summaryrefslogtreecommitdiffstats
path: root/README.md
blob: 042f4b180c2890a05ab0c6a2ab22909424e906af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# **README.md for the 'meta-agl' layer**

**See README-AGL.md for general information about Automotive Grade Linux.**

## meta-agl, the core layer for Automotive Grade Linux Distribution

AGL is creating an automotive specific Linux distribution that unifies
the software that has been written in a number of places already,
such as GENIVI and Tizen IVI.

The layer 'meta-agl' provides a minimal set of software
to boot system of AGL Distribution. 'meta-agl' is the minimal
core which is used build AGL profiles on top of it.

Especially there is no reference UI included which is part of 'meta-agl-demo'.

Additional components like the security framework are part of 'meta-agl-extra'.

The AGL community appreciates feedback, ideas, suggestion, bugs and
documentation just as much as code. Please join the irc conversation
at the #automotive channel on irc.freenode.net and our mailing list.

For infomation for subscribing to the mailing list
    [automotive-discussions](http://lists.linuxfoundation.org/mailman/listinfo/automotive-discussions)
For information about AGL Distribution, see the
    [AGL Distribution](https://wiki.automotivelinux.org/agl-distro)
For information abount Getting started with AGL
    [here](https://wiki.automotivelinux.org/start/getting-started)
For information about contributing to the AGL Distro
    [here](https://wiki.automotivelinux.org/agl-distro/contributing)

## Quick start guide

See README-AGL.md

## 'meta-agl' Layer Dependencies

* poky
  > URI: git://git.yoctoproject.org/poky
  > branch         : jethro
  > tested revision: 40376446904ae3529be41737fed9a0b650ed167d

* meta-openembedded
  > URI: git://git.openembedded.org/meta-openembedded
  > layer          : meta-openembedded
  > branch         : jethro
  > tested revision: 8ab04afbffb4bc5184cfe0655049de6f44269990

Specifically out of meta-openembedded these sub-layers are used:

* meta-openembedded/meta-oe
* meta-openembedded/meta-multimedia
* meta-openembedded/meta-networking
* meta-openembedded/meta-python

## Layers

There are 5 layers in top-level `meta-agl`.

* `meta-agl/meta-ivi-common`\
  `meta-ivi-common` is a layer which contains common packages to AGL
  Distribution and other platforms for In-Vehicle Infotainment system.
* `meta-agl/meta-agl`\
  `meta-agl` is a layer which contains AGL common and middleware packages.
* `meta-agl/meta-agl-bsp`\
  `meta-agl-bsp` is a layer which contains required packages to boot AGL
  distribution on an emulated machine(QEMU).
* `meta-agl/meta-netboot`\
  `meta-netboot` contains the netboot initrd support recipes. This is needed
  in case of booting over the network as NFS does not support the securitylabels.

## Packagegroups

AGL package group design:

* packagegroup-agl-image-minimal

        packagegroup-agl-core-automotive.bb
        packagegroup-agl-core-connectivity.bb
        packagegroup-agl-core-graphics.bb
        packagegroup-agl-core-kernel.bb
        packagegroup-agl-core-multimedia.bb
        packagegroup-agl-core-navi-lbs.bb
        packagegroup-agl-core-os-commonlibs.bb
        packagegroup-agl-core-security.bb
        packagegroup-agl-core-speech-services.bb

These are for making image ``agl-image-minimal`` which is small image just
capable of allowing a device to boot.

Subsystem should maintain packagegroup-agl-core-[subsystem].bb which should
hold sufficient packages to build ``agl-image-minimal``.

* packagegroup-agl-image-ivi

        packagegroup-agl-ivi-automotive.bb
        packagegroup-agl-ivi-connectivity.bb
        packagegroup-agl-ivi-graphics.bb
        packagegroup-agl-ivi-kernel.bb
        packagegroup-agl-ivi-multimedia.bb
        packagegroup-agl-ivi-navi-lbs.bb
        packagegroup-agl-ivi-os-commonlibs.bb
        packagegroup-agl-ivi-security.bb
        packagegroup-agl-ivi-speech-services.bb

These are for making image ``agl-image-ivi`` which is baseline for the profiles
of AGL distro. 'Baseline' means Service Layer and Operating System Layer defined
in AGL Spec v1.0.

