1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
from __future__ import unicode_literals
import json
import logging
from builtins import str
from collections import defaultdict
from itertools import combinations
from pathlib import Path
from future.utils import iteritems, itervalues
from snips_nlu_utils import normalize, hash_str
from snips_inference_agl.common.log_utils import log_elapsed_time, log_result
from snips_inference_agl.common.utils import (
check_persisted_path, deduplicate_overlapping_entities, fitted_required,
json_string)
from snips_inference_agl.constants import (
DATA, END, ENTITIES, ENTITY, ENTITY_KIND, INTENTS, LANGUAGE, RES_INTENT,
RES_INTENT_NAME, RES_MATCH_RANGE, RES_SLOTS, SLOT_NAME, START, TEXT,
UTTERANCES, RES_PROBA)
from snips_inference_agl.dataset import (
validate_and_format_dataset, extract_intent_entities)
from snips_inference_agl.dataset.utils import get_stop_words_whitelist
from snips_inference_agl.entity_parser.builtin_entity_parser import is_builtin_entity
from snips_inference_agl.exceptions import IntentNotFoundError, LoadingError
from snips_inference_agl.intent_parser.intent_parser import IntentParser
from snips_inference_agl.pipeline.configs import LookupIntentParserConfig
from snips_inference_agl.preprocessing import tokenize_light
from snips_inference_agl.resources import get_stop_words
from snips_inference_agl.result import (
empty_result, intent_classification_result, parsing_result,
unresolved_slot, extraction_result)
logger = logging.getLogger(__name__)
@IntentParser.register("lookup_intent_parser")
class LookupIntentParser(IntentParser):
"""A deterministic Intent parser implementation based on a dictionary
This intent parser is very strict by nature, and tends to have a very good
precision but a low recall. For this reason, it is interesting to use it
first before potentially falling back to another parser.
"""
config_type = LookupIntentParserConfig
def __init__(self, config=None, **shared):
"""The lookup intent parser can be configured by passing a
:class:`.LookupIntentParserConfig`"""
super(LookupIntentParser, self).__init__(config, **shared)
self._language = None
self._stop_words = None
self._stop_words_whitelist = None
self._map = None
self._intents_names = []
self._slots_names = []
self._intents_mapping = dict()
self._slots_mapping = dict()
self._entity_scopes = None
@property
def language(self):
return self._language
@language.setter
def language(self, value):
self._language = value
if value is None:
self._stop_words = None
else:
if self.config.ignore_stop_words:
self._stop_words = get_stop_words(self.resources)
else:
self._stop_words = set()
@property
def fitted(self):
"""Whether or not the intent parser has already been trained"""
return self._map is not None
@log_elapsed_time(
logger, logging.INFO, "Fitted lookup intent parser in {elapsed_time}")
def fit(self, dataset, force_retrain=True):
"""Fits the intent parser with a valid Snips dataset"""
logger.info("Fitting lookup intent parser...")
dataset = validate_and_format_dataset(dataset)
self.load_resources_if_needed(dataset[LANGUAGE])
self.fit_builtin_entity_parser_if_needed(dataset)
self.fit_custom_entity_parser_if_needed(dataset)
self.language = dataset[LANGUAGE]
self._entity_scopes = _get_entity_scopes(dataset)
self._map = dict()
self._stop_words_whitelist = get_stop_words_whitelist(
dataset, self._stop_words)
entity_placeholders = _get_entity_placeholders(dataset, self.language)
ambiguous_keys = set()
for (key, val) in self._generate_io_mapping(dataset[INTENTS],
entity_placeholders):
key = hash_str(key)
# handle key collisions -*- flag ambiguous entries -*-
if key in self._map and self._map[key] != val:
ambiguous_keys.add(key)
else:
self._map[key] = val
# delete ambiguous keys
for key in ambiguous_keys:
self._map.pop(key)
return self
@log_result(logger, logging.DEBUG, "LookupIntentParser result -> {result}")
@log_elapsed_time(logger, logging.DEBUG, "Parsed in {elapsed_time}.")
