aboutsummaryrefslogtreecommitdiffstats
path: root/snips_inference_agl/intent_parser/probabilistic_intent_parser.py
blob: 23e7829373635573647463bffb75f4694941a476 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from __future__ import unicode_literals

import json
import logging
from builtins import str
from copy import deepcopy
from datetime import datetime
from pathlib import Path

from future.utils import iteritems, itervalues

from snips_inference_agl.common.log_utils import log_elapsed_time, log_result
from snips_inference_agl.common.utils import (
    check_persisted_path, elapsed_since, fitted_required, json_string)
from snips_inference_agl.constants import INTENTS, RES_INTENT_NAME
from snips_inference_agl.dataset import validate_and_format_dataset
from snips_inference_agl.exceptions import IntentNotFoundError, LoadingError
from snips_inference_agl.intent_classifier import IntentClassifier
from snips_inference_agl.intent_parser.intent_parser import IntentParser
from snips_inference_agl.pipeline.configs import ProbabilisticIntentParserConfig
from snips_inference_agl.result import parsing_result, extraction_result
from snips_inference_agl.slot_filler import SlotFiller

logger = logging.getLogger(__name__)


@IntentParser.register("probabilistic_intent_parser")
class ProbabilisticIntentParser(IntentParser):
    """Intent parser which consists in two steps: intent classification then
    slot filling"""

    config_type = ProbabilisticIntentParserConfig

    def __init__(self, config=None, **shared):
        """The probabilistic intent parser can be configured by passing a
        :class:`.ProbabilisticIntentParserConfig`"""
        super(ProbabilisticIntentParser, self).__init__(config, **shared)
        self.intent_classifier = None
        self.slot_fillers = dict()

    @property
    def fitted(self):
        """Whether or not the intent parser has already been fitted"""
        return self.intent_classifier is not None \
               and self.intent_classifier.fitted \
               and all(slot_filler is not None and slot_filler.fitted
                       for slot_filler in itervalues(self.slot_fillers))

    @log_elapsed_time(logger, logging.INFO,
                      "Fitted probabilistic intent parser in {elapsed_time}")
    # pylint:disable=arguments-differ
    def fit(self, dataset, force_retrain=True):
        """Fits the probabilistic intent parser

        Args:
            dataset (dict): A valid Snips dataset
            force_retrain (bool, optional): If *False*, will not retrain intent
                classifier and slot fillers when they are already fitted.
                Default to *True*.

        Returns:
            :class:`ProbabilisticIntentParser`: The same instance, trained
        """
        logger.info("Fitting probabilistic intent parser...")
        dataset = validate_and_format_dataset(dataset)
        intents = list(dataset[INTENTS])
        if self.intent_classifier is None:
            self.intent_classifier = IntentClassifier.from_config(
                self.config.intent_classifier_config,
                builtin_entity_parser=self.builtin_entity_parser,
                custom_entity_parser=self.custom_entity_parser,
                resources=self.resources,
                random_state=self.random_state,
            )

        if force_retrain or not self.intent_classifier.fitted:
            self.intent_classifier.fit(dataset)

        if self.slot_fillers is None:
            self.slot_fillers = dict()
        slot_fillers_start = datetime.now()
        for intent_name in intents:
            # We need to copy the slot filler config as it may be mutated
            if self.slot_fillers.get(intent_name) is None:
                slot_filler_config = deepcopy(self.config.slot_filler_config)
                self.slot_fillers[intent_name] = SlotFiller.from_config(
                    slot_filler_config,
                    builtin_entity_parser=self.builtin_entity_parser,
                    custom_entity_parser=self.custom_entity_parser,
                    resources=self.resources,
                    random_state=self.random_state,
                )
            if force_retrain or not self.slot_fillers[intent_name].fitted:
                self.slot_fillers[intent_name].fit(dataset, intent_name)
        logger.debug("Fitted slot fillers in %s",
                     elapsed_since(slot_fillers_start))
        return self

    # pylint:enable=arguments-differ

    @log_result(logger, logging.DEBUG,
                "ProbabilisticIntentParser result -> {result}")
    @log_elapsed_time(logger, logging.DEBUG,
                      "ProbabilisticIntentParser parsed in {elapsed_time}")
    @fitted_required
    def parse(self, text, intents=None, top_n=None):
        """Performs intent parsing on the provided *text* by first classifying
        the intent and then using the correspond slot filler to extract slots

        Args:
            text (str): input
            intents (str or list of str): if provided, reduces the scope of
                intent parsing to the provided list of intents
            top_n (int, optional): when provided, this method will return a
                list of at most top_n most likely intents, instead of a single
                parsing result.
                Note that the returned list can contain less than ``top_n``
                elements, for instance when the parameter ``intents`` is not
                None, or when ``top_n`` is greater than the total number of
                intents.