* packagegroup-agl-test.bb

Additional tools used in QA tests (for agl-image*-qa).

* packagegroup-ivi-common*

        packagegroup-ivi-common-core-automotive.bb
        packagegroup-ivi-common-core.bb
        packagegroup-ivi-common-core-connectivity.bb
        packagegroup-ivi-common-core-graphics.bb
        packagegroup-ivi-common-core-kernel.bb
        packagegroup-ivi-common-core-multimedia.bb
        packagegroup-ivi-common-core-navi-lbs.bb
        packagegroup-ivi-common-core-os-commonlibs.bb
        packagegroup-ivi-common-core-security.bb
        packagegroup-ivi-common-core-speech-services.bb
        packagegroup-ivi-common-test.bb

These are for picking up some packages from upstreams like GENIVI/Tizen/Others.
The layer of ``meta-ivi-common`` has no image to build, all packagegroups are
aggregated to ``packagegroup-ivi-common-core' and it is included by images,
``agl-image-ivi.bb`` and ``agl-demo-platform.bb``.

## Supported Machines

See [docs.automotivelinux.org](http://docs.automotivelinux.org)
n">message) { return bitfield_parse_float(message.get_data(), CAN_MESSAGE_SIZE, signal.get_bit_position(), signal.get_bit_size(), signal.get_factor(), signal.get_offset()); } /// @brief Wrap a raw CAN signal value in a DynamicField without modification. /// /// This is an implementation of the SignalDecoder type signature, and can be /// used directly in the can_signal_t.decoder field. /// /// @param[in] signal - The details of the signal that contains the state mapping. /// @param[in] signals - The list of all signals /// @param[in] value - The numerical value that will be wrapped in a DynamicField. /// @param[out] send - An output argument that will be set to false if the value should /// not be sent for any reason. /// /// @return Returns a DynamicField with the original, unmodified raw CAN signal value as /// its numeric value. The 'send' argument will not be modified as this decoder /// always succeeds. /// openxc_DynamicField decoder_t::noopDecoder(can_signal_t& signal, const std::vector<can_signal_t>& signals, float value, bool* send) { openxc_DynamicField decoded_value = build_DynamicField(value); return decoded_value; } /// @brief Coerces a numerical value to a boolean. /// /// This is an implementation of the SignalDecoder type signature, and can be /// used directly in the can_signal_t.decoder field. /// /// @param[in] signal - The details of the signal that contains the state mapping. /// @param[in] signals - The list of all signals /// @param[in] value - The numerical value that will be converted to a boolean. /// @param[out] send - An output argument that will be set to false if the value should /// not be sent for any reason. /// /// @return Returns a DynamicField with a boolean value of false if the raw signal value /// is 0.0, otherwise true. The 'send' argument will not be modified as this /// decoder always succeeds. /// openxc_DynamicField decoder_t::booleanDecoder(can_signal_t& signal, const std::vector<can_signal_t>& signals, float value, bool* send) { openxc_DynamicField decoded_value = build_DynamicField(value == 0.0 ? false : true); return decoded_value; } /// @brief Update the metadata for a signal and the newly received value. /// /// This is an implementation of the SignalDecoder type signature, and can be /// used directly in the can_signal_t.decoder field. /// /// This function always flips 'send' to false. /// /// @param[in] signal - The details of the signal that contains the state mapping. /// @param[in] signals - The list of all signals. /// @param[in] value - The numerical value that will be converted to a boolean. /// @param[out] send - This output argument will always be set to false, so the caller will /// know not to publish this value to the pipeline. /// /// @return Return value is undefined. /// openxc_DynamicField decoder_t::ignoreDecoder(can_signal_t& signal, const std::vector<can_signal_t>& signals, float value, bool* send) { if(send) *send = false; openxc_DynamicField decoded_value; return decoded_value; } /// @brief Find and return the corresponding string state for a CAN signal's /// raw integer value. /// /// This is an implementation of the SignalDecoder type signature, and can be /// used directly in the can_signal_t.decoder field. /// /// @param[in] signal - The details of the signal that contains the state mapping. /// @param[in] signals - The list of all signals. /// @param[in] value - The numerical value that should map to a state. /// @param[out] send - An output argument that will be set to false if the value should /// not be sent for any reason. /// /// @return Returns a DynamicField with a string value if a matching state is found in /// the signal. If an equivalent