aboutsummaryrefslogtreecommitdiffstats
path: root/accel/tcg/translate-all.c
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /accel/tcg/translate-all.c
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'accel/tcg/translate-all.c')
-rw-r--r--accel/tcg/translate-all.c2490
1 files changed, 2490 insertions, 0 deletions
diff --git a/accel/tcg/translate-all.c b/accel/tcg/translate-all.c
new file mode 100644
index 000000000..bd71db59a
--- /dev/null
+++ b/accel/tcg/translate-all.c
@@ -0,0 +1,2490 @@
+/*
+ * Host code generation
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+
+#define NO_CPU_IO_DEFS
+#include "trace.h"
+#include "disas/disas.h"
+#include "exec/exec-all.h"
+#include "tcg/tcg.h"
+#if defined(CONFIG_USER_ONLY)
+#include "qemu.h"
+#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
+#include <sys/param.h>
+#if __FreeBSD_version >= 700104
+#define HAVE_KINFO_GETVMMAP
+#define sigqueue sigqueue_freebsd /* avoid redefinition */
+#include <sys/proc.h>
+#include <machine/profile.h>
+#define _KERNEL
+#include <sys/user.h>
+#undef _KERNEL
+#undef sigqueue
+#include <libutil.h>
+#endif
+#endif
+#else
+#include "exec/ram_addr.h"
+#endif
+
+#include "exec/cputlb.h"
+#include "exec/translate-all.h"
+#include "qemu/bitmap.h"
+#include "qemu/qemu-print.h"
+#include "qemu/timer.h"
+#include "qemu/main-loop.h"
+#include "exec/log.h"
+#include "sysemu/cpus.h"
+#include "sysemu/cpu-timers.h"
+#include "sysemu/tcg.h"
+#include "qapi/error.h"
+#include "hw/core/tcg-cpu-ops.h"
+#include "tb-hash.h"
+#include "tb-context.h"
+#include "internal.h"
+
+/* #define DEBUG_TB_INVALIDATE */
+/* #define DEBUG_TB_FLUSH */
+/* make various TB consistency checks */
+/* #define DEBUG_TB_CHECK */
+
+#ifdef DEBUG_TB_INVALIDATE
+#define DEBUG_TB_INVALIDATE_GATE 1
+#else
+#define DEBUG_TB_INVALIDATE_GATE 0
+#endif
+
+#ifdef DEBUG_TB_FLUSH
+#define DEBUG_TB_FLUSH_GATE 1
+#else
+#define DEBUG_TB_FLUSH_GATE 0
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation. */
+#undef DEBUG_TB_CHECK
+#endif
+
+#ifdef DEBUG_TB_CHECK
+#define DEBUG_TB_CHECK_GATE 1
+#else
+#define DEBUG_TB_CHECK_GATE 0
+#endif
+
+/* Access to the various translations structures need to be serialised via locks
+ * for consistency.
+ * In user-mode emulation access to the memory related structures are protected
+ * with mmap_lock.
+ * In !user-mode we use per-page locks.
+ */
+#ifdef CONFIG_SOFTMMU
+#define assert_memory_lock()
+#else
+#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
+#endif
+
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+typedef struct PageDesc {
+ /* list of TBs intersecting this ram page */
+ uintptr_t first_tb;
+#ifdef CONFIG_SOFTMMU
+ /* in order to optimize self modifying code, we count the number
+ of lookups we do to a given page to use a bitmap */
+ unsigned long *code_bitmap;
+ unsigned int code_write_count;
+#else
+ unsigned long flags;
+ void *target_data;
+#endif
+#ifndef CONFIG_USER_ONLY
+ QemuSpin lock;
+#endif
+} PageDesc;
+
+/**
+ * struct page_entry - page descriptor entry
+ * @pd: pointer to the &struct PageDesc of the page this entry represents
+ * @index: page index of the page
+ * @locked: whether the page is locked
+ *
+ * This struct helps us keep track of the locked state of a page, without
+ * bloating &struct PageDesc.
+ *
+ * A page lock protects accesses to all fields of &struct PageDesc.
+ *
+ * See also: &struct page_collection.
+ */
+struct page_entry {
+ PageDesc *pd;
+ tb_page_addr_t index;
+ bool locked;
+};
+
+/**
+ * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
+ * @tree: Binary search tree (BST) of the pages, with key == page index
+ * @max: Pointer to the page in @tree with the highest page index
+ *
+ * To avoid deadlock we lock pages in ascending order of page index.
+ * When operating on a set of pages, we need to keep track of them so that
+ * we can lock them in order and also unlock them later. For this we collect
+ * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
+ * @tree implementation we use does not provide an O(1) operation to obtain the
+ * highest-ranked element, we use @max to keep track of the inserted page
+ * with the highest index. This is valuable because if a page is not in
+ * the tree and its index is higher than @max's, then we can lock it
+ * without breaking the locking order rule.
+ *
+ * Note on naming: 'struct page_set' would be shorter, but we already have a few
+ * page_set_*() helpers, so page_collection is used instead to avoid confusion.
+ *
+ * See also: page_collection_lock().
+ */
+struct page_collection {
+ GTree *tree;
+ struct page_entry *max;
+};
+
+/* list iterators for lists of tagged pointers in TranslationBlock */
+#define TB_FOR_EACH_TAGGED(head, tb, n, field) \
+ for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
+ tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
+ tb = (TranslationBlock *)((uintptr_t)tb & ~1))
+
+#define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
+ TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
+
+#define TB_FOR_EACH_JMP(head_tb, tb, n) \
+ TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
+
+/*
+ * In system mode we want L1_MAP to be based on ram offsets,
+ * while in user mode we want it to be based on virtual addresses.
+ *
+ * TODO: For user mode, see the caveat re host vs guest virtual
+ * address spaces near GUEST_ADDR_MAX.
+ */
+#if !defined(CONFIG_USER_ONLY)
+#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
+# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+#else
+# define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
+#endif
+
+/* Size of the L2 (and L3, etc) page tables. */
+#define V_L2_BITS 10
+#define V_L2_SIZE (1 << V_L2_BITS)
+
+/* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
+QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
+ sizeof_field(TranslationBlock, trace_vcpu_dstate)
+ * BITS_PER_BYTE);
+
+/*
+ * L1 Mapping properties
+ */
+static int v_l1_size;
+static int v_l1_shift;
+static int v_l2_levels;
+
+/* The bottom level has pointers to PageDesc, and is indexed by
+ * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
+ */
+#define V_L1_MIN_BITS 4
+#define V_L1_MAX_BITS (V_L2_BITS + 3)
+#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
+
+static void *l1_map[V_L1_MAX_SIZE];
+
+TBContext tb_ctx;
+
+static void page_table_config_init(void)
+{
+ uint32_t v_l1_bits;
+
+ assert(TARGET_PAGE_BITS);
+ /* The bits remaining after N lower levels of page tables. */
+ v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
+ if (v_l1_bits < V_L1_MIN_BITS) {
+ v_l1_bits += V_L2_BITS;
+ }
+
+ v_l1_size = 1 << v_l1_bits;
+ v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
+ v_l2_levels = v_l1_shift / V_L2_BITS - 1;
+
+ assert(v_l1_bits <= V_L1_MAX_BITS);
+ assert(v_l1_shift % V_L2_BITS == 0);
+ assert(v_l2_levels >= 0);
+}
+
+/* Encode VAL as a signed leb128 sequence at P.
+ Return P incremented past the encoded value. */
+static uint8_t *encode_sleb128(uint8_t *p, target_long val)
+{
+ int more, byte;
+
+ do {
+ byte = val & 0x7f;
+ val >>= 7;
+ more = !((val == 0 && (byte & 0x40) == 0)
+ || (val == -1 && (byte & 0x40) != 0));
+ if (more) {
+ byte |= 0x80;
+ }
+ *p++ = byte;
+ } while (more);
+
+ return p;
+}
+
+/* Decode a signed leb128 sequence at *PP; increment *PP past the
+ decoded value. Return the decoded value. */
+static target_long decode_sleb128(const uint8_t **pp)
+{
+ const uint8_t *p = *pp;
+ target_long val = 0;
+ int byte, shift = 0;
+
+ do {
+ byte = *p++;
+ val |= (target_ulong)(byte & 0x7f) << shift;
+ shift += 7;
+ } while (byte & 0x80);
+ if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
+ val |= -(target_ulong)1 << shift;
+ }
+
+ *pp = p;
+ return val;
+}
+
+/* Encode the data collected about the instructions while compiling TB.
