diff options
author | Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> | 2023-10-10 11:40:56 +0000 |
---|---|---|
committer | Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> | 2023-10-10 11:40:56 +0000 |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /block/nvme.c | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'block/nvme.c')
-rw-r--r-- | block/nvme.c | 1651 |
1 files changed, 1651 insertions, 0 deletions
diff --git a/block/nvme.c b/block/nvme.c new file mode 100644 index 000000000..e4f336d79 --- /dev/null +++ b/block/nvme.c @@ -0,0 +1,1651 @@ +/* + * NVMe block driver based on vfio + * + * Copyright 2016 - 2018 Red Hat, Inc. + * + * Authors: + * Fam Zheng <famz@redhat.com> + * Paolo Bonzini <pbonzini@redhat.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#include "qemu/osdep.h" +#include <linux/vfio.h> +#include "qapi/error.h" +#include "qapi/qmp/qdict.h" +#include "qapi/qmp/qstring.h" +#include "qemu/error-report.h" +#include "qemu/main-loop.h" +#include "qemu/module.h" +#include "qemu/cutils.h" +#include "qemu/option.h" +#include "qemu/vfio-helpers.h" +#include "block/block_int.h" +#include "sysemu/replay.h" +#include "trace.h" + +#include "block/nvme.h" + +#define NVME_SQ_ENTRY_BYTES 64 +#define NVME_CQ_ENTRY_BYTES 16 +#define NVME_QUEUE_SIZE 128 +#define NVME_DOORBELL_SIZE 4096 + +/* + * We have to leave one slot empty as that is the full queue case where + * head == tail + 1. + */ +#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1) + +typedef struct BDRVNVMeState BDRVNVMeState; + +/* Same index is used for queues and IRQs */ +#define INDEX_ADMIN 0 +#define INDEX_IO(n) (1 + n) + +/* This driver shares a single MSIX IRQ for the admin and I/O queues */ +enum { + MSIX_SHARED_IRQ_IDX = 0, + MSIX_IRQ_COUNT = 1 +}; + +typedef struct { + int32_t head, tail; + uint8_t *queue; + uint64_t iova; + /* Hardware MMIO register */ + volatile uint32_t *doorbell; +} NVMeQueue; + +typedef struct { + BlockCompletionFunc *cb; + void *opaque; + int cid; + void *prp_list_page; + uint64_t prp_list_iova; + int free_req_next; /* q->reqs[] index of next free req */ +} NVMeRequest; + +typedef struct { + QemuMutex lock; + + /* Read from I/O code path, initialized under BQL */ + BDRVNVMeState *s; + int index; + + /* Fields protected by BQL */ + uint8_t *prp_list_pages; + + /* Fields protected by @lock */ + CoQueue free_req_queue; + NVMeQueue sq, cq; + int cq_phase; + int free_req_head; + NVMeRequest reqs[NVME_NUM_REQS]; + int need_kick; + int inflight; + + /* Thread-safe, no lock necessary */ + QEMUBH *completion_bh; +} NVMeQueuePair; + +struct BDRVNVMeState { + AioContext *aio_context; + QEMUVFIOState *vfio; + void *bar0_wo_map; + /* Memory mapped registers */ + volatile struct { + uint32_t sq_tail; + uint32_t cq_head; + } *doorbells; + /* The submission/completion queue pairs. + * [0]: admin queue. + * [1..]: io queues. + */ + NVMeQueuePair **queues; + unsigned queue_count; + size_t page_size; + /* How many uint32_t elements does each doorbell entry take. */ + size_t doorbell_scale; + bool write_cache_supported; + EventNotifier irq_notifier[MSIX_IRQ_COUNT]; + + uint64_t nsze; /* Namespace size reported by identify command */ + int nsid; /* The namespace id to read/write data. */ + int blkshift; + + uint64_t max_transfer; + bool plugged; + + bool supports_write_zeroes; + bool supports_discard; + + CoMutex dma_map_lock; + CoQueue dma_flush_queue; + + /* Total size of mapped qiov, accessed under dma_map_lock */ + int dma_map_count; + + /* PCI address (required for nvme_refresh_filename()) */ + char *device; + + struct { + uint64_t completion_errors; + uint64_t aligned_accesses; + uint64_t unaligned_accesses; + } stats; +}; + +#define NVME_BLOCK_OPT_DEVICE "device" +#define NVME_BLOCK_OPT_NAMESPACE "namespace" + +static void nvme_process_completion_bh(void *opaque); + +static QemuOptsList runtime_opts = { + .name = "nvme", + .