@fitted_required
def parse(self, text, intents=None, top_n=None):
"""Performs intent parsing on the provided *text*
Intent and slots are extracted simultaneously through pattern matching
Args:
text (str): input
intents (str or list of str): if provided, reduces the scope of
intent parsing to the provided list of intents
top_n (int, optional): when provided, this method will return a
list of at most top_n most likely intents, instead of a single
parsing result.
Note that the returned list can contain less than ``top_n``
elements, for instance when the parameter ``intents`` is not
None, or when ``top_n`` is greater than the total number of
intents.
Returns:
dict or list: the most likely intent(s) along with the extracted
slots. See :func:`.parsing_result` and :func:`.extraction_result`
for the output format.
Raises:
NotTrained: when the intent parser is not fitted
"""
if top_n is None:
top_intents = self._parse_top_intents(text, top_n=1,
intents=intents)
if top_intents:
intent = top_intents[0][RES_INTENT]
slots = top_intents[0][RES_SLOTS]
if intent[RES_PROBA] <= 0.5:
# return None in case of ambiguity
return empty_result(text, probability=1.0)
return parsing_result(text, intent, slots)
return empty_result(text, probability=1.0)
return self._parse_top_intents(text, top_n=top_n, intents=intents)
def _parse_top_intents(self, text, top_n, intents=None):
if isinstance(intents, str):
intents = {intents}
elif isinstance(intents, list):
intents = set(intents)
if top_n < 1:
raise ValueError(
"top_n argument must be greater or equal to 1, but got: %s"
% top_n)
results_per_intent = defaultdict(list)
for text_candidate, entities in self._get_candidates(text, intents):
val = self._map.get(hash_str(text_candidate))
if val is not None:
result = self._parse_map_output(text, val, entities, intents)
if result:
intent_name = result[RES_INTENT][RES_INTENT_NAME]
results_per_intent[intent_name].append(result)
results = []
for intent_results in itervalues(results_per_intent):
sorted_results = sorted(intent_results,
key=lambda res: len(res[RES_SLOTS]))
results.append(sorted_results[0])
# In some rare cases there can be multiple ambiguous intents
# In such cases, priority is given to results containing fewer slots
weights = [1.0 / (1.0 + len(res[RES_SLOTS])) for res in results]
total_weight = sum(weights)
for res, weight in zip(results, weights):
res[RES_INTENT][RES_PROBA] = weight / total_weight
results = sorted(results, key=lambda r: -r[RES_INTENT][RES_PROBA])
return results[:top_n]
def _get_candidates(self, text, intents):
candidates = defaultdict(list)
for grouped_entity_scope in self._entity_scopes:
entity_scope = grouped_entity_scope["entity_scope"]
intent_group = grouped_entity_scope["intent_group"]
intent_group = [intent_ for intent_ in intent_group
if intents is None or intent_ in intents]
if not intent_group:
continue
builtin_entities = self.builtin_entity_parser.parse(
text, scope=entity_scope["builtin"], use_cache=True)
custom_entities = self.custom_entity_parser.parse(
text, scope=entity_scope["custom"], use_cache=True)
all_entities = builtin_entities + custom_entities
all_entities = deduplicate_overlapping_entities(all_entities)
# We generate all subsets of entities to match utterances
# containing ambivalent words which can be both entity values or
# random words
for entities in _get_entities_combinations(all_entities):
processed_text = self._replace_entities_with_placeholders(
text, entities)
for intent in intent_group:
cleaned_text = self._preprocess_text(text, intent)
cleaned_processed_text = self._preprocess_text(
processed_text, intent)
raw_candidate = cleaned_text, []
placeholder_candidate = cleaned_processed_text, entities
intent_candidates = [raw_candidate, placeholder_candidate]
for text_input, text_entities in intent_candidates:
if text_input not in candidates \
or text_entities not in candidates[text_input]:
candidates[text_input].append(text_entities)