+ Place the data at BLOCK, and return the number of bytes consumed.
+
+ The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
+ which come from the target's insn_start data, followed by a uintptr_t
+ which comes from the host pc of the end of the code implementing the insn.
+
+ Each line of the table is encoded as sleb128 deltas from the previous
+ line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
+ That is, the first column is seeded with the guest pc, the last column
+ with the host pc, and the middle columns with zeros. */
+
+static int encode_search(TranslationBlock *tb, uint8_t *block)
+{
+ uint8_t *highwater = tcg_ctx->code_gen_highwater;
+ uint8_t *p = block;
+ int i, j, n;
+
+ for (i = 0, n = tb->icount; i < n; ++i) {
+ target_ulong prev;
+
+ for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
+ if (i == 0) {
+ prev = (j == 0 ? tb->pc : 0);
+ } else {
+ prev = tcg_ctx->gen_insn_data[i - 1][j];
+ }
+ p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
+ }
+ prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
+ p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
+
+ /* Test for (pending) buffer overflow. The assumption is that any
+ one row beginning below the high water mark cannot overrun
+ the buffer completely. Thus we can test for overflow after
+ encoding a row without having to check during encoding. */
+ if (unlikely(p > highwater)) {
+ return -1;
+ }
+ }
+
+ return p - block;
+}
+
+/* The cpu state corresponding to 'searched_pc' is restored.
+ * When reset_icount is true, current TB will be interrupted and
+ * icount should be recalculated.
+ */
+static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
+ uintptr_t searched_pc, bool reset_icount)
+{
+ target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
+ uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
+ CPUArchState *env = cpu->env_ptr;
+ const uint8_t *p = tb->tc.ptr + tb->tc.size;
+ int i, j, num_insns = tb->icount;
+#ifdef CONFIG_PROFILER
+ TCGProfile *prof = &tcg_ctx->prof;
+ int64_t ti = profile_getclock();
+#endif
+
+ searched_pc -= GETPC_ADJ;
+
+ if (searched_pc < host_pc) {
+ return -1;
+ }
+
+ /* Reconstruct the stored insn data while looking for the point at
+ which the end of the insn exceeds the searched_pc. */
+ for (i = 0; i < num_insns; ++i) {
+ for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
+ data[j] += decode_sleb128(&p);
+ }
+ host_pc += decode_sleb128(&p);
+ if (host_pc > searched_pc) {
+ goto found;
+ }
+ }
+ return -1;
+
+ found:
+ if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
+ assert(icount_enabled());
+ /* Reset the cycle counter to the start of the block
+ and shift if to the number of actually executed instructions */
+ cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
+ }
+ restore_state_to_opc(env, tb, data);
+
+#ifdef CONFIG_PROFILER
+ qatomic_set(&prof->restore_time,
+ prof->restore_time + profile_getclock() - ti);
+ qatomic_set(&prof->restore_count, prof->restore_count + 1);
+#endif
+ return 0;
+}
+
+bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
+{
+ /*
+ * The host_pc has to be in the rx region of the code buffer.
+ * If it is not we will not be able to resolve it here.
+ * The two cases where host_pc will not be correct are:
+ *
+ * - fault during translation (instruction fetch)
+ * - fault from helper (not using GETPC() macro)
+ *
+ * Either way we need return early as we can't resolve it here.
+ */
+ if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
+ TranslationBlock *tb = tcg_tb_lookup(host_pc);
+ if (tb) {
+ cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
+ return true;
+ }
+ }
+ return false;
+}
+
+void page_init(void)
+{
+ page_size_init();
+ page_table_config_init();
+
+#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
+ {
+#ifdef HAVE_KINFO_GETVMMAP
+ struct kinfo_vmentry *freep;
+ int i, cnt;
+
+ freep = kinfo_getvmmap(getpid(), &cnt);
+ if (freep) {
+ mmap_lock();
+ for (i = 0; i < cnt; i++) {
+ unsigned long startaddr, endaddr;
+
+ startaddr = freep[i].kve_start;
+ endaddr = freep[i].kve_end;
+ if (h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ } else {
+#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
+ endaddr = ~0ul;
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+#endif
+ }
+ }
+ }
+ free(freep);
+ mmap_unlock();
+ }
+#else
+ FILE *f;
+
+ last_brk = (unsigned long)sbrk(0);
+
+ f = fopen("/compat/linux/proc/self/maps", "r");
+ if (f) {
+ mmap_lock();
+
+ do {
+ unsigned long startaddr, endaddr;
+ int n;
+
+ n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
+
+ if (n == 2 && h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ } else {
+ endaddr = ~0ul;
+ }
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ }
+ } while (!feof(f));
+
+ fclose(f);
+ mmap_unlock();
+ }
+#endif
+ }
+#endif
+}
+
+static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
+{
+ PageDesc *pd;
+ void **lp;
+ int i;
+
+ /* Level 1. Always allocated. */
+ lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
+
+ /* Level 2..N-1. */
+ for (i = v_l2_levels; i > 0; i--) {
+ void **p = qatomic_rcu_read(lp);
+
+ if (p == NULL) {
+ void *existing;
+
+ if (!alloc) {
+ return NULL;
+ }
+ p = g_new0(void *, V_L2_SIZE);
+ existing = qatomic_cmpxchg(lp, NULL, p);
+ if (unlikely(existing)) {
+ g_free(p);
+ p = existing;
+ }
+ }
+
+ lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
+ }
+
+ pd = qatomic_rcu_read(lp);
+ if (pd == NULL) {
+ void *existing;
+
+ if (!alloc) {
+ return NULL;
+ }
+ pd = g_new0(PageDesc, V_L2_SIZE);
+#ifndef CONFIG_USER_ONLY
+ {
+ int i;
+
+ for (i = 0; i < V_L2_SIZE; i++) {
+ qemu_spin_init(&pd[i].lock);
+ }
+ }
+#endif
+ existing = qatomic_cmpxchg(lp, NULL, pd);
+ if (unlikely(existing)) {
+#ifndef CONFIG_USER_ONLY
+ {
+ int i;
+
+ for (i = 0; i < V_L2_SIZE; i++) {
+ qemu_spin_destroy(&pd[i].lock);
+ }
+ }
+#endif
+ g_free(pd);
+ pd = existing;
+ }
+ }
+
+ return pd + (index & (V_L2_SIZE - 1));
+}
+
+static inline PageDesc *page_find(tb_page_addr_t index)
+{
+ return page_find_alloc(index, 0);
+}
+
+static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
+ PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
+
+/* In user-mode page locks aren't used; mmap_lock is enough */
+#ifdef CONFIG_USER_ONLY
+
+#define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
+
+static inline void page_lock(PageDesc *pd)
+{ }
+
+static inline void page_unlock(PageDesc *pd)
+{ }
+
+static inline void page_lock_tb(const TranslationBlock *tb)
+{ }
+
+static inline void page_unlock_tb(const TranslationBlock *tb)
+{ }
+
+struct page_collection *
+page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
+{
+ return NULL;
+}
+
+void page_collection_unlock(struct page_collection *set)
+{ }
+#else /* !CONFIG_USER_ONLY */
+
+#ifdef CONFIG_DEBUG_TCG
+
+static __thread GHashTable *ht_pages_locked_debug;
+
+static void ht_pages_locked_debug_init(void)
+{
+ if (ht_pages_locked_debug) {
+ return;
+ }
+ ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
+}
+
+static bool page_is_locked(const PageDesc *pd)
+{
+ PageDesc *found;
+
+ ht_pages_locked_debug_init();
+ found = g_hash_table_lookup(ht_pages_locked_debug, pd);
+ return !!found;
+}
+
+static void page_lock__debug(PageDesc *pd)
+{
+ ht_pages_locked_debug_init();
+ g_assert(!page_is_locked(pd));
+ g_hash_table_insert(ht_pages_locked_debug, pd, pd);
+}
+
+static void page_unlock__debug(const PageDesc *pd)
+{
+ bool removed;
+
+ ht_pages_locked_debug_init();
+ g_assert(page_is_locked(pd));
+ removed = g_hash_table_remove(ht_pages_locked_debug, pd);
+ g_assert(removed);
+}
+
+static void
