1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
from __future__ import unicode_literals
import json
import logging
from builtins import str, zip
from pathlib import Path
from snips_inference_agl.common.log_utils import DifferedLoggingMessage
from snips_inference_agl.common.utils import (fitted_required)
from snips_inference_agl.constants import RES_PROBA
from snips_inference_agl.exceptions import LoadingError
from snips_inference_agl.intent_classifier.featurizer import Featurizer
from snips_inference_agl.intent_classifier.intent_classifier import IntentClassifier
from snips_inference_agl.intent_classifier.log_reg_classifier_utils import (text_to_utterance)
from snips_inference_agl.pipeline.configs import LogRegIntentClassifierConfig
from snips_inference_agl.result import intent_classification_result
logger = logging.getLogger(__name__)
# We set tol to 1e-3 to silence the following warning with Python 2 (
# scikit-learn 0.20):
#
# FutureWarning: max_iter and tol parameters have been added in SGDClassifier
# in 0.19. If max_iter is set but tol is left unset, the default value for tol
# in 0.19 and 0.20 will be None (which is equivalent to -infinity, so it has no
# effect) but will change in 0.21 to 1e-3. Specify tol to silence this warning.
LOG_REG_ARGS = {
"loss": "log",
"penalty": "l2",
"max_iter": 1000,
"tol": 1e-3,
"n_jobs": -1
}
@IntentClassifier.register("log_reg_intent_classifier")
class LogRegIntentClassifier(IntentClassifier):
"""Intent classifier which uses a Logistic Regression underneath"""
config_type = LogRegIntentClassifierConfig
def __init__(self, config=None, **shared):
"""The LogReg intent classifier can be configured by passing a
:class:`.LogRegIntentClassifierConfig`"""
super(LogRegIntentClassifier, self).__init__(config, **shared)
self.classifier = None
self.intent_list = None
self.featurizer = None
@property
def fitted(self):
"""Whether or not the intent classifier has already been fitted"""
return self.intent_list is not None
@fitted_required
def get_intent(self, text, intents_filter=None):
"""Performs intent classification on the provided *text*
Args:
text (str): Input
intents_filter (str or list of str): When defined, it will find
the most likely intent among the list, otherwise it will use
the whole list of intents defined in the dataset
Returns:
dict or None: The most likely intent along with its probability or
*None* if no intent was found
Raises:
:class:`snips_nlu.exceptions.NotTrained`: When the intent
classifier is not fitted
"""
return self._get_intents(text, intents_filter)[0]
@fitted_required
def get_intents(self, text):
"""Performs intent classification on the provided *text* and returns
the list of intents ordered by decreasing probability
The length of the returned list is exactly the number of intents in the
dataset + 1 for the None intent
Raises:
:class:`snips_nlu.exceptions.NotTrained`: when the intent
classifier is not fitted
"""
return self._get_intents(text, intents_filter=None)
def _get_intents(self, text, intents_filter):
if isinstance(intents_filter, str):
intents_filter = {intents_filter}
elif isinstance(intents_filter, list):
intents_filter = set(intents_filter)
if not text or not self.intent_list or not self.featurizer:
results = [intent_classification_result(None, 1.0)]
results += [intent_classification_result(i, 0.0)
for i in self.intent_list if i is not None]
return results
if len(self.intent_list) == 1:
return [intent_classification_result(self.intent_list[0], 1.0)]
# pylint: disable=C0103
X = self.featurizer.transform([text_to_utterance(text)])
# pylint: enable=C0103
proba_vec = self._predict_proba(X)
logger.debug(
"%s", DifferedLoggingMessage(self.log_activation_weights, text, X))
results = [
intent_classification_result(i, proba)
for i, proba in zip(self.intent_list, proba_vec[0])
if intents_filter is None or i is None or i in intents_filter]
return sorted(results, key=lambda res: -res[RES_PROBA])
def _predict_proba(self, X): # pylint: disable=C0103
import numpy as np
# self.classifier._check_proba() # pylint: disable=W0212
prob = self.classifier.decision_function(X)
prob *= -1
np.exp(prob, prob)
prob += 1
np.reciprocal(prob, prob)
if prob.ndim == 1:
return np.vstack([1 - prob, prob]).T
return prob
@classmethod
def from_path(cls, path, **shared):
"""Loads a :class:`LogRegIntentClassifier` instance from a path
The data at the given path must have been generated using
:func:`~LogRegIntentClassifier.persist`
"""
import numpy as np
from sklearn.linear_model import SGDClassifier
path = Path(path)
model_path = path / "intent_classifier.json"
if not model_path.exists():
raise LoadingError("Missing intent classifier model file: %s"
% model_path.name)
with model_path.open(encoding="utf8") as f:
model_dict = json.load(f)
# Create the classifier
config = LogRegIntentClassifierConfig.from_dict(model_dict["config"])
intent_classifier = cls(config=config, **shared)
intent_classifier.intent_list = model_dict['intent_list']
# Create the underlying SGD classifier
sgd_classifier = None
coeffs = model_dict['coeffs']
intercept = model_dict['intercept']
t_ = model_dict["t_"]
if coeffs is not None and intercept is not None:
sgd_classifier = SGDClassifier(**LOG_REG_ARGS)
sgd_classifier.coef_ = np.array(coeffs)
sgd_classifier.intercept_ = np.array(intercept)
sgd_classifier.t_ = t_
intent_classifier.classifier = sgd_classifier
# Add the featurizer
featurizer = model_dict['featurizer']
if featurizer is not None:
featurizer_path = path / featurizer
intent_classifier.featurizer = Featurizer.from_path(
featurizer_path, **shared)
return intent_classifier
def log_activation_weights(self, text, x, top_n=50):
import numpy as np
if not hasattr(self.featurizer, "feature_index_to_feature_name"):
return None
log = "\n\nTop {} feature activations for: \"{}\":\n".format(
top_n, text)
activations = np.multiply(
self.classifier.coef_, np.asarray(x.todense()))
abs_activation = np.absolute(activations).flatten().squeeze()
if top_n > activations.size:
top_n = activations.size
top_n_activations_ix = np.argpartition(abs_activation, -top_n,
axis=None)[-top_n:]
top_n_activations_ix = np.unravel_index(
top_n_activations_ix, activations.shape)
index_to_feature = self.featurizer.feature_index_to_feature_name
features_intent_and_activation = [
(self.intent_list[i], index_to_feature[f], activations[i, f])
for i, f in zip(*top_n_activations_ix)]
features_intent_and_activation = sorted(
features_intent_and_activation, key=lambda x: abs(x[2]),
reverse=True)
for intent, feature, activation in features_intent_and_activation:
log += "\n\n\"{}\" -> ({}, {:.2f})".format(
intent, feature, float(activation))
log += "\n\n"
return log
|