aboutsummaryrefslogtreecommitdiffstats
path: root/CAN-binder/low-can-binding/can/can-bus.cpp
blob: 6b3689d0e8900f30132efe7a484079d9c7d14e0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * Copyright (C) 2015, 2016 "IoT.bzh"
 * Author "Romain Forlot" <romain.forlot@iot.bzh>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *	 http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <map>
#include <cerrno>
#include <vector>
#include <string>
#include <net/if.h>
#include <sys/socket.h>
#include <json-c/json.h>
#include <linux/can/raw.h>

#include "can-bus.hpp"

#include "can-signals.hpp"
#include "can-decoder.hpp"
#include "../configuration.hpp"
#include "../utils/signals.hpp"
#include "../utils/openxc-utils.hpp"

extern "C"
{
	#include <afb/afb-binding.h>
}

/// @brief Class constructor
///
/// @param[in] conf_file - handle to the json configuration file.
can_bus_t::can_bus_t(utils::config_parser_t conf_file)
	: conf_file_{conf_file}
{}

std::map<std::string, std::shared_ptr<can_bus_dev_t>> can_bus_t::can_devices_;

/// @brief Will make the decoding operation on a classic CAN message. It will not
/// handle CAN commands nor diagnostic messages that have their own method to get
/// this happens.
///
/// It will add to the vehicle_message queue the decoded message and tell the event push
/// thread to process it.
///
/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
///
/// @return How many signals has been decoded.
int can_bus_t::process_can_signals(can_message_t& can_message)
{
	int processed_signals = 0;
	struct utils::signals_found signals;
	openxc_DynamicField search_key, decoded_message;
	openxc_VehicleMessage vehicle_message;
	configuration_t& conf = configuration_t::instance();
	utils::signals_manager_t& sm = utils::signals_manager_t::instance();

	// First we have to found which can_signal_t it is
	search_key = build_DynamicField((double)can_message.get_id());
	signals = sm.find_signals(search_key);

	// Decoding the message ! Don't kill the messenger !
	for(auto& sig : signals.can_signals)
	{
		std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
		std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();

		// DEBUG message to make easier debugger STL containers...
		//DEBUG(binder_interface, "Operator[] key char: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[sig.generic_name]));
		//DEBUG(binder_interface, "Operator[] key string: %s, event valid? %d", sig.generic_name, afb_event_is_valid(s[std::string(sig.generic_name)]));
		//DEBUG(binder_interface, "Nb elt matched char: %d", (int)s.count(sig.generic_name));
		//DEBUG(binder_interface, "Nb elt matched string: %d", (int)s.count(std::string(sig.generic_name));
		if( s.find(sig->get_name()) != s.end() && afb_event_is_valid(s[sig->get_name()]))
		{
			decoded_message = decoder_t::translateSignal(*sig, can_message, conf.get_can_signals());

			openxc_SimpleMessage s_message = build_SimpleMessage(sig->get_name(), decoded_message);
			vehicle_message = build_VehicleMessage(s_message);

			std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
			push_new_vehicle_message(vehicle_message);
			processed_signals++;
		}
	}

	DEBUG(binder_interface, "%s: %d/%d CAN signals processed.", __FUNCTION__, processed_signals, (int)signals.can_signals.size());
	return processed_signals;
}

/// @brief Will make the decoding operation on a diagnostic CAN message.Then it find the subscribed signal
/// corresponding and will add the vehicle_message to the queue of event to pushed before notifying
/// the event push thread to process it.
///
/// @param[in] manager - the diagnostic manager object that handle diagnostic communication
/// @param[in] can_message - a single CAN message from the CAN socket read, to be decode.
///
/// @return How many signals has been decoded.
int can_bus_t::process_diagnostic_signals(diagnostic_manager_t& manager, const can_message_t& can_message)
{
	int processed_signals = 0;

	utils::signals_manager_t& sm = utils::signals_manager_t::instance();

	std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
	std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();