+do_assert_page_locked(const PageDesc *pd, const char *file, int line)
+{
+ if (unlikely(!page_is_locked(pd))) {
+ error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
+ pd, file, line);
+ abort();
+ }
+}
+
+#define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
+
+void assert_no_pages_locked(void)
+{
+ ht_pages_locked_debug_init();
+ g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
+}
+
+#else /* !CONFIG_DEBUG_TCG */
+
+#define assert_page_locked(pd)
+
+static inline void page_lock__debug(const PageDesc *pd)
+{
+}
+
+static inline void page_unlock__debug(const PageDesc *pd)
+{
+}
+
+#endif /* CONFIG_DEBUG_TCG */
+
+static inline void page_lock(PageDesc *pd)
+{
+ page_lock__debug(pd);
+ qemu_spin_lock(&pd->lock);
+}
+
+static inline void page_unlock(PageDesc *pd)
+{
+ qemu_spin_unlock(&pd->lock);
+ page_unlock__debug(pd);
+}
+
+/* lock the page(s) of a TB in the correct acquisition order */
+static inline void page_lock_tb(const TranslationBlock *tb)
+{
+ page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
+}
+
+static inline void page_unlock_tb(const TranslationBlock *tb)
+{
+ PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+
+ page_unlock(p1);
+ if (unlikely(tb->page_addr[1] != -1)) {
+ PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+
+ if (p2 != p1) {
+ page_unlock(p2);
+ }
+ }
+}
+
+static inline struct page_entry *
+page_entry_new(PageDesc *pd, tb_page_addr_t index)
+{
+ struct page_entry *pe = g_malloc(sizeof(*pe));
+
+ pe->index = index;
+ pe->pd = pd;
+ pe->locked = false;
+ return pe;
+}
+
+static void page_entry_destroy(gpointer p)
+{
+ struct page_entry *pe = p;
+
+ g_assert(pe->locked);
+ page_unlock(pe->pd);
+ g_free(pe);
+}
+
+/* returns false on success */
+static bool page_entry_trylock(struct page_entry *pe)
+{
+ bool busy;
+
+ busy = qemu_spin_trylock(&pe->pd->lock);
+ if (!busy) {
+ g_assert(!pe->locked);
+ pe->locked = true;
+ page_lock__debug(pe->pd);
+ }
+ return busy;
+}
+
+static void do_page_entry_lock(struct page_entry *pe)
+{
+ page_lock(pe->pd);
+ g_assert(!pe->locked);
+ pe->locked = true;
+}
+
+static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
+{
+ struct page_entry *pe = value;
+
+ do_page_entry_lock(pe);
+ return FALSE;
+}
+
+static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
+{
+ struct page_entry *pe = value;
+
+ if (pe->locked) {
+ pe->locked = false;
+ page_unlock(pe->pd);
+ }
+ return FALSE;
+}
+
+/*
+ * Trylock a page, and if successful, add the page to a collection.
+ * Returns true ("busy") if the page could not be locked; false otherwise.
+ */
+static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
+{
+ tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
+ struct page_entry *pe;
+ PageDesc *pd;
+
+ pe = g_tree_lookup(set->tree, &index);
+ if (pe) {
+ return false;
+ }
+
+ pd = page_find(index);
+ if (pd == NULL) {
+ return false;
+ }
+
+ pe = page_entry_new(pd, index);
+ g_tree_insert(set->tree, &pe->index, pe);
+
+ /*
+ * If this is either (1) the first insertion or (2) a page whose index
+ * is higher than any other so far, just lock the page and move on.
+ */
+ if (set->max == NULL || pe->index > set->max->index) {
+ set->max = pe;
+ do_page_entry_lock(pe);
+ return false;
+ }
+ /*
+ * Try to acquire out-of-order lock; if busy, return busy so that we acquire
+ * locks in order.
+ */
+ return page_entry_trylock(pe);
+}
+
+static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
+{
+ tb_page_addr_t a = *(const tb_page_addr_t *)ap;
+ tb_page_addr_t b = *(const tb_page_addr_t *)bp;
+
+ if (a == b) {
+ return 0;
+ } else if (a < b) {
+ return -1;
+ }
+ return 1;
+}
+
+/*
+ * Lock a range of pages ([@start,@end[) as well as the pages of all
+ * intersecting TBs.
+ * Locking order: acquire locks in ascending order of page index.
+ */
+struct page_collection *
+page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
+{
+ struct page_collection *set = g_malloc(sizeof(*set));
+ tb_page_addr_t index;
+ PageDesc *pd;
+
+ start >>= TARGET_PAGE_BITS;
+ end >>= TARGET_PAGE_BITS;
+ g_assert(start <= end);
+
+ set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
+ page_entry_destroy);
+ set->max = NULL;
+ assert_no_pages_locked();
+
+ retry:
+ g_tree_foreach(set->tree, page_entry_lock, NULL);
+
+ for (index = start; index <= end; index++) {
+ TranslationBlock *tb;
+ int n;
+
+ pd = page_find(index);
+ if (pd == NULL) {
+ continue;
+ }
+ if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
+ g_tree_foreach(set->tree, page_entry_unlock, NULL);
+ goto retry;
+ }
+ assert_page_locked(pd);
+ PAGE_FOR_EACH_TB(pd, tb, n) {
+ if (page_trylock_add(set, tb->page_addr[0]) ||
+ (tb->page_addr[1] != -1 &&
+ page_trylock_add(set, tb->page_addr[1]))) {
+ /* drop all locks, and reacquire in order */
+ g_tree_foreach(set->tree, page_entry_unlock, NULL);
+ goto retry;
+ }
+ }
+ }
+ return set;
+}
+
+void page_collection_unlock(struct page_collection *set)
+{
+ /* entries are unlocked and freed via page_entry_destroy */
+ g_tree_destroy(set->tree);
+ g_free(set);
+}
+
+#endif /* !CONFIG_USER_ONLY */
+
+static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
+ PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
+{
+ PageDesc *p1, *p2;
+ tb_page_addr_t page1;
+ tb_page_addr_t page2;
+
+ assert_memory_lock();
+ g_assert(phys1 != -1);
+
+ page1 = phys1 >> TARGET_PAGE_BITS;
+ page2 = phys2 >> TARGET_PAGE_BITS;
+
+ p1 = page_find_alloc(page1, alloc);
+ if (ret_p1) {
+ *ret_p1 = p1;
+ }
+ if (likely(phys2 == -1)) {
+ page_lock(p1);
+ return;
+ } else if (page1 == page2) {
+ page_lock(p1);
+ if (ret_p2) {
+ *ret_p2 = p1;
+ }
+ return;
+ }
+ p2 = page_find_alloc(page2, alloc);
+ if (ret_p2) {
+ *ret_p2 = p2;
+ }
+ if (page1 < page2) {
+ page_lock(p1);
+ page_lock(p2);
+ } else {
+ page_lock(p2);
+ page_lock(p1);
+ }
+}
+
+static bool tb_cmp(const void *ap, const void *bp)
+{
+ const TranslationBlock *a = ap;
+ const TranslationBlock *b = bp;
+
+ return a->pc == b->pc &&
+ a->cs_base == b->cs_base &&
+ a->flags == b->flags &&
+ (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
+ a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
+ a->page_addr[0] == b->page_addr[0] &&
+ a->page_addr[1] == b->page_addr[1];
+}
+
+void tb_htable_init(void)
+{
+ unsigned int mode = QHT_MODE_AUTO_RESIZE;
+
+ qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
+}
+
+/* call with @p->lock held */
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+ assert_page_locked(p);
+#ifdef CONFIG_SOFTMMU
+ g_free(p->code_bitmap);
+ p->code_bitmap = NULL;
+ p->code_write_count = 0;
+#endif
+}
+
+/* Set to NULL all the 'first_tb' fields in all PageDescs. */
+static void page_flush_tb_1(int level, void **lp)
+{
+ int i;
+
+ if (*lp == NULL) {
+ return;
+ }
+ if (level == 0) {
+ PageDesc *pd = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ page_lock(&pd[i]);
+ pd[i].first_tb = (uintptr_t)NULL;
+ invalidate_page_bitmap(pd + i);
+ page_unlock(&pd[i]);
+ }
+ } else {
+ void **pp = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ page_flush_tb_1(level - 1, pp + i);
+ }
+ }
+}
+
+static void page_flush_tb(void)
+{
+ int i, l1_sz = v_l1_size;
+
+ for (i = 0; i < l1_sz; i++) {
+ page_flush_tb_1(v_l2_levels, l1_map + i);
+ }
+}
+
+static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
+{
+ const TranslationBlock *tb = value;
+ size_t *size = data;
+
+ *size += tb->tc.size;
+ return false;
+}
+
+/* flush all the translation blocks */
+static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
+{
+ bool did_flush = false;
+
+ mmap_lock();
+ /* If it is already been done on request of another CPU,
+ * just retry.
