aboutsummaryrefslogtreecommitdiffstats
path: root/agl_service_voiceagent/servicers/voice_agent_servicer.py
blob: 0565655d3b3f0756dd7b2e8f60085affd031d847 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (c) 2023 Malik Talha
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import time
import threading
from agl_service_voiceagent.generated import voice_agent_pb2
from agl_service_voiceagent.generated import voice_agent_pb2_grpc
from agl_service_voiceagent.utils.audio_recorder import AudioRecorder
from agl_service_voiceagent.utils.wake_word import WakeWordDetector
from agl_service_voiceagent.utils.stt_model import STTModel
from agl_service_voiceagent.utils.kuksa_interface import KuksaInterface
from agl_service_voiceagent.utils.mapper import Intent2VSSMapper
from agl_service_voiceagent.utils.config import get_config_value, get_logger
from agl_service_voiceagent.utils.common import generate_unique_uuid, delete_file
from agl_service_voiceagent.nlu.snips_interface import SnipsInterface
from agl_service_voiceagent.nlu.rasa_interface import RASAInterface


class VoiceAgentServicer(voice_agent_pb2_grpc.VoiceAgentServiceServicer):
    """
    Voice Agent Servicer class that implements the gRPC service defined in voice_agent.proto.
    """

    def __init__(self):
        """
        Constructor for VoiceAgentServicer class.
        """
        # Get the config values
        self.service_version = "v0.4.0"
        self.wake_word = get_config_value('WAKE_WORD')
        self.base_audio_dir = get_config_value('BASE_AUDIO_DIR')
        self.channels = int(get_config_value('CHANNELS'))
        self.sample_rate = int(get_config_value('SAMPLE_RATE'))
        self.bits_per_sample = int(get_config_value('BITS_PER_SAMPLE'))
        self.stt_model_path = get_config_value('STT_MODEL_PATH')
        self.wake_word_model_path = get_config_value('WAKE_WORD_MODEL_PATH')
        self.snips_model_path = get_config_value('SNIPS_MODEL_PATH')
        self.rasa_model_path = get_config_value('RASA_MODEL_PATH')
        self.rasa_server_port = int(get_config_value('RASA_SERVER_PORT'))
        self.rasa_detached_mode = bool(int(get_config_value('RASA_DETACHED_MODE')))
        self.base_log_dir = get_config_value('BASE_LOG_DIR')
        self.store_voice_command = bool(int(get_config_value('STORE_VOICE_COMMANDS')))
        self.logger = get_logger()

        # Initialize class methods
        self.logger.info("Loading Speech to Text and Wake Word Model...")
        self.stt_model = STTModel(self.stt_model_path, self.sample_rate)
        self.stt_wake_word_model = STTModel(self.wake_word_model_path, self.sample_rate)
        self.logger.info("Speech to Text and Wake Word Model loaded successfully.")

        self.logger.info("Starting SNIPS intent engine...")
        self.snips_interface = SnipsInterface(self.snips_model_path)
        self.logger.info("SNIPS intent engine started successfully!")

        self.rasa_interface = RASAInterface(self.rasa_server_port, self.rasa_model_path, self.base_log_dir)

        # Only start RASA server if its not in detached mode, else we assume server is already running
        if not self.rasa_detached_mode:
            self.logger.info(f"Starting RASA intent engine server as a subprocess...")
            self.rasa_interface.start_server()
            self.logger.info(f"RASA intent engine server started successfully! RASA server running at URL: 127.0.0.1:{self.rasa_server_port}")
        
        else:
            self.logger.info(f"RASA intent engine detached mode detected! Assuming RASA server is running at URL: 127.0.0.1:{self.rasa_server_port}")

        self.rvc_stream_uuids = {}
        self.kuksa_client = KuksaInterface()
        self.kuksa_client.connect_kuksa_client()
        self.kuksa_client.authorize_kuksa_client()

        self.logger.info(f"Loading and parsing mapping files...")
        self.mapper = Intent2VSSMapper()
        self.logger.info(f"Successfully loaded and parsed mapping files.")