        Returns:
            dict or list: the most likely intent(s) along with the extracted
            slots. See :func:`.parsing_result` and :func:`.extraction_result`
            for the output format.

        Raises:
            NotTrained: when the intent parser is not fitted
        """
        if isinstance(intents, str):
            intents = {intents}
        elif isinstance(intents, list):
            intents = list(intents)

        if top_n is None:
            intent_result = self.intent_classifier.get_intent(text, intents)
            intent_name = intent_result[RES_INTENT_NAME]
            if intent_name is not None:
                slots = self.slot_fillers[intent_name].get_slots(text)
            else:
                slots = []
            return parsing_result(text, intent_result, slots)

        results = []
        intents_results = self.intent_classifier.get_intents(text)
        for intent_result in intents_results[:top_n]:
            intent_name = intent_result[RES_INTENT_NAME]
            if intent_name is not None:
                slots = self.slot_fillers[intent_name].get_slots(text)
            else:
                slots = []
            results.append(extraction_result(intent_result, slots))
        return results

    @fitted_required
    def get_intents(self, text):
        """Returns the list of intents ordered by decreasing probability

        The length of the returned list is exactly the number of intents in the
        dataset + 1 for the None intent
        """
        return self.intent_classifier.get_intents(text)

    @fitted_required
    def get_slots(self, text, intent):
        """Extracts slots from a text input, with the knowledge of the intent

        Args:
            text (str): input
            intent (str): the intent which the input corresponds to

        Returns:
            list: the list of extracted slots

        Raises:
            IntentNotFoundError: When the intent was not part of the training
                data
        """
        if intent is None:
            return []

        if intent not in self.slot_fillers:
            raise IntentNotFoundError(intent)
        return self.slot_fillers[intent].get_slots(text)

    @check_persisted_path
    def persist(self, path):
        """Persists the object at the given path"""
        path.mkdir()
        sorted_slot_fillers = sorted(iteritems(self.slot_fillers))
        slot_fillers = []
        for i, (intent, slot_filler) in enumerate(sorted_slot_fillers):
            slot_filler_name = "slot_filler_%s" % i
            slot_filler.persist(path / slot_filler_name)
            slot_fillers.append({
                "intent": intent,
                "slot_filler_name": slot_filler_name
            })

        if self.intent_classifier is not None:
            self.intent_classifier.persist(path / "intent_classifier")

        model = {
            "config": self.config.to_dict(),
            "slot_fillers": slot_fillers
        }
        model_json = json_string(model)
        model_path = path / "intent_parser.json"
        with model_path.open(mode="w") as f:
            f.write(model_json)
        self.persist_metadata(path)

    @classmethod
    def from_path(cls, path, **shared):
        """Loads a :class:`ProbabilisticIntentParser` instance from a path

        The data at the given path must have been generated using
        :func:`~ProbabilisticIntentParser.persist`
        """
        path = Path(path)
        model_path = path / "intent_parser.json"
        if not model_path.exists():
            raise LoadingError(
                "Missing probabilistic intent parser model file: %s"
                % model_path.name)

        with model_path.open(encoding="utf8") as f:
            model = json.load(f)

        config = cls.config_type.from_dict(model["config"])
        parser = cls(config=config, **shared)
        classifier = None
        intent_classifier_path = path / "intent_classifier"
        if intent_classifier_path.exists():
            classifier_unit_name = config.intent_classifier_config.unit_name
            classifier = IntentClassifier.load_from_path(
                intent_classifier_path, classifier_unit_name, **shared)

        slot_fillers = dict()
        slot_filler_unit_name = config.slot_filler_config.unit_name
        for slot_filler_conf in model["slot_fillers"]:
            intent = slot_filler_conf["intent"]
            slot_filler_path = path / slot_filler_conf["slot_filler_name"]
            slot_filler = SlotFiller.load_from_path(
                slot_filler_path, slot_filler_unit_name, **shared)
            slot_fillers[intent] = slot_filler

        parser.intent_classifier = classifier
        parser.slot_fillers = slot_fillers
        return parser