+ */
+ if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
+ goto done;
+ }
+ did_flush = true;
+
+ if (DEBUG_TB_FLUSH_GATE) {
+ size_t nb_tbs = tcg_nb_tbs();
+ size_t host_size = 0;
+
+ tcg_tb_foreach(tb_host_size_iter, &host_size);
+ printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
+ tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
+ }
+
+ CPU_FOREACH(cpu) {
+ cpu_tb_jmp_cache_clear(cpu);
+ }
+
+ qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
+ page_flush_tb();
+
+ tcg_region_reset_all();
+ /* XXX: flush processor icache at this point if cache flush is
+ expensive */
+ qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
+
+done:
+ mmap_unlock();
+ if (did_flush) {
+ qemu_plugin_flush_cb();
+ }
+}
+
+void tb_flush(CPUState *cpu)
+{
+ if (tcg_enabled()) {
+ unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
+
+ if (cpu_in_exclusive_context(cpu)) {
+ do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
+ } else {
+ async_safe_run_on_cpu(cpu, do_tb_flush,
+ RUN_ON_CPU_HOST_INT(tb_flush_count));
+ }
+ }
+}
+
+/*
+ * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
+ * so in order to prevent bit rot we compile them unconditionally in user-mode,
+ * and let the optimizer get rid of them by wrapping their user-only callers
+ * with if (DEBUG_TB_CHECK_GATE).
+ */
+#ifdef CONFIG_USER_ONLY
+
+static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
+{
+ TranslationBlock *tb = p;
+ target_ulong addr = *(target_ulong *)userp;
+
+ if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
+ printf("ERROR invalidate: address=" TARGET_FMT_lx
+ " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
+ }
+}
+
+/* verify that all the pages have correct rights for code
+ *
+ * Called with mmap_lock held.
+ */
+static void tb_invalidate_check(target_ulong address)
+{
+ address &= TARGET_PAGE_MASK;
+ qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
+}
+
+static void do_tb_page_check(void *p, uint32_t hash, void *userp)
+{
+ TranslationBlock *tb = p;
+ int flags1, flags2;
+
+ flags1 = page_get_flags(tb->pc);
+ flags2 = page_get_flags(tb->pc + tb->size - 1);
+ if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
+ printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
+ (long)tb->pc, tb->size, flags1, flags2);
+ }
+}
+
+/* verify that all the pages have correct rights for code */
+static void tb_page_check(void)
+{
+ qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
+}
+
+#endif /* CONFIG_USER_ONLY */
+
+/*
+ * user-mode: call with mmap_lock held
+ * !user-mode: call with @pd->lock held
+ */
+static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ uintptr_t *pprev;
+ unsigned int n1;
+
+ assert_page_locked(pd);
+ pprev = &pd->first_tb;
+ PAGE_FOR_EACH_TB(pd, tb1, n1) {
+ if (tb1 == tb) {
+ *pprev = tb1->page_next[n1];
+ return;
+ }
+ pprev = &tb1->page_next[n1];
+ }
+ g_assert_not_reached();
+}
+
+/* remove @orig from its @n_orig-th jump list */
+static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
+{
+ uintptr_t ptr, ptr_locked;
+ TranslationBlock *dest;
+ TranslationBlock *tb;
+ uintptr_t *pprev;
+ int n;
+
+ /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
+ ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
+ dest = (TranslationBlock *)(ptr & ~1);
+ if (dest == NULL) {
+ return;
+ }
+
+ qemu_spin_lock(&dest->jmp_lock);
+ /*
+ * While acquiring the lock, the jump might have been removed if the
+ * destination TB was invalidated; check again.
+ */
+ ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
+ if (ptr_locked != ptr) {
+ qemu_spin_unlock(&dest->jmp_lock);
+ /*
+ * The only possibility is that the jump was unlinked via
+ * tb_jump_unlink(dest). Seeing here another destination would be a bug,
+ * because we set the LSB above.
+ */
+ g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
+ return;
+ }
+ /*
+ * We first acquired the lock, and since the destination pointer matches,
+ * we know for sure that @orig is in the jmp list.
+ */
+ pprev = &dest->jmp_list_head;
+ TB_FOR_EACH_JMP(dest, tb, n) {
+ if (tb == orig && n == n_orig) {
+ *pprev = tb->jmp_list_next[n];
+ /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
+ qemu_spin_unlock(&dest->jmp_lock);
+ return;
+ }
+ pprev = &tb->jmp_list_next[n];
+ }
+ g_assert_not_reached();
+}
+
+/* reset the jump entry 'n' of a TB so that it is not chained to
+ another TB */
+static inline void tb_reset_jump(TranslationBlock *tb, int n)
+{
+ uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
+ tb_set_jmp_target(tb, n, addr);
+}
+
+/* remove any jumps to the TB */
+static inline void tb_jmp_unlink(TranslationBlock *dest)
+{
+ TranslationBlock *tb;
+ int n;
+
+ qemu_spin_lock(&dest->jmp_lock);
+
+ TB_FOR_EACH_JMP(dest, tb, n) {
+ tb_reset_jump(tb, n);
+ qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
+ /* No need to clear the list entry; setting the dest ptr is enough */
+ }
+ dest->jmp_list_head = (uintptr_t)NULL;
+
+ qemu_spin_unlock(&dest->jmp_lock);
+}
+
+/*
+ * In user-mode, call with mmap_lock held.
+ * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
+ * locks held.
+ */
+static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
+{
+ CPUState *cpu;
+ PageDesc *p;
+ uint32_t h;
+ tb_page_addr_t phys_pc;
+ uint32_t orig_cflags = tb_cflags(tb);
+
+ assert_memory_lock();
+
+ /* make sure no further incoming jumps will be chained to this TB */
+ qemu_spin_lock(&tb->jmp_lock);
+ qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
+ qemu_spin_unlock(&tb->jmp_lock);
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_hash_func(phys_pc, tb->pc, tb->flags, orig_cflags,
+ tb->trace_vcpu_dstate);
+ if (!qht_remove(&tb_ctx.htable, tb, h)) {
+ return;
+ }
+
+ /* remove the TB from the page list */
+ if (rm_from_page_list) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(p, tb);
+ invalidate_page_bitmap(p);
+ if (tb->page_addr[1] != -1) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(p, tb);
+ invalidate_page_bitmap(p);
+ }
+ }
+
+ /* remove the TB from the hash list */
+ h = tb_jmp_cache_hash_func(tb->pc);
+ CPU_FOREACH(cpu) {
+ if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
+ qatomic_set(&cpu->tb_jmp_cache[h], NULL);
+ }
+ }
+
+ /* suppress this TB from the two jump lists */
+ tb_remove_from_jmp_list(tb, 0);
+ tb_remove_from_jmp_list(tb, 1);
+
+ /* suppress any remaining jumps to this TB */
+ tb_jmp_unlink(tb);
+
+ qatomic_set(&tb_ctx.tb_phys_invalidate_count,
+ tb_ctx.tb_phys_invalidate_count + 1);
+}
+
+static void tb_phys_invalidate__locked(TranslationBlock *tb)
+{
+ qemu_thread_jit_write();
+ do_tb_phys_invalidate(tb, true);
+ qemu_thread_jit_execute();
+}
+
+/* invalidate one TB
+ *
+ * Called with mmap_lock held in user-mode.
