summaryrefslogtreecommitdiffstats
path: root/templates/machine/h3-salvator-x-nogfx/50_local.conf.inc
blob: ba837ae1f211e0b32e53b7d106f5f9b2e7324c63 (plain)
1
2
3
MACHINE = "salvator-x"
#see meta-agl/meta-agl-bsp/conf/include/agl_h3-salvator-x-nogfx.inc
require conf/include/agl_h3-salvator-x-nogfx.inc
id='n338' href='#n338'>338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/*
 * Copyright (C) 2015, 2016 "IoT.bzh"
 * Author "Romain Forlot" <romain.forlot@iot.bzh>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *	 http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <map>
#include <cerrno>
#include <vector>
#include <string>
#include <fcntl.h>
#include <unistd.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <json-c/json.h>
#include <linux/can/raw.h>

#include "can-bus.hpp"

#include "can-decoder.hpp"
#include "../configuration.hpp"
#include "../utils/signals.hpp"
#include "../utils/openxc-utils.hpp"

extern "C"
{
	#include <afb/afb-binding.h>
}

/**
* @brief Class constructor
*
* @param struct afb_binding_interface *interface between daemon and binding
* @param int file handle to the json configuration file.
*/
can_bus_t::can_bus_t(int conf_file)
	: conf_file_{conf_file}
{
}


int can_bus_t::process_can_signals(can_message_t& can_message)
{
	int processed_signals = 0;
	std::vector <can_signal_t*> signals;
	openxc_DynamicField search_key, decoded_message;
	openxc_VehicleMessage vehicle_message;

	/* First we have to found which can_signal_t it is */
	search_key = build_DynamicField((double)can_message.get_id());
	signals.clear();
	configuration_t::instance().find_can_signals(search_key, signals);

	/* Decoding the message ! Don't kill the messenger ! */
	for(auto& sig : signals)
	{
		std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
		std::map<std::string, struct afb_event>& s = get_subscribed_signals();

		/* DEBUG message to make easier debugger STL containers...
		DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
		DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
		DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
		DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name)));*/
		if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
		{
			decoded_message = decoder_t::translateSignal(*sig, can_message, configuration_t::instance().get_can_signals());

			openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_generic_name(), decoded_message);
			vehicle_message = build_VehicleMessage(s_message);

			std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
			push_new_vehicle_message(vehicle_message);
			new_decoded_can_message_.notify_one();
			processed_signals++;
		}
	}

	DEBUG(binder_interface, "process_can_signals: %d/%d CAN signals processed.", processed_signals, (int)signals.size());
	return processed_signals;
}

int can_bus_t::process_diagnostic_signals(active_diagnostic_request_t* entry, const can_message_t& can_message)
{
	int processed_signals = 0;
	openxc_VehicleMessage vehicle_message;

	diagnostic_manager_t& manager = configuration_t::instance().get_diagnostic_manager();
	
	std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
	std::map<std::string, struct afb_event>& s = get_subscribed_signals();

	if( s.find(entry->get_name()) != s.end() && afb_event_is_valid(s[entry->get_name()]))
	{
		if(manager.get_can_bus_dev() == entry->get_can_bus_dev() && entry->get_in_flight())
		{
			DiagnosticResponse response = diagnostic_receive_can_frame(
					// TODO: openXC todo task: eek, is bus address and array index this tightly coupled?
					&manager.get_shims(),
					entry->get_handle(), can_message.get_id(), can_message.get_data(), can_message.get_length());
			if(response.completed && entry->get_handle()->completed)
			{
				if(entry->get_handle()->success)
				{
					vehicle_message = manager.relay_diagnostic_response(entry, response);
					std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
					push_new_vehicle_message(vehicle_message);
					new_decoded_can_message_.notify_one();
					processed_signals++;
				}
				else
					DEBUG(binder_interface, "Fatal error sending or receiving diagnostic request");
			}
			else if(!response.completed && response.multi_frame)
				// Reset the timeout clock while completing the multi-frame receive
				entry->get_timeout_clock().tick();
		}
	}

	return processed_signals;
}

/**
* @brief thread to decoding raw CAN messages.
*
* @desc It will take from the can_message_q_ queue the next can message to process then it will search
*  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
*  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
*  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
*  noopDecoder function that will operate on it.
*
*  Depending on the nature of message, if id match a diagnostic request corresponding id for a response 
*  then decoding a diagnostic message else use classic CAN signals decoding functions.
*
*  TODO: make diagnostic messages parsing optionnal.
*/
void can_bus_t::can_decode_message()
{
	can_message_t can_message;

	while(is_decoding_)
	{
		std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
		new_can_message_cv_.wait(can_message_lock);
		can_message = next_can_message();

		active_diagnostic_request_t* adr = configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message);
		if(adr != nullptr)
			process_diagnostic_signals(adr, can_message);
		else
			process_can_signals(can_message);
	}
}

/**
* @brief thread to push events to suscribers. It will read subscribed_signals map to look
* which are events that has to be pushed.
*/
void can_bus_t::can_event_push()
{
	openxc_VehicleMessage v_message;
	openxc_SimpleMessage s_message;
	json_object* jo;

	while(is_pushing_)
	{
		std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
		new_decoded_can_message_.wait(decoded_can_message_lock);
		v_message = next_vehicle_message();

		s_message = get_simple_message(v_message);
		{
			std::lock_guard<std::mutex> subscribed_signals_lock(get_subscribed_signals_mutex());
			std::map<std::string, struct afb_event>& s = get_subscribed_signals();
			if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
			{
				jo = json_object_new_object();
				jsonify_simple(s_message, jo);
				afb_event_push(s[std::string(s_message.name)], jo);
			}
		}
	}
}

