1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (c) 2023 Malik Talha
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gi
gi.require_version('Gst', '1.0')
from gi.repository import Gst, GLib
Gst.init(None)
GLib.threads_init()
class WakeWordDetector:
"""
WakeWordDetector is a class for detecting a wake word in an audio stream using GStreamer and Vosk.
"""
def __init__(self, wake_word, stt_model, channels=1, sample_rate=16000, bits_per_sample=16):
"""
Initialize the WakeWordDetector instance with the provided parameters.
Args:
wake_word (str): The wake word to detect in the audio stream.
stt_model (STTModel): An instance of the STTModel for speech-to-text recognition.
channels (int, optional): The number of audio channels (default is 1).
sample_rate (int, optional): The audio sample rate in Hz (default is 16000).
bits_per_sample (int, optional): The number of bits per sample (default is 16).
"""
self.loop = GLib.MainLoop()
self.pipeline = None
self.bus = None
self.wake_word = wake_word
self.wake_word_detected = False
self.sample_rate = sample_rate
self.channels = channels
self.bits_per_sample = bits_per_sample
self.wake_word_model = stt_model # Speech to text model recognizer
self.recognizer_uuid = stt_model.setup_recognizer()
self.audio_buffer = bytearray()
self.segment_size = int(self.sample_rate * 1.0) # Adjust the segment size (e.g., 1 second)
def get_wake_word_status(self):
"""
Get the status of wake word detection.
Returns:
bool: True if the wake word has been detected, False otherwise.
"""
return self.wake_word_detected
def create_pipeline(self):
"""
Create and configure the GStreamer audio processing pipeline for wake word detection.
"""
print("Creating pipeline for Wake Word Detection...")
self.pipeline = Gst.Pipeline()
autoaudiosrc = Gst.ElementFactory.make("autoaudiosrc", None)
queue = Gst.ElementFactory.make("queue", None)
audioconvert = Gst.ElementFactory.make("audioconvert", None)
wavenc = Gst.ElementFactory.make("wavenc", None)
capsfilter = Gst.ElementFactory.make("capsfilter", None)
caps = Gst.Caps.new_empty_simple("audio/x-raw")
caps.set_value("format", "S16LE")
caps.set_value("rate", self.sample_rate)
caps.set_value("channels", self.channels)
capsfilter.set_property("caps", caps)
appsink = Gst.ElementFactory.make("appsink", None)
appsink.set_property("emit-signals", True)
appsink.set_property("sync", False) # Set sync property to False to enable async processing
appsink.connect("new-sample", self.on_new_buffer, None)
self.pipeline.add(autoaudiosrc)
self.pipeline.add(queue)
self.pipeline.add(audioconvert)
self.pipeline.add(wavenc)
self.pipeline.add(capsfilter)
self.pipeline.add(appsink)
autoaudiosrc.link(queue)
queue.link(audioconvert)
audioconvert.link(capsfilter)
capsfilter.link(appsink)
self.bus = self.pipeline.get_bus()
self.bus.add_signal_watch()
self.bus.connect("message", self.on_bus_message)
def on_new_buffer(self, appsink, data) -> Gst.FlowReturn:
"""
Callback function to handle new audio buffers from GStreamer appsink.
Args:
appsink (Gst.AppSink): The GStreamer appsink.
data (object): User data (not used).
Returns:
Gst.FlowReturn: Indicates the status of buffer processing.
"""
sample = appsink.emit("pull-sample")
buffer = sample.get_buffer()
data = buffer.extract_dup(0, buffer.get_size())
# Add the new data to the buffer
self.audio_buffer.extend(data)
# Process audio in segments
while len(self.audio_buffer) >= self.segment_size:
segment = self.audio_buffer[:self.segment_size]
self.process_audio_segment(segment)
# Advance the buffer by the segment size
self.audio_buffer = self.audio_buffer[self.segment_size:]
return Gst.FlowReturn.OK
def process_audio_segment(self, segment):
"""
Process an audio segment for wake word detection.
Args:
segment (bytes): The audio segment to process.
"""
# Process the audio data segment
audio_data = bytes(segment)
# Perform wake word detection on the audio_data
if self.wake_word_model.init_recognition(self.recognizer_uuid, audio_data):
stt_result = self.wake_word_model.recognize(self.recognizer_uuid)
print("STT Result: ", stt_result)
if self.wake_word in stt_result["text"]:
self.wake_word_detected = True
print("Wake word detected!")
self.pipeline.send_event(Gst.Event.new_eos())
def send_eos(self):
"""
Send an End-of-Stream (EOS) event to the pipeline.
"""
self.pipeline.send_event(Gst.Event.new_eos())
self.audio_buffer.clear()
def start_listening(self):
"""
Start listening for the wake word and enter the event loop.
"""
self.pipeline.set_state(Gst.State.PLAYING)
print("Listening for Wake Word...")
self.loop.run()
def stop_listening(self):
"""
Stop listening for the wake word and clean up the pipeline.
"""
self.cleanup_pipeline()
self.loop.quit()
def on_bus_message(self, bus, message):
"""
Handle GStreamer bus messages and perform actions based on the message type.
Args:
bus (Gst.Bus): The GStreamer bus.
message (Gst.Message): The GStreamer message to process.
"""
if message.type == Gst.MessageType.EOS:
print("End-of-stream message received")
self.stop_listening()
elif message.type == Gst.MessageType.ERROR:
err, debug_info = message.parse_error()
print(f"Error received from element {message.src.get_name()}: {err.message}")
print(f"Debugging information: {debug_info}")
self.stop_listening()
elif message.type == Gst.MessageType.WARNING:
err, debug_info = message.parse_warning()
print(f"Warning received from element {message.src.get_name()}: {err.message}")
print(f"Debugging information: {debug_info}")
elif message.type == Gst.MessageType.STATE_CHANGED:
if isinstance(message.src, Gst.Pipeline):
old_state, new_state, pending_state = message.parse_state_changed()
print(("Pipeline state changed from %s to %s." %
(old_state.value_nick, new_state.value_nick)))
def cleanup_pipeline(self):
"""
Clean up the GStreamer pipeline and release associated resources.
"""
if self.pipeline is not None:
print("Cleaning up pipeline...")
self.pipeline.set_state(Gst.State.NULL)
self.bus.remove_signal_watch()
print("Pipeline cleanup complete!")
self.bus = None
self.pipeline = None
self.wake_word_model.cleanup_recognizer(self.recognizer_uuid)
|