+ */
+void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
+{
+ if (page_addr == -1 && tb->page_addr[0] != -1) {
+ page_lock_tb(tb);
+ do_tb_phys_invalidate(tb, true);
+ page_unlock_tb(tb);
+ } else {
+ do_tb_phys_invalidate(tb, false);
+ }
+}
+
+#ifdef CONFIG_SOFTMMU
+/* call with @p->lock held */
+static void build_page_bitmap(PageDesc *p)
+{
+ int n, tb_start, tb_end;
+ TranslationBlock *tb;
+
+ assert_page_locked(p);
+ p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
+
+ PAGE_FOR_EACH_TB(p, tb, n) {
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->pc & ~TARGET_PAGE_MASK;
+ tb_end = tb_start + tb->size;
+ if (tb_end > TARGET_PAGE_SIZE) {
+ tb_end = TARGET_PAGE_SIZE;
+ }
+ } else {
+ tb_start = 0;
+ tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
+ }
+}
+#endif
+
+/* add the tb in the target page and protect it if necessary
+ *
+ * Called with mmap_lock held for user-mode emulation.
+ * Called with @p->lock held in !user-mode.
+ */
+static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
+ unsigned int n, tb_page_addr_t page_addr)
+{
+#ifndef CONFIG_USER_ONLY
+ bool page_already_protected;
+#endif
+
+ assert_page_locked(p);
+
+ tb->page_addr[n] = page_addr;
+ tb->page_next[n] = p->first_tb;
+#ifndef CONFIG_USER_ONLY
+ page_already_protected = p->first_tb != (uintptr_t)NULL;
+#endif
+ p->first_tb = (uintptr_t)tb | n;
+ invalidate_page_bitmap(p);
+
+#if defined(CONFIG_USER_ONLY)
+ /* translator_loop() must have made all TB pages non-writable */
+ assert(!(p->flags & PAGE_WRITE));
+#else
+ /* if some code is already present, then the pages are already
+ protected. So we handle the case where only the first TB is
+ allocated in a physical page */
+ if (!page_already_protected) {
+ tlb_protect_code(page_addr);
+ }
+#endif
+}
+
+/*
+ * Add a new TB and link it to the physical page tables. phys_page2 is
+ * (-1) to indicate that only one page contains the TB.
+ *
+ * Called with mmap_lock held for user-mode emulation.
+ *
+ * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
+ * Note that in !user-mode, another thread might have already added a TB
+ * for the same block of guest code that @tb corresponds to. In that case,
+ * the caller should discard the original @tb, and use instead the returned TB.
+ */
+static TranslationBlock *
+tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
+ tb_page_addr_t phys_page2)
+{
+ PageDesc *p;
+ PageDesc *p2 = NULL;
+ void *existing_tb = NULL;
+ uint32_t h;
+
+ assert_memory_lock();
+ tcg_debug_assert(!(tb->cflags & CF_INVALID));
+
+ /*
+ * Add the TB to the page list, acquiring first the pages's locks.
+ * We keep the locks held until after inserting the TB in the hash table,
+ * so that if the insertion fails we know for sure that the TBs are still
+ * in the page descriptors.
+ * Note that inserting into the hash table first isn't an option, since
+ * we can only insert TBs that are fully initialized.
+ */
+ page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
+ tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
+ if (p2) {
+ tb_page_add(p2, tb, 1, phys_page2);
+ } else {
+ tb->page_addr[1] = -1;
+ }
+
+ /* add in the hash table */
+ h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags,
+ tb->trace_vcpu_dstate);
+ qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
+
+ /* remove TB from the page(s) if we couldn't insert it */
+ if (unlikely(existing_tb)) {
+ tb_page_remove(p, tb);
+ invalidate_page_bitmap(p);
+ if (p2) {
+ tb_page_remove(p2, tb);
+ invalidate_page_bitmap(p2);
+ }
+ tb = existing_tb;
+ }
+
+ if (p2 && p2 != p) {
+ page_unlock(p2);
+ }
+ page_unlock(p);
+
+#ifdef CONFIG_USER_ONLY
+ if (DEBUG_TB_CHECK_GATE) {
+ tb_page_check();
+ }
+#endif
+ return tb;
+}
+
+/* Called with mmap_lock held for user mode emulation. */
+TranslationBlock *tb_gen_code(CPUState *cpu,
+ target_ulong pc, target_ulong cs_base,
+ uint32_t flags, int cflags)
+{
+ CPUArchState *env = cpu->env_ptr;
+ TranslationBlock *tb, *existing_tb;
+ tb_page_addr_t phys_pc, phys_page2;
+ target_ulong virt_page2;
+ tcg_insn_unit *gen_code_buf;
+ int gen_code_size, search_size, max_insns;
+#ifdef CONFIG_PROFILER
+ TCGProfile *prof = &tcg_ctx->prof;
+ int64_t ti;
+#endif
+
+ assert_memory_lock();
+ qemu_thread_jit_write();
+
+ phys_pc = get_page_addr_code(env, pc);
+
+ if (phys_pc == -1) {
+ /* Generate a one-shot TB with 1 insn in it */
+ cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
+ }
+
+ max_insns = cflags & CF_COUNT_MASK;
+ if (max_insns == 0) {
+ max_insns = TCG_MAX_INSNS;
+ }
+ QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);
+
+ buffer_overflow:
+ tb = tcg_tb_alloc(tcg_ctx);
+ if (unlikely(!tb)) {
+ /* flush must be done */
+ tb_flush(cpu);
+ mmap_unlock();
+ /* Make the execution loop process the flush as soon as possible. */
+ cpu->exception_index = EXCP_INTERRUPT;
+ cpu_loop_exit(cpu);
+ }
+
+ gen_code_buf = tcg_ctx->code_gen_ptr;
+ tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
+ tb->pc = pc;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ tb->cflags = cflags;
+ tb->trace_vcpu_dstate = *cpu->trace_dstate;
+ tcg_ctx->tb_cflags = cflags;
+ tb_overflow:
+
+#ifdef CONFIG_PROFILER
+ /* includes aborted translations because of exceptions */
+ qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
+ ti = profile_getclock();
+#endif
+
+ gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
+ if (unlikely(gen_code_size != 0)) {
+ goto error_return;
+ }
+
+ tcg_func_start(tcg_ctx);
+
+ tcg_ctx->cpu = env_cpu(env);
+ gen_intermediate_code(cpu, tb, max_insns);
+ assert(tb->size != 0);
+ tcg_ctx->cpu = NULL;
+ max_insns = tb->icount;
+
+ trace_translate_block(tb, tb->pc, tb->tc.ptr);
+
+ /* generate machine code */
+ tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
+ tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
+ tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
+ if (TCG_TARGET_HAS_direct_jump) {
+ tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
+ tcg_ctx->tb_jmp_target_addr = NULL;
+ } else {
+ tcg_ctx->tb_jmp_insn_offset = NULL;
+ tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
+ }
+
+#ifdef CONFIG_PROFILER
+ qatomic_set(&prof->tb_count, prof->tb_count + 1);
+ qatomic_set(&prof->interm_time,
+ prof->interm_time + profile_getclock() - ti);
+ ti = profile_getclock();
+#endif
+
+ gen_code_size = tcg_gen_code(tcg_ctx, tb);
+ if (unlikely(gen_code_size < 0)) {
+ error_return:
+ switch (gen_code_size) {
+ case -1:
+ /*
+ * Overflow of code_gen_buffer, or the current slice of it.
+ *
+ * TODO: We don't need to re-do gen_intermediate_code, nor
+ * should we re-do the tcg optimization currently hidden
+ * inside tcg_gen_code. All that should be required is to
+ * flush the TBs, allocate a new TB, re-initialize it per
+ * above, and re-do the actual code generation.
+ */
+ qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
+ "Restarting code generation for "
+ "code_gen_buffer overflow\n");
+ goto buffer_overflow;
+
+ case -2:
+ /*
+ * The code generated for the TranslationBlock is too large.
+ * The maximum size allowed by the unwind info is 64k.
+ * There may be stricter constraints from relocations
+ * in the tcg backend.
+ *
+ * Try again with half as many insns as we attempted this time.
+ * If a single insn overflows, there's a bug somewhere...
