm->downsample = (1000000 / dm->rate_in) + 1;
	if (dm->downsample_passes) {
		dm->downsample_passes = (int)log2(dm->downsample) + 1;
		dm->downsample = 1 << dm->downsample_passes;
	}
	capture_freq = freq;
	capture_rate = dm->downsample * dm->rate_in;
	if (!d->offset_tuning) {
		capture_freq = freq + capture_rate/4;}
	capture_freq += cs->edge * dm->rate_in / 2;
	dm->output_scale = (1<<15) / (128 * dm->downsample);
	if (dm->output_scale < 1) {
		dm->output_scale = 1;}
	if (dm->mode_demod == &fm_demod) {
		dm->output_scale = 1;}
	d->freq = (uint32_t)capture_freq;
	d->rate = (uint32_t)capture_rate;
}


void frequency_range(struct controller_state *s, char *arg)
{
	char *start, *stop, *step;
	int i;
	start = arg;
	stop = strchr(start, ':') + 1;
	stop[-1] = '\0';
	step = strchr(stop, ':') + 1;
	step[-1] = '\0';
	for(i=(int)atofs(start); i<=(int)atofs(stop); i+=(int)atofs(step))
	{
		s->freqs[s->freq_len] = (uint32_t)i;
		s->freq_len++;
		if (s->freq_len >= FREQUENCIES_LIMIT) {
			break;}
	}
	stop[-1] = ':';
	step[-1] = ':';
}

void dongle_init(struct dongle_state *s)
{
	s->rate = DEFAULT_SAMPLE_RATE;
	s->gain = AUTO_GAIN; // tenths of a dB
	s->mute = 0;
	s->direct_sampling = 0;
	s->offset_tuning = 0;
	s->demod_target = &demod;
}

void demod_init(struct demod_state *s)
{
	s->rate_in = DEFAULT_SAMPLE_RATE;
	s->rate_out = DEFAULT_SAMPLE_RATE;
	s->squelch_level = 0;
	s->conseq_squelch = DEFAULT_CONSEQ_SQUELCH;
	s->terminate_on_squelch = 0;
	s->squelch_hits = DEFAULT_CONSEQ_SQUELCH + 1;
	s->downsample_passes = 0;
	s->comp_fir_size = 0;
	s->prev_index = 0;
	s->post_downsample = 1;  // once this works, default = 4
	s->custom_atan = 0;
	s->deemph = 0;
	s->rate_out2 = -1;  // flag for disabled
	s->mode_demod = &fm_demod;
	s->pre_j = s->pre_r = s->now_r = s->now_j = 0;
	s->prev_lpr_index = 0;
	s->deemph_a = 0;
	s->now_lpr = 0;
	s->dc_block = 0;
	s->dc_avg = 0;
	pthread_rwlock_init(&s->rw, NULL);
	pthread_cond_init(&s->ready, NULL);
	pthread_mutex_init(&s->ready_m, NULL);
	s->output_target = &output;
}

void demod_cleanup(struct demod_state *s)
{
	pthread_rwlock_destroy(&s->rw);
	pthread_cond_destroy(&s->ready);
	pthread_mutex_destroy(&s->ready_m);
}

void output_init(struct output_state *s)
{
	s->rate = DEFAULT_SAMPLE_RATE;
	s->output_fn = NULL;
	s->output_fn_data = NULL;
	pthread_rwlock_init(&s->rw, NULL);
	pthread_cond_init(&s->ready, NULL);
	pthread_mutex_init(&s->ready_m, NULL);
}

void output_cleanup(struct output_state *s)
{
	pthread_rwlock_destroy(&s->rw);
	pthread_cond_destroy(&s->ready);
	pthread_mutex_destroy(&s->ready_m);
}

void controller_init(struct controller_state *s)
{
	s->freqs[0] = 100000000;
	s->freq_len = 0;
	s->edge = 0;
	s->wb_mode = 0;
	pthread_cond_init(&s->hop, NULL);
	pthread_mutex_init(&s->hop_m, NULL);
}

void controller_cleanup(struct controller_state *s)
{
	pthread_cond_destroy(&s->hop);
	pthread_mutex_destroy(&s->hop_m);
}

void sanity_checks(void)
{
	if (controller.freq_len == 0) {
		fprintf(stderr, "Please specify a frequency.\n");
		exit(1);
	}

	if (controller.freq_len >= FREQUENCIES_LIMIT) {
		fprintf(stderr, "Too many channels, maximum %i.\n", FREQUENCIES_LIMIT);
		exit(1);
	}

	if (controller.freq_len > 1 && demod.squelch_level == 0) {
		fprintf(stderr, "Please specify a squelch level.  Required for scanning multiple frequencies.\n");
		exit(1);
	}