isn't found, send is sent to false and the /// return value is undefined. /// openxc_DynamicField decoder_t::stateDecoder(can_signal_t& signal, const std::vector<can_signal_t>& signals, float value, bool* send) { const std::string signal_state = signal.get_states((uint8_t)value); openxc_DynamicField decoded_value = build_DynamicField(signal_state); if(signal_state.size() <= 0) { *send = false; ERROR(binder_interface, "%s: No state found with index: %d", __FUNCTION__, (int)value); } return decoded_value; } /// @brief Parse a signal from a CAN message, apply any required transforations /// to get a human readable value and public the result to the pipeline. /// /// If the can_signal_t has a non-NULL 'decoder' field, the raw CAN signal value /// will be passed to the decoder before publishing. /// /// @param[in] signal - The details of the signal to decode and forward. /// @param[in] message - The received CAN message that should contain this signal. /// @param[in] signals - an array of all active signals. /// @param[out] send - An output parameter that will be flipped to false if the value could /// not be decoded. /// /// The decoder returns an openxc_DynamicField, which may contain a number, /// string or boolean. /// openxc_DynamicField decoder_t::translateSignal(can_signal_t& signal, can_message_t& message, const std::vector<can_signal_t>& signals, bool* send) { float value = decoder_t::parseSignalBitfield(signal, message); DEBUG(binder_interface, "%s: Decoded message from parseSignalBitfield: %f", __FUNCTION__, value); // Must call the decoders every time, regardless of if we are going to // decide to send the signal or not. openxc_DynamicField decoded_value = decoder_t::decodeSignal(signal, value, signals, send); signal.set_received(true); // Don't send if they is no changes if ((signal.get_last_value() == value && !signal.get_send_same()) || !send ) { *send = false; } signal.set_last_value(value); return decoded_value; } /// @brief Parse a signal from a CAN message and apply any required /// transforations to get a human readable value. /// /// If the can_signal_t has a non-NULL 'decoder' field, the raw CAN signal value /// will be passed to the decoder before returning. /// /// @param[in] signal - The details of the signal to decode and forward. /// @param[in] value - The numerical value that will be converted to a boolean. /// @param[in] signals - an array of all active signals. /// @param[out] send - An output parameter that will be flipped to false if the value could /// not be decoded. /// /// @return The decoder returns an openxc_DynamicField, which may contain a number, /// string or boolean. If 'send' is false, the return value is undefined. /// openxc_DynamicField decoder_t::decodeSignal( can_signal_t& signal, float value, const std::vector<can_signal_t>& signals, bool* send) { SignalDecoder decoder = signal.get_decoder() == nullptr ? noopDecoder : signal.get_decoder(); openxc_DynamicField decoded_value = decoder(signal, signals, value, send); return decoded_value; } /// @brief Decode a transformed, human readable value from an raw CAN signal /// already parsed from a CAN message. /// /// This is the same as decodeSignal but you must parse the bitfield value of the signal from the CAN /// message yourself. This is useful if you need that raw value for something /// else. /// /// @param[in] signal - The details of the signal to decode and forward. /// @param[in] message - Raw CAN message to decode /// @param[in] signals - an array of all active signals. /// @param[out] send - An output parameter that will be flipped to false if the value could /// not be decoded. /// openxc_DynamicField decoder_t::decodeSignal( can_signal_t& signal, const can_message_t& message, const std::vector<can_signal_t>& signals, bool* send) { float value = parseSignalBitfield(signal, message); return decodeSignal(signal, value, signals, send); } /// /// @brief Decode the payload of an OBD-II PID. /// /// This function matches the type signature for a DiagnosticResponseDecoder, so /// it can be used as the decoder for a DiagnosticRequest. It returns the decoded /// value of the PID, using the standard formulas (see /// http://en.wikipedia.org/wiki/OBD-II_PIDs#Mode_01). /// /// @param[in] response - the received DiagnosticResponse (the data is in response.payload, /// a byte array). This is most often used when the byte order is /// signiticant, i.e. with many OBD-II PID formulas. /// @param[in] parsed_payload - the entire payload of the response parsed as an int. /// /// @return Float decoded value. /// float decoder_t::decode_obd2_response(const DiagnosticResponse* response, float parsed_payload) { return diagnostic_decode_obd2_pid(response); }