+ */
+ assert(max_insns > 1);
+ max_insns /= 2;
+ qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
+ "Restarting code generation with "
+ "smaller translation block (max %d insns)\n",
+ max_insns);
+ goto tb_overflow;
+
+ default:
+ g_assert_not_reached();
+ }
+ }
+ search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
+ if (unlikely(search_size < 0)) {
+ goto buffer_overflow;
+ }
+ tb->tc.size = gen_code_size;
+
+#ifdef CONFIG_PROFILER
+ qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
+ qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
+ qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
+ qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
+#endif
+
+#ifdef DEBUG_DISAS
+ if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
+ qemu_log_in_addr_range(tb->pc)) {
+ FILE *logfile = qemu_log_lock();
+ int code_size, data_size;
+ const tcg_target_ulong *rx_data_gen_ptr;
+ size_t chunk_start;
+ int insn = 0;
+
+ if (tcg_ctx->data_gen_ptr) {
+ rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
+ code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
+ data_size = gen_code_size - code_size;
+ } else {
+ rx_data_gen_ptr = 0;
+ code_size = gen_code_size;
+ data_size = 0;
+ }
+
+ /* Dump header and the first instruction */
+ qemu_log("OUT: [size=%d]\n", gen_code_size);
+ qemu_log(" -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
+ tcg_ctx->gen_insn_data[insn][0]);
+ chunk_start = tcg_ctx->gen_insn_end_off[insn];
+ log_disas(tb->tc.ptr, chunk_start);
+
+ /*
+ * Dump each instruction chunk, wrapping up empty chunks into
+ * the next instruction. The whole array is offset so the
+ * first entry is the beginning of the 2nd instruction.
+ */
+ while (insn < tb->icount) {
+ size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
+ if (chunk_end > chunk_start) {
+ qemu_log(" -- guest addr 0x" TARGET_FMT_lx "\n",
+ tcg_ctx->gen_insn_data[insn][0]);
+ log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
+ chunk_start = chunk_end;
+ }
+ insn++;
+ }
+
+ if (chunk_start < code_size) {
+ qemu_log(" -- tb slow paths + alignment\n");
+ log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
+ }
+
+ /* Finally dump any data we may have after the block */
+ if (data_size) {
+ int i;
+ qemu_log(" data: [size=%d]\n", data_size);
+ for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
+ if (sizeof(tcg_target_ulong) == 8) {
+ qemu_log("0x%08" PRIxPTR ": .quad 0x%016" TCG_PRIlx "\n",
+ (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
+ } else if (sizeof(tcg_target_ulong) == 4) {
+ qemu_log("0x%08" PRIxPTR ": .long 0x%08" TCG_PRIlx "\n",
+ (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
+ } else {
+ qemu_build_not_reached();
+ }
+ }
+ }
+ qemu_log("\n");
+ qemu_log_flush();
+ qemu_log_unlock(logfile);
+ }
+#endif
+
+ qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
+ ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
+ CODE_GEN_ALIGN));
+
+ /* init jump list */
+ qemu_spin_init(&tb->jmp_lock);
+ tb->jmp_list_head = (uintptr_t)NULL;
+ tb->jmp_list_next[0] = (uintptr_t)NULL;
+ tb->jmp_list_next[1] = (uintptr_t)NULL;
+ tb->jmp_dest[0] = (uintptr_t)NULL;
+ tb->jmp_dest[1] = (uintptr_t)NULL;
+
+ /* init original jump addresses which have been set during tcg_gen_code() */
+ if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
+ tb_reset_jump(tb, 0);
+ }
+ if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
+ tb_reset_jump(tb, 1);
+ }
+
+ /*
+ * If the TB is not associated with a physical RAM page then
+ * it must be a temporary one-insn TB, and we have nothing to do
+ * except fill in the page_addr[] fields. Return early before
+ * attempting to link to other TBs or add to the lookup table.
+ */
+ if (phys_pc == -1) {
+ tb->page_addr[0] = tb->page_addr[1] = -1;
+ return tb;
+ }
+
+ /*
+ * Insert TB into the corresponding region tree before publishing it
+ * through QHT. Otherwise rewinding happened in the TB might fail to
+ * lookup itself using host PC.
+ */
+ tcg_tb_insert(tb);
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_page_addr_code(env, virt_page2);
+ }
+ /*
+ * No explicit memory barrier is required -- tb_link_page() makes the
+ * TB visible in a consistent state.
+ */
+ existing_tb = tb_link_page(tb, phys_pc, phys_page2);
+ /* if the TB already exists, discard what we just translated */
+ if (unlikely(existing_tb != tb)) {
+ uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
+
+ orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
+ qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
+ tcg_tb_remove(tb);
+ return existing_tb;
+ }
+ return tb;
+}
+
+/*
+ * @p must be non-NULL.
+ * user-mode: call with mmap_lock held.
+ * !user-mode: call with all @pages locked.
+ */
+static void
+tb_invalidate_phys_page_range__locked(struct page_collection *pages,
+ PageDesc *p, tb_page_addr_t start,
+ tb_page_addr_t end,
+ uintptr_t retaddr)
+{
+ TranslationBlock *tb;
+ tb_page_addr_t tb_start, tb_end;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ CPUState *cpu = current_cpu;
+ CPUArchState *env = NULL;
+ bool current_tb_not_found = retaddr != 0;
+ bool current_tb_modified = false;
+ TranslationBlock *current_tb = NULL;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ uint32_t current_flags = 0;
+#endif /* TARGET_HAS_PRECISE_SMC */
+
+ assert_page_locked(p);
+
+#if defined(TARGET_HAS_PRECISE_SMC)
+ if (cpu != NULL) {
+ env = cpu->env_ptr;
+ }
+#endif
+
+ /* we remove all the TBs in the range [start, end[ */
+ /* XXX: see if in some cases it could be faster to invalidate all
+ the code */
+ PAGE_FOR_EACH_TB(p, tb, n) {
+ assert_page_locked(p);
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ tb_end = tb_start + tb->size;
+ } else {
+ tb_start = tb->page_addr[1];
+ tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_not_found) {
+ current_tb_not_found = false;
+ /* now we have a real cpu fault */
+ current_tb = tcg_tb_lookup(retaddr);
+ }
+ if (current_tb == tb &&
+ (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
+ /*
+ * If we are modifying the current TB, we must stop
+ * its execution. We could be more precise by checking
+ * that the modification is after the current PC, but it
+ * would require a specialized function to partially
+ * restore the CPU state.
+ */
+ current_tb_modified = true;
+ cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate__locked(tb);
+ }
+ }
+#if !defined(CONFIG_USER_ONLY)
+ /* if no code remaining, no need to continue to use slow writes */
+ if (!p->first_tb) {
+ invalidate_page_bitmap(p);
+ tlb_unprotect_code(start);
+ }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ page_collection_unlock(pages);
+ /* Force execution of one insn next time. */
+ cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
+ mmap_unlock();
+ cpu_loop_exit_noexc(cpu);
+ }
+#endif
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ *
+ * Called with mmap_lock held for user-mode emulation
+ */
+void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
+{
+ struct page_collection *pages;
+ PageDesc *p;
+
+ assert_memory_lock();
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (p == NULL) {
+ return;
+ }
+ pages = page_collection_lock(start, end);
+ tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
+ page_collection_unlock(pages);
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ *
+ * Called with mmap_lock held for user-mode emulation.
+ */
+#ifdef CONFIG_SOFTMMU
+void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
+#else
+void tb_invalidate_phys_range(target_ulong start, target_ulong end)
+#endif
+{
+ struct page_collection *pages;
+ tb_page_addr_t next;
+
+ assert_memory_lock();
+
+ pages = page_collection_lock(start, end);
+ for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
+ start < end;
+ start = next, next += TARGET_PAGE_SIZE) {
+ PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
+ tb_page_addr_t bound = MIN(next, end);
+
+ if (pd == NULL) {
+ continue;
+ }
+ tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
+ }
+ page_collection_unlock(pages);
+}
+
+#ifdef CONFIG_SOFTMMU
+/* len must be <= 8 and start must be a multiple of len.
+ * Called via softmmu_template.h when code areas are written to with
+ * iothread mutex not held.
+ *
+ * Call with all @pages in the range [@start, @start + len[ locked.
+ */
+void tb_invalidate_phys_page_fast(struct page_collection *pages,
+ tb_page_addr_t start, int len,
+ uintptr_t retaddr)
+{
+ PageDesc *p;
+
+ assert_memory_lock();
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p) {
+ return;
+ }
+
+ assert_page_locked(p);
+ if (!p->code_bitmap &&
+ ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
+ build_page_bitmap(p);
+ }
+ if (p->code_bitmap) {
+ unsigned int nr;
+ unsigned long b;
+
+ nr = start & ~TARGET_PAGE_MASK;
+ b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
+ if (b & ((1 << len) - 1)) {
+ goto do_invalidate;
+ }
+ } else {
+ do_invalidate:
+ tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
+ retaddr);
+ }
+}
+#else
+/* Called with mmap_lock held. If pc is not 0 then it indicates the
+ * host PC of the faulting store instruction that caused this invalidate.