}

int rtl_fm_init(uint32_t freq,
		uint32_t sample_rate,
		uint32_t resample_rate,
		rtl_fm_output_fn_t output_fn,
		void *output_fn_data)
{
	int r = 0;

	dongle_init(&dongle);
	demod_init(&demod);
	output_init(&output);
	controller_init(&controller);

	/*
	 * Simulate the effects of command line arguments:
	 *
	 * -W wbfm -s <sample rate> -r <resample rate>
	 */

	/* Set initial frequency */
	controller.freqs[0] = freq;
	controller.freq_len++;

	/* Set mode to wbfm */
	controller.wb_mode = 1;
	demod.mode_demod = &fm_demod;
	demod.rate_in = 170000;
	demod.rate_out = 170000;
	demod.rate_out2 = 32000;
	demod.custom_atan = 1;
	//demod.post_downsample = 4;
	demod.deemph = 1;
	controller.scan_squelch_count = DEFAULT_CONSEQ_SQUELCH;
	controller.scan_squelch_level = DEFAULT_SQUELCH_LEVEL;
	demod.squelch_level = 0;

	/* Adjust frequency for wb mode */
	controller.freqs[0] += 16000;

	/* Set sample rate */
	demod.rate_in = sample_rate;
	demod.rate_out = sample_rate;

	/* Set resample rate */
	output.rate = (int) resample_rate;
	demod.rate_out2 = (int) resample_rate;

	/* Set output function pointer */
	if(output_fn) {
		output.output_fn = output_fn;
		output.output_fn_data = output_fn_data;
	}

	/* quadruple sample_rate to limit to Δθ to ±π/2 */
	demod.rate_in *= demod.post_downsample;

	if (!output.rate) {
		output.rate = demod.rate_out;
	}

	sanity_checks();

	if (controller.freq_len > 1) {
		demod.terminate_on_squelch = 0;
	}

	ACTUAL_BUF_LENGTH = lcm_post[demod.post_downsample] * DEFAULT_BUF_LENGTH;

	dongle.dev_index = verbose_device_search("0");
	if (dongle.dev_index < 0) {
		return -1;
	}

	r = rtlsdr_open(&dongle.dev, (uint32_t)dongle.dev_index);
	if (r < 0) {
		fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dongle.dev_index);
		return r;
	}

	if (demod.deemph) {
		demod.deemph_a = (int)round(1.0/((1.0-exp(-1.0/(demod.rate_out * 75e-6)))));
	}

	/* Set the tuner gain */
	if (dongle.gain == AUTO_GAIN) {
		verbose_auto_gain(dongle.dev);
	} else {
		dongle.gain = nearest_gain(dongle.dev, dongle.gain);
		verbose_gain_set(dongle.dev, dongle.gain);
	}

	verbose_ppm_set(dongle.dev, dongle.ppm_error);

	//r = rtlsdr_set_testmode(dongle.dev, 1);

	return r;
}

void rtl_fm_start(void)
{
	struct controller_state *s = &controller;

	/*
	 * A bunch of the following is pulled from the controller_thread_fn,
	 * which has been removed.
	 */

	/* Reset endpoint before we start reading from it (mandatory) */
	verbose_reset_buffer(dongle.dev);

	/* set up primary channel */
	optimal_settings(s->freqs[0], demod.rate_in);
	if (dongle.direct_sampling) {
		verbose_direct_sampling(dongle.dev, 1);}
	if (dongle.offset_tuning) {
		verbose_offset_tuning(dongle.dev);}

	/* Set the frequency */
	verbose_set_frequency(dongle.dev, dongle.freq);
	fprintf(stderr, "Oversampling input by: %ix.\n", demod.downsample);
	fprintf(stderr, "Oversampling output by: %ix.\n", demod.post_downsample);
	fprintf(stderr, "Buffer size: %0.2fms\n",
		1000 * 0.5 * (float)ACTUAL_BUF_LENGTH / (float)dongle.rate);