    def CheckServiceStatus(self, request, context):
        """
        Check the status of the Voice Agent service including the version.
        """
        # Log the unique request ID, client's IP address, and the endpoint
        request_id = generate_unique_uuid(8)
        client_ip = context.peer()
        self.logger.info(f"[ReqID#{request_id}] Client {client_ip} made a request to CheckServiceStatus end-point.")

        response = voice_agent_pb2.ServiceStatus(
            version=self.service_version,
            status=True,
            wake_word=self.wake_word,
        )

        # Convert the response object to a JSON string and log it
        response_data = {
            "version": self.service_version,
            "status": True,
            "wake_word": self.wake_word,
        }
        response_json = json.dumps(response_data)
        self.logger.info(f"[ReqID#{request_id}] Returning response to client {client_ip} from CheckServiceStatus end-point. Response: {response_json}")

        return response


    def DetectWakeWord(self, request, context):
        """
        Detect the wake word using the wake word detection model. This method records voice on server side. If your client 
        and server are not on the same machine, then you should use the `S_DetectWakeWord` method instead.
        """
        # Log the unique request ID, client's IP address, and the endpoint
        request_id = generate_unique_uuid(8)
        client_ip = context.peer()
        self.logger.info(f"[ReqID#{request_id}] Client {client_ip} made a request to DetectWakeWord end-point.")

        wake_word_detector = WakeWordDetector(self.wake_word, self.stt_model, self.channels, self.sample_rate, self.bits_per_sample)
        wake_word_detector.create_pipeline()
        detection_thread = threading.Thread(target=wake_word_detector.start_listening)
        detection_thread.start()
        while True:
            status = wake_word_detector.get_wake_word_status()
            time.sleep(0.5)
            if not context.is_active():
                wake_word_detector.send_eos()
                break
            yield voice_agent_pb2.WakeWordStatus(status=status)
            if status:
                break

        detection_thread.join()
    
    
    def RecognizeVoiceCommand(self, requests, context):
        """
        Recognize the voice command using the STT model and extract the intent using the NLU model. This method records voice 
        on server side, meaning the client only sends a START and STOP request to the server. If your client and server are 
        not on the same machine, then you should use the `S_RecognizeVoiceCommand` method instead.
        """
        stt = ""
        intent = ""
        intent_slots = []
        log_intent_slots = []

        for request in requests:
            if request.record_mode == voice_agent_pb2.MANUAL:

                if request.action == voice_agent_pb2.START:
                    status = voice_agent_pb2.REC_PROCESSING
                    stream_uuid = generate_unique_uuid(8)

                    # Log the unique request ID, client's IP address, and the endpoint
                    client_ip = context.peer()
                    self.logger.info(f"[ReqID#{stream_uuid}] Client {client_ip} made a manual START request to RecognizeVoiceCommand end-point.")

                    recorder = AudioRecorder(self.stt_model, self.base_audio_dir, self.channels, self.sample_rate, self.bits_per_sample)
                    recorder.set_pipeline_mode("manual")
                    audio_file = recorder.create_pipeline()

                    self.rvc_stream_uuids[stream_uuid] = {
                        "recorder": recorder,
                        "audio_file": audio_file
                    }
                    
                    recorder.start_recording()

                elif request.action == voice_agent_pb2.STOP:
                    stream_uuid = request.stream_id
                    status = voice_agent_pb2.REC_SUCCESS

                    # Log the unique request ID, client's IP address, and the endpoint
                    client_ip = context.peer()
                    self.logger.info(f"[ReqID#{stream_uuid}] Client {client_ip} made a manual STOP request to RecognizeVoiceCommand end-point.")

                    recorder = self.rvc_stream_uuids[stream_uuid]["recorder"]
                    audio_file = self.rvc_stream_uuids[stream_uuid]["audio_file"]
                    del self.rvc_stream_uuids[stream_uuid]

                    recorder.stop_recording()
                    recognizer_uuid = self.stt_model.setup_recognizer()
                    stt = self.stt_model.recognize_from_file(recognizer_uuid, audio_file)

                    if stt not in ["FILE_NOT_FOUND", "FILE_FORMAT_INVALID", "VOICE_NOT_RECOGNIZED", ""]:
                        if request.nlu_model == voice_agent_pb2.SNIPS:
                            extracted_intent = self.snips_interface.extract_intent(stt)
                            intent, intent_actions = self.snips_interface.process_intent(extracted_intent)