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), + .desc = { + { + .name = NVME_BLOCK_OPT_DEVICE, + .type = QEMU_OPT_STRING, + .help = "NVMe PCI device address", + }, + { + .name = NVME_BLOCK_OPT_NAMESPACE, + .type = QEMU_OPT_NUMBER, + .help = "NVMe namespace", + }, + { /* end of list */ } + }, +}; + +/* Returns true on success, false on failure. */ +static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q, + unsigned nentries, size_t entry_bytes, Error **errp) +{ + size_t bytes; + int r; + + bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size); + q->head = q->tail = 0; + q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes); + if (!q->queue) { + error_setg(errp, "Cannot allocate queue"); + return false; + } + memset(q->queue, 0, bytes); + r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp); + if (r) { + error_prepend(errp, "Cannot map queue: "); + } + return r == 0; +} + +static void nvme_free_queue(NVMeQueue *q) +{ + qemu_vfree(q->queue); +} + +static void nvme_free_queue_pair(NVMeQueuePair *q) +{ + trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq); + if (q->completion_bh) { + qemu_bh_delete(q->completion_bh); + } + nvme_free_queue(&q->sq); + nvme_free_queue(&q->cq); + qemu_vfree(q->prp_list_pages); + qemu_mutex_destroy(&q->lock); + g_free(q); +} + +static void nvme_free_req_queue_cb(void *opaque) +{ + NVMeQueuePair *q = opaque; + + qemu_mutex_lock(&q->lock); + while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { + /* Retry all pending requests */ + } + qemu_mutex_unlock(&q->lock); +} + +static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s, + AioContext *aio_context, + unsigned idx, size_t size, + Error **errp) +{ + int i, r; + NVMeQueuePair *q; + uint64_t prp_list_iova; + size_t bytes; + + q = g_try_new0(NVMeQueuePair, 1); + if (!q) { + error_setg(errp, "Cannot allocate queue pair"); + return NULL; + } + trace_nvme_create_queue_pair(idx, q, size, aio_context, + event_notifier_get_fd(s->irq_notifier)); + bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS, + qemu_real_host_page_size); + q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes); + if (!q->prp_list_pages) { + error_setg(errp, "Cannot allocate PRP page list"); + goto fail; + } + memset(q->prp_list_pages, 0, bytes); + qemu_mutex_init(&q->lock); + q->s = s; + q->index = idx; + qemu_co_queue_init(&q->free_req_queue); + q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q); + r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes, + false, &prp_list_iova, errp); + if (r) { + error_prepend(errp, "Cannot map buffer for DMA: "); + goto fail; + } + q->free_req_head = -1; + for (i = 0; i < NVME_NUM_REQS; i++) { + NVMeRequest *req = &q->reqs[i]; + req->cid = i + 1; + req->free_req_next = q->free_req_head; + q->free_req_head = i; + req->prp_list_page = q->prp_list_pages + i * s->page_size; + req->prp_list_iova = prp_list_iova + i * s->page_size; + } + + if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) { + goto fail; + } + q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail; + + if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) { + goto fail; + } + q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head; + + return q; +fail: + nvme_free_queue_pair(q); + return NULL; +} + +/* With q->lock */ +static void nvme_kick(NVMeQueuePair *q) +{ + BDRVNVMeState *s = q->s; + + if (s->plugged || !q->need_kick) { + return; + } + trace_nvme_kick(s, q->index); + assert(!(q->sq.tail & 0xFF00)); + /* Fence the write to submission queue entry before notifying the device. */ + smp_wmb(); + *q->sq.doorbell = cpu_to_le32(q->sq.tail); + q->inflight += q->need_kick; + q->need_kick = 0; +} + +/* Find a free request element if any, otherwise: + * a) if in coroutine context, try to wait for one to become available; + * b) if not in coroutine, return NULL; + */ +static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) +{ + NVMeRequest *req; + + qemu_mutex_lock(&q->lock); + + while (q->free_req_head == -1) { + if (qemu_in_coroutine()) { + trace_nvme_free_req_queue_wait(q->s, q->index); + qemu_co_queue_wait(&q->free_req_queue, &q->lock); + } else { + qemu_mutex_unlock(&q->lock); + return NULL; + } + } + + req = &q->reqs[q->free_req_head]; + q->free_req_head = req->free_req_next; + req->free_req_next = -1; + + qemu_mutex_unlock(&q->lock); + return req; +} + +/* With q->lock */ +static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req) +{ + req->free_req_next = q->free_req_head; + q->free_req_head = req - q->reqs; +} + +/* With q->lock */ +static void nvme_wake_free_req_locked(NVMeQueuePair *q) +{ + if (!qemu_co_queue_empty(&q->free_req_queue)) { + replay_bh_schedule_oneshot_event(q->s->aio_context, + nvme_free_req_queue_cb, q); + } +} + +/* Insert a request in the freelist and wake waiters */ +static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req) +{ + qemu_mutex_lock(&q->lock); + nvme_put_free_req_locked(q, req); + nvme_wake_free_req_locked(q); + qemu_mutex_unlock(&q->lock); +} + +static