yield text_input, text_entities
def _parse_map_output(self, text, output, entities, intents):
"""Parse the map output to the parser's result format"""
intent_id, slot_ids = output
intent_name = self._intents_names[intent_id]
if intents is not None and intent_name not in intents:
return None
parsed_intent = intent_classification_result(
intent_name=intent_name, probability=1.0)
slots = []
# assert invariant
assert len(slot_ids) == len(entities)
for slot_id, entity in zip(slot_ids, entities):
slot_name = self._slots_names[slot_id]
rng_start = entity[RES_MATCH_RANGE][START]
rng_end = entity[RES_MATCH_RANGE][END]
slot_value = text[rng_start:rng_end]
entity_name = entity[ENTITY_KIND]
slot = unresolved_slot(
[rng_start, rng_end], slot_value, entity_name, slot_name)
slots.append(slot)
return extraction_result(parsed_intent, slots)
@fitted_required
def get_intents(self, text):
"""Returns the list of intents ordered by decreasing probability
The length of the returned list is exactly the number of intents in the
dataset + 1 for the None intent
"""
nb_intents = len(self._intents_names)
top_intents = [intent_result[RES_INTENT] for intent_result in
self._parse_top_intents(text, top_n=nb_intents)]
matched_intents = {res[RES_INTENT_NAME] for res in top_intents}
for intent in self._intents_names:
if intent not in matched_intents:
top_intents.append(intent_classification_result(intent, 0.0))
# The None intent is not included in the lookup table and is thus
# never matched by the lookup parser
top_intents.append(intent_classification_result(None, 0.0))
return top_intents
@fitted_required
def get_slots(self, text, intent):
"""Extracts slots from a text input, with the knowledge of the intent
Args:
text (str): input
intent (str): the intent which the input corresponds to
Returns:
list: the list of extracted slots
Raises:
IntentNotFoundError: When the intent was not part of the training
data
"""
if intent is None:
return []
if intent not in self._intents_names:
raise IntentNotFoundError(intent)
slots = self.parse(text, intents=[intent])[RES_SLOTS]
if slots is None:
slots = []
return slots
def _get_intent_stop_words(self, intent):
whitelist = self._stop_words_whitelist.get(intent, set())
return self._stop_words.difference(whitelist)
def _get_intent_id(self, intent_name):
"""generate a numeric id for an intent
Args:
intent_name (str): intent name
Returns:
int: numeric id
"""
intent_id = self._intents_mapping.get(intent_name)
if intent_id is None:
intent_id = len(self._intents_names)
self._intents_names.append(intent_name)
self._intents_mapping[intent_name] = intent_id
return intent_id
def _get_slot_id(self, slot_name):
"""generate a numeric id for a slot
Args:
slot_name (str): intent name
Returns:
int: numeric id
"""
slot_id = self._slots_mapping.get(slot_name)
if slot_id is None:
slot_id = len(self._slots_names)
self._slots_names.append(slot_name)
self._slots_mapping[slot_name] = slot_id
return slot_id
def _preprocess_text(self, txt, intent):
"""Replaces stop words and characters that are tokenized out by
whitespaces"""
stop_words = self._get_intent_stop_words(intent)
tokens = tokenize_light(txt, self.language)
cleaned_string = " ".join(
[tkn for tkn in tokens if normalize(tkn) not in stop_words])
return cleaned_string.lower()
def _generate_io_mapping(self, intents, entity_placeholders):
"""Generate input-output pairs"""
for intent_name, intent in sorted(iteritems(intents)):
intent_id = self._get_intent_id(intent_name)
for entry in intent[UTTERANCES]:
yield self._build_io_mapping(
intent_id, entry, entity_placeholders)
def _build_io_mapping(self, intent_id, utterance, entity_placeholders):
input_ = []
output = [intent_id]
slots = []
for chunk in utterance[DATA]:
if SLOT_NAME in chunk:
slot_name = chunk[SLOT_NAME]
slot_id = self._get_slot_id(slot_name)
entity_name = chunk[ENTITY]
placeholder = entity_placeholders[entity_name]
input_.append(placeholder)
slots.append(slot_id)
else:
input_.append(chunk[TEXT])