                            if not intent or intent == "":
                                status = voice_agent_pb2.INTENT_NOT_RECOGNIZED
                            
                            else:
                                for action, value in intent_actions.items():
                                    intent_slots.append(voice_agent_pb2.IntentSlot(name=action, value=value))
                                    log_intent_slots.append({"name": action, "value": value})
                        
                        elif request.nlu_model == voice_agent_pb2.RASA:
                            extracted_intent = self.rasa_interface.extract_intent(stt)
                            intent, intent_actions = self.rasa_interface.process_intent(extracted_intent)

                            if not intent or intent == "":
                                status = voice_agent_pb2.INTENT_NOT_RECOGNIZED

                            else:
                                for action, value in intent_actions.items():
                                    intent_slots.append(voice_agent_pb2.IntentSlot(name=action, value=value))
                                    log_intent_slots.append({"name": action, "value": value})

                        else:
                            status = voice_agent_pb2.NLU_MODEL_NOT_SUPPORTED

                    else:
                        stt = ""
                        status = voice_agent_pb2.VOICE_NOT_RECOGNIZED
                    
                    # cleanup the kaldi recognizer
                    self.stt_model.cleanup_recognizer(recognizer_uuid)

                    # delete the audio file
                    if not self.store_voice_command:   
                        delete_file(audio_file)


        # Process the request and generate a RecognizeResult
        response = voice_agent_pb2.RecognizeResult(
            command=stt,
            intent=intent,
            intent_slots=intent_slots,
            stream_id=stream_uuid,
            status=status
        )

        # Convert the response object to a JSON string and log it
        response_data = {
            "command": stt,
            "intent": intent,
            "intent_slots": log_intent_slots,
            "stream_id": stream_uuid,
            "status": status
        }
        response_json = json.dumps(response_data)
        self.logger.info(f"[ReqID#{stream_uuid}] Returning {request.action} request response to client {client_ip} from RecognizeVoiceCommand end-point. Response: {response_json}")

        return response
    

    def RecognizeTextCommand(self, request, context):
        """
        Recognize the text command using the STT model and extract the intent using the NLU model.
        """
        intent = ""
        intent_slots = []
        log_intent_slots = []

        stream_uuid = generate_unique_uuid(8)
        text_command = request.text_command
        status = voice_agent_pb2.REC_SUCCESS

        # Log the unique request ID, client's IP address, and the endpoint
        client_ip = context.peer()
        self.logger.info(f"[ReqID#{stream_uuid}] Client {client_ip} made a request to RecognizeTextCommand end-point.")

        if request.nlu_model == voice_agent_pb2.SNIPS:
            extracted_intent = self.snips_interface.extract_intent(text_command)
            intent, intent_actions = self.snips_interface.process_intent(extracted_intent)

            if not intent or intent == "":
                status = voice_agent_pb2.INTENT_NOT_RECOGNIZED
            
            else:
                for action, value in intent_actions.items():
                    intent_slots.append(voice_agent_pb2.IntentSlot(name=action, value=value))
                    log_intent_slots.append({"name": action, "value": value})
        
        elif request.nlu_model == voice_agent_pb2.RASA:
            extracted_intent = self.rasa_interface.extract_intent(text_command)
            intent, intent_actions = self.rasa_interface.process_intent(extracted_intent)

            if not intent or intent == "":
                status = voice_agent_pb2.INTENT_NOT_RECOGNIZED

            else:
                for action, value in intent_actions.items():
                    intent_slots.append(voice_agent_pb2.IntentSlot(name=action, value=value))
                    log_intent_slots.append({"name": action, "value": value})
        
        else:
            status = voice_agent_pb2.NLU_MODEL_NOT_SUPPORTED

        # Process the request and generate a RecognizeResult
        response = voice_agent_pb2.RecognizeResult(
            command=text_command,
            intent=intent,
            intent_slots=intent_slots,
            stream_id=stream_uuid,
            status=status
        )