inline int nvme_translate_error(const NvmeCqe *c) +{ + uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; + if (status) { + trace_nvme_error(le32_to_cpu(c->result), + le16_to_cpu(c->sq_head), + le16_to_cpu(c->sq_id), + le16_to_cpu(c->cid), + le16_to_cpu(status)); + } + switch (status) { + case 0: + return 0; + case 1: + return -ENOSYS; + case 2: + return -EINVAL; + default: + return -EIO; + } +} + +/* With q->lock */ +static bool nvme_process_completion(NVMeQueuePair *q) +{ + BDRVNVMeState *s = q->s; + bool progress = false; + NVMeRequest *preq; + NVMeRequest req; + NvmeCqe *c; + + trace_nvme_process_completion(s, q->index, q->inflight); + if (s->plugged) { + trace_nvme_process_completion_queue_plugged(s, q->index); + return false; + } + + /* + * Support re-entrancy when a request cb() function invokes aio_poll(). + * Pending completions must be visible to aio_poll() so that a cb() + * function can wait for the completion of another request. + * + * The aio_poll() loop will execute our BH and we'll resume completion + * processing there. + */ + qemu_bh_schedule(q->completion_bh); + + assert(q->inflight >= 0); + while (q->inflight) { + int ret; + int16_t cid; + + c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; + if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { + break; + } + ret = nvme_translate_error(c); + if (ret) { + s->stats.completion_errors++; + } + q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; + if (!q->cq.head) { + q->cq_phase = !q->cq_phase; + } + cid = le16_to_cpu(c->cid); + if (cid == 0 || cid > NVME_QUEUE_SIZE) { + warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", " + "queue size: %u", cid, NVME_QUEUE_SIZE); + continue; + } + trace_nvme_complete_command(s, q->index, cid); + preq = &q->reqs[cid - 1]; + req = *preq; + assert(req.cid == cid); + assert(req.cb); + nvme_put_free_req_locked(q, preq); + preq->cb = preq->opaque = NULL; + q->inflight--; + qemu_mutex_unlock(&q->lock); + req.cb(req.opaque, ret); + qemu_mutex_lock(&q->lock); + progress = true; + } + if (progress) { + /* Notify the device so it can post more completions. */ + smp_mb_release(); + *q->cq.doorbell = cpu_to_le32(q->cq.head); + nvme_wake_free_req_locked(q); + } + + qemu_bh_cancel(q->completion_bh); + + return progress; +} + +static void nvme_process_completion_bh(void *opaque) +{ + NVMeQueuePair *q = opaque; + + /* + * We're being invoked because a nvme_process_completion() cb() function + * called aio_poll(). The callback may be waiting for further completions + * so notify the device that it has space to fill in more completions now. + */ + smp_mb_release(); + *q->cq.doorbell = cpu_to_le32(q->cq.head); + nvme_wake_free_req_locked(q); + + nvme_process_completion(q); +} + +static void nvme_trace_command(const NvmeCmd *cmd) +{ + int i; + + if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) { + return; + } + for (i = 0; i < 8; ++i) { + uint8_t *cmdp = (uint8_t *)cmd + i * 8; + trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], + cmdp[4], cmdp[5], cmdp[6], cmdp[7]); + } +} + +static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req, + NvmeCmd *cmd, BlockCompletionFunc cb, + void *opaque) +{ + assert(!req->cb); + req->cb = cb; + req->opaque = opaque; + cmd->cid = cpu_to_le16(req->cid); + + trace_nvme_submit_command(q->s, q->index, req->cid); + nvme_trace_command(cmd); + qemu_mutex_lock(&q->lock); + memcpy((uint8_t *)q->sq.queue + + q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); + q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; + q->need_kick++; + nvme_kick(q); + nvme_process_completion(q); + qemu_mutex_unlock(&q->lock); +} + +static void nvme_admin_cmd_sync_cb(void *opaque, int ret) +{ + int *pret = opaque; + *pret = ret; + aio_wait_kick(); +} + +static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd) +{ + BDRVNVMeState *s = bs->opaque; + NVMeQueuePair *q = s->queues[INDEX_ADMIN]; + AioContext *aio_context = bdrv_get_aio_context(bs); + NVMeRequest *req; + int ret = -EINPROGRESS; + req = nvme_get_free_req(q); + if (!req) { + return -EBUSY; + } + nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret); + + AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS); + return ret; +} + +/* Returns true on success, false on failure. */ +static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp) +{ + BDRVNVMeState *s = bs->opaque; + bool ret = false; + QEMU_AUTO_VFREE union { + NvmeIdCtrl ctrl; + NvmeIdNs