output.append(slots)
intent = self._intents_names[intent_id]
key = self._preprocess_text(" ".join(input_), intent)
return key, output
def _replace_entities_with_placeholders(self, text, entities):
if not entities:
return text
entities = sorted(entities, key=lambda e: e[RES_MATCH_RANGE][START])
processed_text = ""
current_idx = 0
for ent in entities:
start = ent[RES_MATCH_RANGE][START]
end = ent[RES_MATCH_RANGE][END]
processed_text += text[current_idx:start]
place_holder = _get_entity_name_placeholder(
ent[ENTITY_KIND], self.language)
processed_text += place_holder
current_idx = end
processed_text += text[current_idx:]
return processed_text
@check_persisted_path
def persist(self, path):
"""Persists the object at the given path"""
path.mkdir()
parser_json = json_string(self.to_dict())
parser_path = path / "intent_parser.json"
with parser_path.open(mode="w", encoding="utf8") as pfile:
pfile.write(parser_json)
self.persist_metadata(path)
@classmethod
def from_path(cls, path, **shared):
"""Loads a :class:`LookupIntentParser` instance from a path
The data at the given path must have been generated using
:func:`~LookupIntentParser.persist`
"""
path = Path(path)
model_path = path / "intent_parser.json"
if not model_path.exists():
raise LoadingError(
"Missing lookup intent parser metadata file: %s"
% model_path.name)
with model_path.open(encoding="utf8") as pfile:
metadata = json.load(pfile)
return cls.from_dict(metadata, **shared)
def to_dict(self):
"""Returns a json-serializable dict"""
stop_words_whitelist = None
if self._stop_words_whitelist is not None:
stop_words_whitelist = {
intent: sorted(values)
for intent, values in iteritems(self._stop_words_whitelist)}
return {
"config": self.config.to_dict(),
"language_code": self.language,
"map": self._map,
"slots_names": self._slots_names,
"intents_names": self._intents_names,
"entity_scopes": self._entity_scopes,
"stop_words_whitelist": stop_words_whitelist,
}
@classmethod
def from_dict(cls, unit_dict, **shared):
"""Creates a :class:`LookupIntentParser` instance from a dict
The dict must have been generated with
:func:`~LookupIntentParser.to_dict`
"""
config = cls.config_type.from_dict(unit_dict["config"])
parser = cls(config=config, **shared)
parser.language = unit_dict["language_code"]
# pylint:disable=protected-access
parser._map = _convert_dict_keys_to_int(unit_dict["map"])
parser._slots_names = unit_dict["slots_names"]
parser._intents_names = unit_dict["intents_names"]
parser._entity_scopes = unit_dict["entity_scopes"]
if parser.fitted:
whitelist = unit_dict["stop_words_whitelist"]
parser._stop_words_whitelist = {
intent: set(values) for intent, values in iteritems(whitelist)}
# pylint:enable=protected-access
return parser
def _get_entity_scopes(dataset):
intent_entities = extract_intent_entities(dataset)
intent_groups = []
entity_scopes = []
for intent, entities in sorted(iteritems(intent_entities)):
scope = {
"builtin": list(
{ent for ent in entities if is_builtin_entity(ent)}),
"custom": list(
{ent for ent in entities if not is_builtin_entity(ent)})
}
if scope in entity_scopes:
group_idx = entity_scopes.index(scope)
intent_groups[group_idx].append(intent)
else:
entity_scopes.append(scope)
intent_groups.append([intent])
return [
{
"intent_group": intent_group,
"entity_scope": entity_scope
} for intent_group, entity_scope in zip(intent_groups, entity_scopes)
]
def _get_entity_placeholders(dataset, language):
return {
e: _get_entity_name_placeholder(e, language) for e in dataset[ENTITIES]
}
def _get_entity_name_placeholder(entity_label, language):
return "%%%s%%" % "".join(tokenize_light(entity_label, language)).upper()
def _convert_dict_keys_to_int(dct):
if isinstance(dct, dict):
return {int(k): v for k, v in iteritems(dct)}
return dct
def _get_entities_combinations(entities):
yield ()
for nb_entities in reversed(range(1, len(entities) + 1)):
for combination in combinations(entities, nb_entities):
yield combination
|