        # Convert the response object to a JSON string and log it
        response_data = {
            "command": text_command,
            "intent": intent,
            "intent_slots": log_intent_slots,
            "stream_id": stream_uuid,
            "status": status
        }
        response_json = json.dumps(response_data)
        self.logger.info(f"[ReqID#{stream_uuid}] Returning response to client {client_ip} from RecognizeTextCommand end-point. Response: {response_json}")

        return response


    def ExecuteCommand(self, request, context):
        """
        Execute the voice command by sending the intent to Kuksa.
        """
        # Log the unique request ID, client's IP address, and the endpoint
        request_id = generate_unique_uuid(8)
        client_ip = context.peer()
        self.logger.info(f"[ReqID#{request_id}] Client {client_ip} made a request to ExecuteCommand end-point.")

        intent = request.intent
        intent_slots = request.intent_slots
        processed_slots = []
        for slot in intent_slots:
            slot_name = slot.name
            slot_value = slot.value
            processed_slots.append({"name": slot_name, "value": slot_value})

        print(intent)
        print(processed_slots)
        execution_list = self.mapper.parse_intent(intent, processed_slots, req_id=request_id)
        exec_response = f"Sorry, I failed to execute command against intent '{intent}'. Maybe try again with more specific instructions."
        exec_status = voice_agent_pb2.EXEC_ERROR

        # Check for kuksa status, and try re-connecting again if status is False 
        if not self.kuksa_client.get_kuksa_status():
            self.logger.error(f"[ReqID#{request_id}] Kuksa client found disconnected. Trying to close old instance and re-connecting...")
            self.kuksa_client.close_kuksa_client()
            self.kuksa_client.connect_kuksa_client()
            self.kuksa_client.authorize_kuksa_client()

        for execution_item in execution_list:
            print(execution_item)
            action = execution_item["action"]
            signal = execution_item["signal"]

            if self.kuksa_client.get_kuksa_status():
                if action == "set" and "value" in execution_item:
                    value = execution_item["value"]
                    if self.kuksa_client.send_values(signal, value):
                        exec_response = f"Yay, I successfully updated the intent '{intent}' to value '{value}'."
                        exec_status = voice_agent_pb2.EXEC_SUCCESS
                
                elif action in ["increase", "decrease"]:
                    if "value" in execution_item:
                        value = execution_item["value"]
                        if self.kuksa_client.send_values(signal, value):
                            exec_response = f"Yay, I successfully updated the intent '{intent}' to value '{value}'."
                            exec_status = voice_agent_pb2.EXEC_SUCCESS
                    
                    elif "factor" in execution_item:
                        # incoming values are always str as kuksa expects str during subscribe we need to convert
                        # the value to int before performing any arithmetic operations and then convert back to str
                        factor = int(execution_item["factor"]) 
                        current_value = self.kuksa_client.get_value(signal)
                        if current_value:
                            current_value = int(current_value)
                            if action == "increase":
                                value = current_value + factor
                                value = str(value)
                            elif action == "decrease":
                                value = current_value - factor
                                value = str(value)
                            if self.kuksa_client.send_values(signal, value):
                                exec_response = f"Yay, I successfully updated the intent '{intent}' to value '{value}'."
                                exec_status = voice_agent_pb2.EXEC_SUCCESS
                        
                        else:
                            exec_response = f"Uh oh, there is no value set for intent '{intent}'. Why not try setting a value first?"
                            exec_status = voice_agent_pb2.KUKSA_CONN_ERROR

            else:
                exec_response = "Uh oh, I failed to connect to Kuksa."
                exec_status = voice_agent_pb2.KUKSA_CONN_ERROR

        response = voice_agent_pb2.ExecuteResult(
            response=exec_response,
            status=exec_status
        )

        # Convert the response object to a JSON string and log it
        response_data = {
            "response": exec_response,
            "status": exec_status
        }
        response_json = json.dumps(response_data)
        self.logger.info(f"[ReqID#{request_id}] Returning response to client {client_ip} from ExecuteCommand end-point. Response: {response_json}")

        return response