ns; + } *id = NULL; + NvmeLBAF *lbaf; + uint16_t oncs; + int r; + uint64_t iova; + NvmeCmd cmd = { + .opcode = NVME_ADM_CMD_IDENTIFY, + .cdw10 = cpu_to_le32(0x1), + }; + size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size); + + id = qemu_try_memalign(qemu_real_host_page_size, id_size); + if (!id) { + error_setg(errp, "Cannot allocate buffer for identify response"); + goto out; + } + r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp); + if (r) { + error_prepend(errp, "Cannot map buffer for DMA: "); + goto out; + } + + memset(id, 0, id_size); + cmd.dptr.prp1 = cpu_to_le64(iova); + if (nvme_admin_cmd_sync(bs, &cmd)) { + error_setg(errp, "Failed to identify controller"); + goto out; + } + + if (le32_to_cpu(id->ctrl.nn) < namespace) { + error_setg(errp, "Invalid namespace"); + goto out; + } + s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1; + s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size; + /* For now the page list buffer per command is one page, to hold at most + * s->page_size / sizeof(uint64_t) entries. */ + s->max_transfer = MIN_NON_ZERO(s->max_transfer, + s->page_size / sizeof(uint64_t) * s->page_size); + + oncs = le16_to_cpu(id->ctrl.oncs); + s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES); + s->supports_discard = !!(oncs & NVME_ONCS_DSM); + + memset(id, 0, id_size); + cmd.cdw10 = 0; + cmd.nsid = cpu_to_le32(namespace); + if (nvme_admin_cmd_sync(bs, &cmd)) { + error_setg(errp, "Failed to identify namespace"); + goto out; + } + + s->nsze = le64_to_cpu(id->ns.nsze); + lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)]; + + if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) && + NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) == + NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) { + bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP; + } + + if (lbaf->ms) { + error_setg(errp, "Namespaces with metadata are not yet supported"); + goto out; + } + + if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || + (1 << lbaf->ds) > s->page_size) + { + error_setg(errp, "Namespace has unsupported block size (2^%d)", + lbaf->ds); + goto out; + } + + ret = true; + s->blkshift = lbaf->ds; +out: + qemu_vfio_dma_unmap(s->vfio, id); + + return ret; +} + +static bool nvme_poll_queue(NVMeQueuePair *q) +{ + bool progress = false; + + const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES; + NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset]; + + trace_nvme_poll_queue(q->s, q->index); + /* + * Do an early check for completions. q->lock isn't needed because + * nvme_process_completion() only runs in the event loop thread and + * cannot race with itself. + */ + if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) { + return false; + } + + qemu_mutex_lock(&q->lock); + while (nvme_process_completion(q)) { + /* Keep polling */ + progress = true; + } + qemu_mutex_unlock(&q->lock); + + return progress; +} + +static bool nvme_poll_queues(BDRVNVMeState *s) +{ + bool progress = false; + int i; + + for (i = 0; i < s->queue_count; i++) { + if (nvme_poll_queue(s->queues[i])) { + progress = true; + } + } + return progress; +} + +static void nvme_handle_event(EventNotifier *n) +{ + BDRVNVMeState *s = container_of(n, BDRVNVMeState, + irq_notifier[MSIX_SHARED_IRQ_IDX]); + + trace_nvme_handle_event(s); + event_notifier_test_and_clear(n); + nvme_poll_queues(s); +} + +static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) +{ + BDRVNVMeState *s = bs->opaque; + unsigned n = s->queue_count; + NVMeQueuePair *q; + NvmeCmd cmd; + unsigned queue_size = NVME_QUEUE_SIZE; + + assert(n <= UINT16_MAX); + q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs), + n, queue_size, errp); + if (!q) { + return false; + } + cmd = (NvmeCmd) { + .opcode = NVME_ADM_CMD_CREATE_CQ, + .dptr.prp1 = cpu_to_le64(q->cq.iova), + .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), + .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC), + }; + if (nvme_admin_cmd_sync(bs, &cmd)) { + error_setg(errp, "Failed to create CQ io queue [%u]", n); + goto out_error; + } + cmd = (NvmeCmd) { + .opcode = NVME_ADM_CMD_CREATE_SQ, + .dptr.prp1 = cpu_to_le64(q->sq.iova), + .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n), + .