	openxc_VehicleMessage vehicle_message = manager.find_and_decode_adr(can_message);
	if( (vehicle_message.has_simple_message && vehicle_message.simple_message.has_name) &&
		(s.find(vehicle_message.simple_message.name) != s.end() && afb_event_is_valid(s[vehicle_message.simple_message.name])))
	{
		std::lock_guard<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
		push_new_vehicle_message(vehicle_message);
		processed_signals++;
	}

	return processed_signals;
}

/// @brief thread to decoding raw CAN messages.
///
///  Depending on the nature of message, if arbitration ID matches ID for a diagnostic response
///  then decoding a diagnostic message else use classic CAN signals decoding functions.
///
/// It will take from the can_message_q_ queue the next can message to process then it search
///  about signal subscribed if there is a valid afb_event for it. We only decode signal for which a
///  subscription has been made. Can message will be decoded using translateSignal that will pass it to the
///  corresponding decoding function if there is one assigned for that signal. If not, it will be the default
///  noopDecoder function that will operate on it.
///
///  TODO: make diagnostic messages parsing optionnal.
void can_bus_t::can_decode_message()
{
	can_message_t can_message;

	while(is_decoding_)
	{
		{
			std::unique_lock<std::mutex> can_message_lock(can_message_mutex_);
			new_can_message_cv_.wait(can_message_lock);
			while(!can_message_q_.empty())
			{
				can_message = next_can_message();

				if(configuration_t::instance().get_diagnostic_manager().is_diagnostic_response(can_message))
					process_diagnostic_signals(configuration_t::instance().get_diagnostic_manager(), can_message);
				else
					process_can_signals(can_message);
			}
		}
		new_decoded_can_message_.notify_one();
	}
}

/// @brief thread to push events to suscribers. It will read subscribed_signals map to look
/// which are events that has to be pushed.
void can_bus_t::can_event_push()
{
	openxc_VehicleMessage v_message;
	openxc_SimpleMessage s_message;
	json_object* jo;
	utils::signals_manager_t& sm = utils::signals_manager_t::instance();

	while(is_pushing_)
	{
		std::unique_lock<std::mutex> decoded_can_message_lock(decoded_can_message_mutex_);
		new_decoded_can_message_.wait(decoded_can_message_lock);
		while(!vehicle_message_q_.empty())
		{
			v_message = next_vehicle_message();

			s_message = get_simple_message(v_message);
			{
				std::lock_guard<std::mutex> subscribed_signals_lock(sm.get_subscribed_signals_mutex());
				std::map<std::string, struct afb_event>& s = sm.get_subscribed_signals();
				if(s.find(std::string(s_message.name)) != s.end() && afb_event_is_valid(s[std::string(s_message.name)]))
				{
					jo = json_object_new_object();
					jsonify_simple(s_message, jo);
					if(afb_event_push(s[std::string(s_message.name)], jo) == 0)
						on_no_clients(std::string(s_message.name));
				}
			}
		}
	}
}

/// @brief Will initialize threads that will decode
///  and push subscribed events.
void can_bus_t::start_threads()
{
	is_decoding_ = true;
	th_decoding_ = std::thread(&can_bus_t::can_decode_message, this);
	if(!th_decoding_.joinable())
		is_decoding_ = false;

	is_pushing_ = true;
	th_pushing_ = std::thread(&can_bus_t::can_event_push, this);
	if(!th_pushing_.joinable())
		is_pushing_ = false;
}

/// @brief Will stop all threads holded by can_bus_t object
///  which are decoding and pushing then will wait that's
/// they'll finish their job.
void can_bus_t::stop_threads()
{
	is_decoding_ = false;
	is_pushing_ = false;
}