+ * Returns true if the caller needs to abort execution of the current
+ * TB (because it was modified by this store and the guest CPU has
+ * precise-SMC semantics).
+ */
+static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
+{
+ TranslationBlock *tb;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ TranslationBlock *current_tb = NULL;
+ CPUState *cpu = current_cpu;
+ CPUArchState *env = NULL;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ uint32_t current_flags = 0;
+#endif
+
+ assert_memory_lock();
+
+ addr &= TARGET_PAGE_MASK;
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ return false;
+ }
+
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (p->first_tb && pc != 0) {
+ current_tb = tcg_tb_lookup(pc);
+ }
+ if (cpu != NULL) {
+ env = cpu->env_ptr;
+ }
+#endif
+ assert_page_locked(p);
+ PAGE_FOR_EACH_TB(p, tb, n) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb == tb &&
+ (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state_from_tb(cpu, current_tb, pc, true);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, addr);
+ }
+ p->first_tb = (uintptr_t)NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* Force execution of one insn next time. */
+ cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
+ return true;
+ }
+#endif
+
+ return false;
+}
+#endif
+
+/* user-mode: call with mmap_lock held */
+void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
+{
+ TranslationBlock *tb;
+
+ assert_memory_lock();
+
+ tb = tcg_tb_lookup(retaddr);
+ if (tb) {
+ /* We can use retranslation to find the PC. */
+ cpu_restore_state_from_tb(cpu, tb, retaddr, true);
+ tb_phys_invalidate(tb, -1);
+ } else {
+ /* The exception probably happened in a helper. The CPU state should
+ have been saved before calling it. Fetch the PC from there. */
+ CPUArchState *env = cpu->env_ptr;
+ target_ulong pc, cs_base;
+ tb_page_addr_t addr;
+ uint32_t flags;
+
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
+ addr = get_page_addr_code(env, pc);
+ if (addr != -1) {
+ tb_invalidate_phys_range(addr, addr + 1);
+ }
+ }
+}
+
+#ifndef CONFIG_USER_ONLY
+/*
+ * In deterministic execution mode, instructions doing device I/Os
+ * must be at the end of the TB.
+ *
+ * Called by softmmu_template.h, with iothread mutex not held.
+ */
+void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
+{
+ TranslationBlock *tb;
+ CPUClass *cc;
+ uint32_t n;
+
+ tb = tcg_tb_lookup(retaddr);
+ if (!tb) {
+ cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
+ (void *)retaddr);
+ }
+ cpu_restore_state_from_tb(cpu, tb, retaddr, true);
+
+ /*
+ * Some guests must re-execute the branch when re-executing a delay
+ * slot instruction. When this is the case, adjust icount and N
+ * to account for the re-execution of the branch.
+ */
+ n = 1;
+ cc = CPU_GET_CLASS(cpu);
+ if (cc->tcg_ops->io_recompile_replay_branch &&
+ cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
+ cpu_neg(cpu)->icount_decr.u16.low++;
+ n = 2;
+ }
+
+ /*
+ * Exit the loop and potentially generate a new TB executing the
+ * just the I/O insns. We also limit instrumentation to memory
+ * operations only (which execute after completion) so we don't
+ * double instrument the instruction.
+ */
+ cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
+
+ qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
+ "cpu_io_recompile: rewound execution of TB to "
+ TARGET_FMT_lx "\n", tb->pc);
+
+ cpu_loop_exit_noexc(cpu);
+}
+
+static void print_qht_statistics(struct qht_stats hst, GString *buf)
+{
+ uint32_t hgram_opts;
+ size_t hgram_bins;
+ char *hgram;
+
+ if (!hst.head_buckets) {
+ return;
+ }
+ g_string_append_printf(buf, "TB hash buckets %zu/%zu "
+ "(%0.2f%% head buckets used)\n",
+ hst.used_head_buckets, hst.head_buckets,
+ (double)hst.used_head_buckets /
+ hst.head_buckets * 100);
+
+ hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
+ hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
+ if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
+ hgram_opts |= QDIST_PR_NODECIMAL;
+ }
+ hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
+ g_string_append_printf(buf, "TB hash occupancy %0.2f%% avg chain occ. "
+ "Histogram: %s\n",
+ qdist_avg(&hst.occupancy) * 100, hgram);
+ g_free(hgram);
+
+ hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
+ hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
+ if (hgram_bins > 10) {
+ hgram_bins = 10;
+ } else {
+ hgram_bins = 0;
+ hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
+ }
+ hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
+ g_string_append_printf(buf, "TB hash avg chain %0.3f buckets. "
+ "Histogram: %s\n",
+ qdist_avg(&hst.chain), hgram);
+ g_free(hgram);
+}
+
+struct tb_tree_stats {
+ size_t nb_tbs;
+ size_t host_size;
+ size_t target_size;
+ size_t max_target_size;
+ size_t direct_jmp_count;
+ size_t direct_jmp2_count;
+ size_t cross_page;
+};
+
+static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
+{
+ const TranslationBlock *tb = value;
+ struct tb_tree_stats *tst = data;
+
+ tst->nb_tbs++;
+ tst->host_size += tb->tc.size;
+ tst->target_size += tb->size;
+ if (tb->size > tst->max_target_size) {
+ tst->max_target_size = tb->size;
+ }
+ if (tb->page_addr[1] != -1) {
+ tst->cross_page++;
+ }
+ if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
+ tst->direct_jmp_count++;
+ if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
+ tst->direct_jmp2_count++;
+ }
+ }
+ return false;
+}
+
+void dump_exec_info(GString *buf)
+{
+ struct tb_tree_stats tst = {};
+ struct qht_stats hst;
+ size_t nb_tbs, flush_full, flush_part, flush_elide;
+
+ tcg_tb_foreach(tb_tree_stats_iter, &tst);
+ nb_tbs = tst.nb_tbs;
+ /* XXX: avoid using doubles ? */
+ g_string_append_printf(buf, "Translation buffer state:\n");
+ /*
+ * Report total code size including the padding and TB structs;
+ * otherwise users might think "-accel tcg,tb-size" is not honoured.
+ * For avg host size we use the precise numbers from tb_tree_stats though.
+ */
+ g_string_append_printf(buf, "gen code size %zu/%zu\n",
+ tcg_code_size(), tcg_code_capacity());
+ g_string_append_printf(buf, "TB count %zu\n", nb_tbs);
+ g_string_append_printf(buf, "TB avg target size %zu max=%zu bytes\n",
+ nb_tbs ? tst.target_size / nb_tbs : 0,
+ tst.max_target_size);
+ g_string_append_printf(buf, "TB avg host size %zu bytes "
+ "(expansion ratio: %0.1f)\n",
+ nb_tbs ? tst.host_size / nb_tbs : 0,
+ tst.target_size ?
+ (double)tst.host_size / tst.target_size : 0);
+ g_string_append_printf(buf, "cross page TB count %zu (%zu%%)\n",
+ tst.cross_page,
+ nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
+ g_string_append_printf(buf, "direct jump count %zu (%zu%%) "
+ "(2 jumps=%zu %zu%%)\n",
+ tst.direct_jmp_count,
+ nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
+ tst.direct_jmp2_count,
+ nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
+
+ qht_statistics_init(&tb_ctx.htable, &hst);
+ print_qht_statistics(hst, buf);
+ qht_statistics_destroy(&hst);
+
+ g_string_append_printf(buf, "\nStatistics:\n");
+ g_string_append_printf(buf, "TB flush count %u\n",
+ qatomic_read(&tb_ctx.tb_flush_count));
+ g_string_append_printf(buf, "TB invalidate count %u\n",
+ qatomic_read(&tb_ctx.tb_phys_invalidate_count));
+
+ tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
+ g_string_append_printf(buf, "TLB full flushes %zu\n", flush_full);
+ g_string_append_printf(buf, "TLB partial flushes %zu\n", flush_part);
+ g_string_append_printf(buf, "TLB elided flushes %zu\n", flush_elide);
+ tcg_dump_info(buf);
+}
+
+void dump_opcount_info(GString *buf)
+{
+ tcg_dump_op_count(buf);
+}
+
+#else /* CONFIG_USER_ONLY */
+
+void cpu_interrupt(CPUState *cpu, int mask)
+{
+ g_assert(qemu_mutex_iothread_locked());
+ cpu->interrupt_request |= mask;
+ qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
+}
+
+/*
+ * Walks guest process memory "regions" one by one
+ * and calls callback function 'fn' for each region.