/**
	* @brief Will initialize threads that will decode
	*  and push subscribed events.
	*/
void can_bus_t::start_threads()
{
	is_decoding_ = true;
	th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
	if(!th_decoding_.joinable())
		is_decoding_ = false;

	is_pushing_ = true;
	th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
	if(!th_pushing_.joinable())
		is_pushing_ = false;
}

/**
* @brief Will stop all threads holded by can_bus_t object
*  which are decoding and pushing then will wait that's
* they'll finish their job.
*/
void can_bus_t::stop_threads()
{
	is_decoding_ = false;
	is_pushing_ = false;
}

/**
* @brief Will initialize can_bus_dev_t objects after reading
* the configuration file passed in the constructor.
*/
int can_bus_t::init_can_dev()
{
	std::vector<std::string> devices_name;
	int i;
	size_t t;

	devices_name = read_conf();

	if (! devices_name.empty())
	{
		t = devices_name.size();
		i=0;

		for(const auto& device : devices_name)
		{
			can_devices_.push_back(std::make_shared<can_bus_dev_t>(device, i));
			if (can_devices_[i]->open() == 0)
			{
				DEBUG(binder_interface, "Start reading thread");
				NOTICE(binder_interface, "%s device opened and reading", device.c_str());
				can_devices_[i]->start_reading(*this);
			}
			else
				ERROR(binder_interface, "Can't open device %s", device.c_str());
			i++;
		}

		NOTICE(binder_interface, "Initialized %d/%d can bus device(s)", i, t);
		return 0;
	}
	ERROR(binder_interface, "init_can_dev: Error at CAN device initialization. No devices read from configuration file. Did you specify canbus JSON object ?");
	return 1;
}

/**
* @brief read the conf_file_ and will parse json objects
* in it searching for canbus objects devices name.
*
* @return Vector of can bus device name string.
*/
std::vector<std::string> can_bus_t::read_conf()
{
	std::vector<std::string> ret;
	json_object *jo, *canbus;
	int n, i;
	const char* taxi;

	FILE *fd = fdopen(conf_file_, "r");
	if (fd)
	{
		std::string fd_conf_content;
		std::fseek(fd, 0, SEEK_END);
		fd_conf_content.resize(std::ftell(fd));
		std::rewind(fd);
		std::fread(&fd_conf_content[0], 1, fd_conf_content.size(), fd);
		std::fclose(fd);

		DEBUG(binder_interface, "Configuration file content : %s", fd_conf_content.c_str());
		jo = json_tokener_parse(fd_conf_content.c_str());

		if (jo == NULL || !json_object_object_get_ex(jo, "canbus", &canbus))
		{
			ERROR(binder_interface, "Can't find canbus node in the configuration file. Please review it.");
			ret.clear();
		}
		else if (json_object_get_type(canbus) != json_type_array)
		{
			taxi = json_object_get_string(canbus);
			DEBUG(binder_interface, "Can bus found: %s", taxi);
			ret.push_back(std::string(taxi));
		}
		else
		{
			n = json_object_array_length(canbus);
			for (i = 0 ; i < n ; i++)
				ret.push_back(json_object_get_string(json_object_array_get_idx(canbus, i)));
		}
		return ret;
	}
	ERROR(binder_interface, "Problem at reading the conf file");
	ret.clear();
	return ret;
}

/**
* @brief return new_can_message_cv_ member
*
* @return  return new_can_message_cv_ member
*/
std::condition_variable& can_bus_t::get_new_can_message_cv()
{
	return new_can_message_cv_;
}

/**
* @brief return can_message_mutex_ member
*
* @return  return can_message_mutex_ member
*/
std::mutex& can_bus_t::get_can_message_mutex()
{
	return can_message_mutex_;
}

/**
* @brief Return first can_message_t on the queue
*
* @return a can_message_t
*/
can_message_t can_bus_t::next_can_message()
{
	can_message_t can_msg;

	if(!can_message_q_.empty())
	{
		can_msg = can_message_q_.front();
		can_message_q_.pop();
		DEBUG(binder_interface, "next_can_message: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", can_msg.get_id(), can_msg.get_length(),
			can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
		return can_msg;
	}

	return can_msg;
}

/**
* @brief Push a can_message_t into the queue
*
* @param the const reference can_message_t object to push into the queue
*/
void can_bus_t::push_new_can_message(const can_message_t& can_msg)
{
	can_message_q_.push(can_msg);
}

/**
* @brief Return first openxc_VehicleMessage on the queue
*
* @return a openxc_VehicleMessage containing a decoded can message
*/
openxc_VehicleMessage can_bus_t::next_vehicle_message()
{
	openxc_VehicleMessage v_msg;

	if(! vehicle_message_q_.empty())
	{
		v_msg = vehicle_message_q_.front();
		vehicle_message_q_.pop();
		DEBUG(binder_interface, "next_vehicle_message: next vehicle message poped");
		return v_msg;
	}

	return v_msg;
}

/**
* @brief Push a openxc_VehicleMessage into the queue
*
* @param the const reference openxc_VehicleMessage object to push into the queue
*/
void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
{
	vehicle_message_q_.push(v_msg);
}

/**
* @brief Return a map with the can_bus_dev_t initialized
*
* @return map can_bus_dev_m_ map
*/
const std::vector<std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
{
	return can_devices_;
}