/// @brief Will initialize can_bus_dev_t objects after reading
/// the configuration file passed in the constructor. All CAN buses
/// Initialized here will be added to a vector holding them for
/// inventory and later access.
///
/// That will initialize CAN socket reading too using a new thread.
///
/// @return 0 if ok, other if not.
int can_bus_t::init_can_dev()
{
	std::vector<std::string> devices_name;
	int i = 0;
	size_t t;

	if(conf_file_.check_conf())
	{
		devices_name = conf_file_.get_devices_name();
		if (! devices_name.empty())
		{
			t = devices_name.size();

			for(const auto& device : devices_name)
			{
				can_bus_t::can_devices_[device] = std::make_shared<can_bus_dev_t>(device, i);
				if (can_bus_t::can_devices_[device]->open(true) >= 0)
				{
					can_bus_t::can_devices_[device]->configure();
					DEBUG(binder_interface, "%s: Start reading thread", __FUNCTION__);
					NOTICE(binder_interface, "%s: %s device opened and reading", __FUNCTION__, device.c_str());
					can_bus_t::can_devices_[device]->start_reading(*this);
					i++;
				}
				else
				{
					ERROR(binder_interface, "%s: Can't open device %s", __FUNCTION__, device.c_str());
					return 1;
				}
			}
			NOTICE(binder_interface, "%s: Initialized %d/%d can bus device(s)", __FUNCTION__, i, (int)t);
			return 0;
		}
		ERROR(binder_interface, "%s: Error at CAN device initialization. No devices read from configuration file", __FUNCTION__);
		return 1;
	}
	ERROR(binder_interface, "%s: Can't read INI configuration file", __FUNCTION__);
	return 2;
}

/// @brief return new_can_message_cv_ member
///
/// @return  return new_can_message_cv_ member
std::condition_variable& can_bus_t::get_new_can_message_cv()
{
	return new_can_message_cv_;
}

/// @brief return can_message_mutex_ member
///
/// @return  return can_message_mutex_ member
std::mutex& can_bus_t::get_can_message_mutex()
{
	return can_message_mutex_;
}

/// @brief Return first can_message_t on the queue
///
/// @return a can_message_t
can_message_t can_bus_t::next_can_message()
{
	can_message_t can_msg;

	if(!can_message_q_.empty())
	{
		can_msg = can_message_q_.front();
		can_message_q_.pop();
		DEBUG(binder_interface, "%s: Here is the next can message : id %X, length %X, data %02X%02X%02X%02X%02X%02X%02X%02X", __FUNCTION__, can_msg.get_id(), can_msg.get_length(),
			can_msg.get_data()[0], can_msg.get_data()[1], can_msg.get_data()[2], can_msg.get_data()[3], can_msg.get_data()[4], can_msg.get_data()[5], can_msg.get_data()[6], can_msg.get_data()[7]);
		return can_msg;
	}

	return can_msg;
}

/// @brief Push a can_message_t into the queue
///
/// @param[in] can_msg - the const reference can_message_t object to push into the queue
void can_bus_t::push_new_can_message(const can_message_t& can_msg)
{
	can_message_q_.push(can_msg);
}

/// @brief Return first openxc_VehicleMessage on the queue
///
/// @return a openxc_VehicleMessage containing a decoded can message
openxc_VehicleMessage can_bus_t::next_vehicle_message()
{
	openxc_VehicleMessage v_msg;

	if(! vehicle_message_q_.empty())
	{
		v_msg = vehicle_message_q_.front();
		vehicle_message_q_.pop();
		DEBUG(binder_interface, "%s: next vehicle message poped", __FUNCTION__);
		return v_msg;
	}

	return v_msg;
}

/// @brief Push a openxc_VehicleMessage into the queue
///
/// @param[in] v_msg - const reference openxc_VehicleMessage object to push into the queue
void can_bus_t::push_new_vehicle_message(const openxc_VehicleMessage& v_msg)
{
	vehicle_message_q_.push(v_msg);
}

/// @brief Return a map with the can_bus_dev_t initialized
///
/// @return map can_bus_dev_m_ map
const std::map<std::string, std::shared_ptr<can_bus_dev_t>>& can_bus_t::get_can_devices() const
{
	return can_bus_t::can_devices_;
}

/// @brief Return the shared pointer on the can_bus_dev_t initialized 
/// with device_name "bus"
///
/// @param[in] bus - CAN bus device name to retrieve.
///
/// @return A shared pointer on an object can_bus_dev_t
std::shared_ptr<can_bus_dev_t> can_bus_t::get_can_device(std::string bus)
{
	return can_bus_t::can_devices_[bus];
}