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)), + }; + if (nvme_admin_cmd_sync(bs, &cmd)) { + error_setg(errp, "Failed to create SQ io queue [%u]", n); + goto out_error; + } + s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); + s->queues[n] = q; + s->queue_count++; + return true; +out_error: + nvme_free_queue_pair(q); + return false; +} + +static bool nvme_poll_cb(void *opaque) +{ + EventNotifier *e = opaque; + BDRVNVMeState *s = container_of(e, BDRVNVMeState, + irq_notifier[MSIX_SHARED_IRQ_IDX]); + + return nvme_poll_queues(s); +} + +static int nvme_init(BlockDriverState *bs, const char *device, int namespace, + Error **errp) +{ + BDRVNVMeState *s = bs->opaque; + NVMeQueuePair *q; + AioContext *aio_context = bdrv_get_aio_context(bs); + int ret; + uint64_t cap; + uint32_t ver; + uint64_t timeout_ms; + uint64_t deadline, now; + volatile NvmeBar *regs = NULL; + + qemu_co_mutex_init(&s->dma_map_lock); + qemu_co_queue_init(&s->dma_flush_queue); + s->device = g_strdup(device); + s->nsid = namespace; + s->aio_context = bdrv_get_aio_context(bs); + ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0); + if (ret) { + error_setg(errp, "Failed to init event notifier"); + return ret; + } + + s->vfio = qemu_vfio_open_pci(device, errp); + if (!s->vfio) { + ret = -EINVAL; + goto out; + } + + regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar), + PROT_READ | PROT_WRITE, errp); + if (!regs) { + ret = -EINVAL; + goto out; + } + /* Perform initialize sequence as described in NVMe spec "7.6.1 + * Initialization". */ + + cap = le64_to_cpu(regs->cap); + trace_nvme_controller_capability_raw(cap); + trace_nvme_controller_capability("Maximum Queue Entries Supported", + 1 + NVME_CAP_MQES(cap)); + trace_nvme_controller_capability("Contiguous Queues Required", + NVME_CAP_CQR(cap)); + trace_nvme_controller_capability("Doorbell Stride", + 1 << (2 + NVME_CAP_DSTRD(cap))); + trace_nvme_controller_capability("Subsystem Reset Supported", + NVME_CAP_NSSRS(cap)); + trace_nvme_controller_capability("Memory Page Size Minimum", + 1 << (12 + NVME_CAP_MPSMIN(cap))); + trace_nvme_controller_capability("Memory Page Size Maximum", + 1 << (12 + NVME_CAP_MPSMAX(cap))); + if (!NVME_CAP_CSS(cap)) { + error_setg(errp, "Device doesn't support NVMe command set"); + ret = -EINVAL; + goto out; + } + + s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap)); + s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t); + bs->bl.opt_mem_alignment = s->page_size; + bs->bl.request_alignment = s->page_size; + timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000); + + ver = le32_to_cpu(regs->vs); + trace_nvme_controller_spec_version(extract32(ver, 16, 16), + extract32(ver, 8, 8), + extract32(ver, 0, 8)); + + /* Reset device to get a clean state. */ + regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE); + /* Wait for CSTS.RDY = 0. */ + deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS; + while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { + if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { + error_setg(errp, "Timeout while waiting for device to reset (%" + PRId64 " ms)", + timeout_ms); + ret = -ETIMEDOUT; + goto out; + } + } + + s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0, + sizeof(NvmeBar) + NVME_DOORBELL_SIZE, + PROT_WRITE, errp); + s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar)); + if (!s->doorbells) { + ret = -EINVAL; + goto out; + } + + /* Set up admin queue. */ + s->queues = g_new(NVMeQueuePair *, 1); + q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp); + if (!q) { + ret = -EINVAL; + goto out; + } + s->queues[INDEX_ADMIN] = q; + s->queue_count = 1; + QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000); + regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) | + ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT)); + regs->asq = cpu_to_le64(q->sq.iova); + regs->acq = cpu_to_le64(q->cq.iova); + + /* After setting up all control registers we can enable device now. */ + regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) | + (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) | + CC_EN_MASK); + /* Wait for CSTS.RDY = 1. */ + now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); + deadline = now + timeout_ms * SCALE_MS; + while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) { + if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { + error_setg(errp, "Timeout while waiting for device to start (%" + PRId64 " ms)", + timeout_ms); + ret = -ETIMEDOUT; + goto out; + } + } + + ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier, + VFIO_PCI_MSIX_IRQ_INDEX, errp); + if (ret) { + goto