+ */
+struct walk_memory_regions_data {
+ walk_memory_regions_fn fn;
+ void *priv;
+ target_ulong start;
+ int prot;
+};
+
+static int walk_memory_regions_end(struct walk_memory_regions_data *data,
+ target_ulong end, int new_prot)
+{
+ if (data->start != -1u) {
+ int rc = data->fn(data->priv, data->start, end, data->prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ data->start = (new_prot ? end : -1u);
+ data->prot = new_prot;
+
+ return 0;
+}
+
+static int walk_memory_regions_1(struct walk_memory_regions_data *data,
+ target_ulong base, int level, void **lp)
+{
+ target_ulong pa;
+ int i, rc;
+
+ if (*lp == NULL) {
+ return walk_memory_regions_end(data, base, 0);
+ }
+
+ if (level == 0) {
+ PageDesc *pd = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ int prot = pd[i].flags;
+
+ pa = base | (i << TARGET_PAGE_BITS);
+ if (prot != data->prot) {
+ rc = walk_memory_regions_end(data, pa, prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+ } else {
+ void **pp = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ pa = base | ((target_ulong)i <<
+ (TARGET_PAGE_BITS + V_L2_BITS * level));
+ rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
+{
+ struct walk_memory_regions_data data;
+ uintptr_t i, l1_sz = v_l1_size;
+
+ data.fn = fn;
+ data.priv = priv;
+ data.start = -1u;
+ data.prot = 0;
+
+ for (i = 0; i < l1_sz; i++) {
+ target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
+ int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ return walk_memory_regions_end(&data, 0, 0);
+}
+
+static int dump_region(void *priv, target_ulong start,
+ target_ulong end, unsigned long prot)
+{
+ FILE *f = (FILE *)priv;
+
+ (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
+ " "TARGET_FMT_lx" %c%c%c\n",
+ start, end, end - start,
+ ((prot & PAGE_READ) ? 'r' : '-'),
+ ((prot & PAGE_WRITE) ? 'w' : '-'),
+ ((prot & PAGE_EXEC) ? 'x' : '-'));
+
+ return 0;
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+ const int length = sizeof(target_ulong) * 2;
+ (void) fprintf(f, "%-*s %-*s %-*s %s\n",
+ length, "start", length, "end", length, "size", "prot");
+ walk_memory_regions(f, dump_region);
+}
+
+int page_get_flags(target_ulong address)
+{
+ PageDesc *p;
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ return 0;
+ }
+ return p->flags;
+}
+
+/* Modify the flags of a page and invalidate the code if necessary.
+ The flag PAGE_WRITE_ORG is positioned automatically depending
+ on PAGE_WRITE. The mmap_lock should already be held. */
+void page_set_flags(target_ulong start, target_ulong end, int flags)
+{
+ target_ulong addr, len;
+ bool reset_target_data;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+ assert(end - 1 <= GUEST_ADDR_MAX);
+ assert(start < end);
+ /* Only set PAGE_ANON with new mappings. */
+ assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
+ assert_memory_lock();
+
+ start = start & TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ if (flags & PAGE_WRITE) {
+ flags |= PAGE_WRITE_ORG;
+ }
+ reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
+ flags &= ~PAGE_RESET;
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+
+ /* If the write protection bit is set, then we invalidate
+ the code inside. */
+ if (!(p->flags & PAGE_WRITE) &&
+ (flags & PAGE_WRITE) &&
+ p->first_tb) {
+ tb_invalidate_phys_page(addr, 0);
+ }
+ if (reset_target_data) {
+ g_free(p->target_data);
+ p->target_data = NULL;
+ p->flags = flags;
+ } else {
+ /* Using mprotect on a page does not change MAP_ANON. */
+ p->flags = (p->flags & PAGE_ANON) | flags;
+ }
+ }
+}
+
+void *page_get_target_data(target_ulong address)
+{
+ PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
+ return p ? p->target_data : NULL;
+}
+
+void *page_alloc_target_data(target_ulong address, size_t size)
+{
+ PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
+ void *ret = NULL;
+
+ if (p->flags & PAGE_VALID) {
+ ret = p->target_data;
+ if (!ret) {
+ p->target_data = ret = g_malloc0(size);
+ }
+ }
+ return ret;
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+ if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
+ assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+ }
+
+ if (len == 0) {
+ return 0;
+ }
+ if (start + len - 1 < start) {
+ /* We've wrapped around. */
+ return -1;
+ }
+
+ /* must do before we loose bits in the next step */
+ end = TARGET_PAGE_ALIGN(start + len);
+ start = start & TARGET_PAGE_MASK;
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ return -1;
+ }
+ if (!(p->flags & PAGE_VALID)) {
+ return -1;
+ }
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
+ return -1;
+ }
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG)) {
+ return -1;
+ }
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0)) {
+ return -1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+void page_protect(tb_page_addr_t page_addr)
+{
+ target_ulong addr;
+ PageDesc *p;
+ int prot;
+
+ p = page_find(page_addr >> TARGET_PAGE_BITS);
+ if (p && (p->flags & PAGE_WRITE)) {
+ /*
+ * Force the host page as non writable (writes will have a page fault +
+ * mprotect overhead).
+ */
+ page_addr &= qemu_host_page_mask;
+ prot = 0;
+ for (addr = page_addr; addr < page_addr + qemu_host_page_size;
+ addr += TARGET_PAGE_SIZE) {
+
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ continue;
+ }
+ prot |= p->flags;
+ p->flags &= ~PAGE_WRITE;
+ }
+ mprotect(g2h_untagged(page_addr), qemu_host_page_size,
+ (prot & PAGE_BITS) & ~PAGE_WRITE);
+ if (DEBUG_TB_INVALIDATE_GATE) {
+ printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
+ }
+ }
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+ * page. Return 0 if the fault was not handled, 1 if it was handled,
+ * and 2 if it was handled but the caller must cause the TB to be
+ * immediately exited. (We can only return 2 if the 'pc' argument is
+ * non-zero.)
+ */
+int page_unprotect(target_ulong address, uintptr_t pc)
+{
+ unsigned int prot;
+ bool current_tb_invalidated;
+ PageDesc *p;
+ target_ulong host_start, host_end, addr;
+
+ /* Technically this isn't safe inside a signal handler. However we
+ know this only ever happens in a synchronous SEGV handler, so in
+ practice it seems to be ok. */
+ mmap_lock();
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ mmap_unlock();
+ return 0;
+ }
+
+ /* if the page was really writable, then we change its
+ protection back to writable */
+ if (p->flags & PAGE_WRITE_ORG) {
+ current_tb_invalidated = false;
+ if (p->flags & PAGE_WRITE) {
+ /* If the page is actually marked WRITE then assume this is because
+ * this thread raced with another one which got here first and
+ * set the page to PAGE_WRITE and did the TB invalidate for us.
+ */
+#ifdef TARGET_HAS_PRECISE_SMC
+ TranslationBlock *current_tb = tcg_tb_lookup(pc);
+ if (current_tb) {
+ current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
+ }
+#endif
+ } else {
+ host_start = address & qemu_host_page_mask;
+ host_end = host_start + qemu_host_page_size;
+
+ prot = 0;
+ for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ p->flags |= PAGE_WRITE;
+ prot |= p->flags;
+
+ /* and since the content will be modified, we must invalidate
+ the corresponding translated code. */
+ current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
+#ifdef CONFIG_USER_ONLY
+ if (DEBUG_TB_CHECK_GATE) {
+ tb_invalidate_check(addr);
+ }
+#endif
+ }
+ mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
+ prot & PAGE_BITS);
+ }
+ mmap_unlock();
+ /* If current TB was invalidated return to main loop */
+ return current_tb_invalidated ? 2 : 1;
+ }
+ mmap_unlock();
+ return 0;
+}
+#endif /* CONFIG_USER_ONLY */
+
+/* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
+void tcg_flush_softmmu_tlb(CPUState *cs)
+{
+#ifdef CONFIG_SOFTMMU
+ tlb_flush(cs);
+#endif
+}