	/* Set the sample rate */
	verbose_set_sample_rate(dongle.dev, dongle.rate);
	fprintf(stderr, "Output at %u Hz.\n", demod.rate_in/demod.post_downsample);
	usleep(100000);

	rtl_fm_scan_stop();

	do_exit = 0;
	pthread_create(&output.thread, NULL, output_thread_fn, (void *)(&output));
	pthread_create(&demod.thread, NULL, demod_thread_fn, (void *)(&demod));
	pthread_create(&dongle.thread, NULL, dongle_thread_fn, (void *)(&dongle));
}

void rtl_fm_set_freq(uint32_t freq)
{
	struct controller_state *s = &controller;

	if(s->freqs[0] == freq)
		return;

	s->freqs[0] = freq;
	s->freq_len = 1;

	if (s->wb_mode) {
		s->freqs[0] += 16000;
	}

	optimal_settings(s->freqs[0], demod.rate_in);
	if (dongle.offset_tuning) {
		verbose_offset_tuning(dongle.dev);
	}
	rtlsdr_set_center_freq(dongle.dev, dongle.freq);

	// It does not look like refreshing the sample rate is desirable
	// (e.g. the scanning code in the removed controller thread function
	// did not do it), and behavior seemed a bit less robust with it
	// present.  However, I am leaving this here as a reminder to revisit
	// via some more testing.
	//rtlsdr_set_sample_rate(dongle.dev, dongle.rate);

	// This triggers a mute during the frequency change
	dongle.mute = BUFFER_DUMP;

	if(s->freq_callback)
		s->freq_callback(freq, s->freq_callback_data);
}

void rtl_fm_set_freq_callback(void (*callback)(uint32_t, void *),
			      void *data)
{
	struct controller_state *s = &controller;

	s->freq_callback = callback;
	s->freq_callback_data = data;
}

uint32_t rtl_fm_get_freq(void)
{
	struct controller_state *s = &controller;
	uint32_t frequency = s->freqs[0];

	if (s->wb_mode)
		frequency -= 16000;

	return frequency;
}

void rtl_fm_stop(void)
{
	rtl_fm_scan_stop();

	rtlsdr_cancel_async(dongle.dev);
	do_exit = 1;
	pthread_join(dongle.thread, NULL);
	safe_cond_signal(&demod.ready, &demod.ready_m);
	pthread_join(demod.thread, NULL);
	safe_cond_signal(&output.ready, &output.ready_m);
	pthread_join(output.thread, NULL);
}

void rtl_fm_scan_start(int direction,
		       void (*callback)(uint32_t, void *),
		       void *data,
		       uint32_t step,
		       uint32_t min,
		       uint32_t max)
{
	struct controller_state *s = &controller;
	struct demod_state *dm = &demod;
	uint32_t frequency = rtl_fm_get_freq();

	if(s->scanning && s->scan_direction == direction)
		return;

	s->scanning = 1;
	s->scan_direction = direction;
	s->scan_callback = callback;
	s->scan_callback_data = data;
	s->scan_step = step;
	s->scan_min = min;
	s->scan_max = max;

	/* Start scan by stepping in the desired direction */
	if(!direction) {
		frequency += s->scan_step;
		if(frequency > s->scan_max)
			frequency = s->scan_min;
	} else {
		frequency -= s->scan_step;
		if(frequency < s->scan_min)
			frequency = s->scan_max;
	}

	rtl_fm_set_freq(frequency);

	dm->conseq_squelch = s->scan_squelch_count;
	dm->squelch_hits = s->scan_squelch_count + 1;
	dm->squelch_level = s->scan_squelch_level;
}

void rtl_fm_scan_stop(void)
{
	struct controller_state *s = &controller;
	struct demod_state *dm = &demod;

	s->scanning = 0;

	dm->squelch_hits = s->scan_squelch_count + 1;
	dm->squelch_level = 0;
}

void rtl_fm_scan_set_squelch_level(int level)
{
	struct controller_state *s = &controller;

	s->scan_squelch_level = level;
}

void rtl_fm_scan_set_squelch_limit(int count)
{
	struct controller_state *s = &controller;

	s->scan_squelch_count = count;
}

void rtl_fm_cleanup(void)
{
	//dongle_cleanup(&dongle);
	demod_cleanup(&demod);
	output_cleanup(&output);
	controller_cleanup(&controller);

	rtlsdr_close(dongle.dev);
}

// vim: tabstop=8:softtabstop=8:shiftwidth=8:noexpandtab