out; + } + aio_set_event_notifier(bdrv_get_aio_context(bs), + &s->irq_notifier[MSIX_SHARED_IRQ_IDX], + false, nvme_handle_event, nvme_poll_cb); + + if (!nvme_identify(bs, namespace, errp)) { + ret = -EIO; + goto out; + } + + /* Set up command queues. */ + if (!nvme_add_io_queue(bs, errp)) { + ret = -EIO; + } +out: + if (regs) { + qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar)); + } + + /* Cleaning up is done in nvme_file_open() upon error. */ + return ret; +} + +/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: + * + * nvme://0000:44:00.0/1 + * + * where the "nvme://" is a fixed form of the protocol prefix, the middle part + * is the PCI address, and the last part is the namespace number starting from + * 1 according to the NVMe spec. */ +static void nvme_parse_filename(const char *filename, QDict *options, + Error **errp) +{ + int pref = strlen("nvme://"); + + if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { + const char *tmp = filename + pref; + char *device; + const char *namespace; + unsigned long ns; + const char *slash = strchr(tmp, '/'); + if (!slash) { + qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); + return; + } + device = g_strndup(tmp, slash - tmp); + qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); + g_free(device); + namespace = slash + 1; + if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { + error_setg(errp, "Invalid namespace '%s', positive number expected", + namespace); + return; + } + qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, + *namespace ? namespace : "1"); + } +} + +static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, + Error **errp) +{ + int ret; + BDRVNVMeState *s = bs->opaque; + NvmeCmd cmd = { + .opcode = NVME_ADM_CMD_SET_FEATURES, + .nsid = cpu_to_le32(s->nsid), + .cdw10 = cpu_to_le32(0x06), + .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), + }; + + ret = nvme_admin_cmd_sync(bs, &cmd); + if (ret) { + error_setg(errp, "Failed to configure NVMe write cache"); + } + return ret; +} + +static void nvme_close(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + + for (unsigned i = 0; i < s->queue_count; ++i) { + nvme_free_queue_pair(s->queues[i]); + } + g_free(s->queues); + aio_set_event_notifier(bdrv_get_aio_context(bs), + &s->irq_notifier[MSIX_SHARED_IRQ_IDX], + false, NULL, NULL); + event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]); + qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map, + 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE); + qemu_vfio_close(s->vfio); + + g_free(s->device); +} + +static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, + Error **errp) +{ + const char *device; + QemuOpts *opts; + int namespace; + int ret; + BDRVNVMeState *s = bs->opaque; + + bs->supported_write_flags = BDRV_REQ_FUA; + + opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); + qemu_opts_absorb_qdict(opts, options, &error_abort); + device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); + if (!device) { + error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); + qemu_opts_del(opts); + return -EINVAL; + } + + namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); + ret = nvme_init(bs, device, namespace, errp); + qemu_opts_del(opts); + if (ret) { + goto fail; + } + if (flags & BDRV_O_NOCACHE) { + if (!s->write_cache_supported) { + error_setg(errp, + "NVMe controller doesn't support write cache configuration"); + ret = -EINVAL; + } else { + ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), + errp); + } + if (ret) { + goto fail; + } + } + return 0; +fail: + nvme_close(bs); + return ret; +} + +static int64_t nvme_getlength(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + return s->nsze << s->blkshift; +} + +static uint32_t nvme_get_blocksize(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); + return UINT32_C(1) << s->blkshift; +} + +static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) +{ + uint32_t blocksize = nvme_get_blocksize(bs); + bsz->phys = blocksize; + bsz->log = blocksize; + return 0; +} + +/* Called with s->dma_map_lock */ +static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, + QEMUIOVector *qiov) +{ + int r = 0; + BDRVNVMeState *s = bs->opaque; + + s->dma_map_count -= qiov->size; + if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { + r = qemu_vfio_dma_reset_temporary(s->vfio); + if (!r) { + qemu_co_queue_restart_all(&s->dma_flush_queue); + } + } + return r; +} + +/* Called with s->dma_map_lock */ +static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, + NVMeRequest *req, QEMUIOVector *qiov) +{ + BDRVNVMeState *s = bs->opaque; + uint64_t *pagelist = req->prp_list_page; + int i, j, r; + int entries = 0; + Error *local_err = NULL, **errp = NULL; + + assert(qiov->size); + assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); + assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); + for (i = 0; i < qiov->niov; ++i) { + bool retry = true; + uint64_t iova; + size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len, + qemu_real_host_page_size); +try_map: + r = qemu_vfio_dma_map(s->vfio, + qiov->iov[i].iov_base, + len, true, &iova, errp); + if (r == -ENOSPC) { + /* + * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA + * ioctl returns -ENOSPC to signal the user exhausted the DMA + * mappings available for a container since Linux kernel commit + * 492855939bdb ("vfio/type1: Limit DMA mappings per container", + * April 2019, see CVE-2019-3882). + * + * This block driver already handles this error path by checking + * for the -ENOMEM error, so we directly replace -ENOSPC by + * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev + * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and + * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator + * to add more storage to the blockdev. Not something we can do + * easily with an IOMMU :) + */ + r = -ENOMEM; + } + if (r == -ENOMEM && retry) { + /* + * We exhausted the DMA mappings available for our container: + * recycle the volatile IOVA mappings. + */ + retry = false; + trace_nvme_dma_flush_queue_wait(s); + if (s->dma_map_count) { + trace_nvme_dma_map_flush(s); + qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); + } else { + r = qemu_vfio_dma_reset_temporary(s->vfio); + if (r) { + goto fail; + } + } + errp = &local_err; + + goto try_map; + } + if (r) { + goto fail; + } + + for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { + pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); + } + trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, + qiov->iov[i].iov_len / s->page_size); + } + + s->dma_map_count += qiov->size; + + assert(entries <= s->page_size / sizeof(uint64_t)); + switch (entries) { + case 0: + abort(); + case 1: + cmd->dptr.prp1 = pagelist[0]; + cmd->dptr.prp2 = 0; + break; + case 2: + cmd->dptr.prp1 = pagelist[0]; + cmd->dptr.prp2 = pagelist[1]; + break; + default: + cmd->dptr.prp1 = pagelist[0]; + cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); + break; + } + trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); + for (i = 0; i < entries; ++i) { + trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); + } + return 0; +fail: + /* No need to unmap [0 - i) iovs even if we've failed, since we don't + * increment s->dma_map_count. This is okay for fixed mapping memory areas + * because they are already mapped before calling this function; for + * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by + * calling qemu_vfio_dma_reset_temporary when necessary. */ + if (local_err) { + error_reportf_err(local_err, "Cannot map buffer for DMA: "); + } + return r; +} + +typedef struct { + Coroutine *co; + int ret; + AioContext *ctx; +} NVMeCoData; + +static void nvme_rw_cb_bh(void *opaque) +{ + NVMeCoData *data = opaque; + qemu_coroutine_enter(data->co); +} + +static void nvme_rw_cb(void *opaque, int ret) +{ + NVMeCoData *data = opaque; + data->ret = ret; + if (!data->co) { + /* The rw coroutine hasn't yielded, don't try to enter. */ + return; + } + replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data); +} + +static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, + uint64_t offset, uint64_t bytes, + QEMUIOVector *qiov, + bool is_write, + int flags) +{ + int r; + BDRVNVMeState *s = bs->opaque; + NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; + NVMeRequest *req; + + uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | + (flags & BDRV_REQ_FUA ? 1 << 30 : 0); + NvmeCmd cmd = { + .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, + .nsid = cpu_to_le32(s->nsid), + .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), + .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), + .cdw12 = cpu_to_le32(cdw12), + }; + NVMeCoData data = { + .ctx = bdrv_get_aio_context(bs), + .ret = -EINPROGRESS, + }; + + trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); + assert(s->queue_count > 1); + req = nvme_get_free_req(ioq); + assert(req); + + qemu_co_mutex_lock(&s->dma_map_lock); + r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); + qemu_co_mutex_unlock(&s->dma_map_lock); + if (r) { + nvme_put_free_req_and_wake(ioq, req); + return r; + } + nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); + + data.co = qemu_coroutine_self(); + while (data.ret == -EINPROGRESS) { + qemu_coroutine_yield(); + } + + qemu_co_mutex_lock(&s->dma_map_lock); + r = nvme_cmd_unmap_qiov(bs, qiov); + qemu_co_mutex_unlock(&s->dma_map_lock); + if (r) { + return r; + } + + trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); + return data.ret; +} + +static inline bool nvme_qiov_aligned(BlockDriverState *bs, + const QEMUIOVector *qiov) +{ + int i; + BDRVNVMeState *s = bs->opaque; + + for (i = 0; i < qiov->niov; ++i) { + if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, + qemu_real_host_page_size) || + !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) { + trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, + qiov->iov[i].iov_len, s->page_size); + return false; + } + } + return true; +} + +static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, + QEMUIOVector *qiov, bool is_write, int flags) +{ + BDRVNVMeState *s = bs->opaque; + int r; + QEMU_AUTO_VFREE uint8_t *buf = NULL; + QEMUIOVector local_qiov; + size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size); + assert(QEMU_IS_ALIGNED(offset, s->page_size)); + assert(QEMU_IS_ALIGNED(bytes, s->page_size)); + assert(bytes <= s->max_transfer); + if (nvme_qiov_aligned(bs, qiov)) { + s->stats.aligned_accesses++; + return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); + } + s->stats.unaligned_accesses++; + trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); + buf = qemu_try_memalign(qemu_real_host_page_size, len); + + if (!buf) { + return -ENOMEM; + } + qemu_iovec_init(&local_qiov, 1); + if (is_write) { + qemu_iovec_to_buf(qiov, 0, buf, bytes); + } + qemu_iovec_add(&local_qiov, buf, bytes); + r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); + qemu_iovec_destroy(&local_qiov); + if (!r && !is_write) { + qemu_iovec_from_buf(qiov, 0, buf, bytes); + } + return r; +} + +static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, + int64_t offset, int64_t bytes, + QEMUIOVector *qiov, + BdrvRequestFlags flags) +{ + return nvme_co_prw(bs, offset, bytes, qiov, false, flags); +} + +static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, + int64_t offset, int64_t bytes, + QEMUIOVector *qiov, + BdrvRequestFlags flags) +{ + return nvme_co_prw(bs, offset, bytes, qiov, true, flags); +} + +static coroutine_fn int nvme_co_flush(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; + NVMeRequest *req; + NvmeCmd cmd = { + .opcode = NVME_CMD_FLUSH, + .nsid = cpu_to_le32(s->nsid), + }; + NVMeCoData data = { + .ctx = bdrv_get_aio_context(bs), + .ret = -EINPROGRESS, + }; + + assert(s->queue_count > 1); + req = nvme_get_free_req(ioq); + assert(req); + nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); + + data.co = qemu_coroutine_self(); + if (data.ret == -EINPROGRESS) { + qemu_coroutine_yield(); + } + + return data.ret; +} + + +static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs, + int64_t offset, + int64_t bytes, + BdrvRequestFlags flags) +{ + BDRVNVMeState *s = bs->opaque; + NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; + NVMeRequest *req; + uint32_t cdw12; + + if (!s->supports_write_zeroes) { + return -ENOTSUP; + } + + if (bytes == 0) { + return 0; + } + + cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF; + /* + * We should not lose information. pwrite_zeroes_alignment and + * max_pwrite_zeroes guarantees it. + */ + assert(((cdw12 + 1) << s->blkshift) == bytes); + + NvmeCmd cmd = { + .opcode = NVME_CMD_WRITE_ZEROES, + .nsid = cpu_to_le32(s->nsid), + .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), + .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), + }; + + NVMeCoData data = { + .ctx = bdrv_get_aio_context(bs), + .ret = -EINPROGRESS, + }; + + if (flags & BDRV_REQ_MAY_UNMAP) { + cdw12 |= (1 << 25); + } + + if (flags & BDRV_REQ_FUA) { + cdw12 |= (1 << 30); + } + + cmd.cdw12 = cpu_to_le32(cdw12); + + trace_nvme_write_zeroes(s, offset, bytes, flags); + assert(s->queue_count > 1); + req = nvme_get_free_req(ioq); + assert(req); + + nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); + + data.co = qemu_coroutine_self(); + while (data.ret == -EINPROGRESS) { + qemu_coroutine_yield(); + } + + trace_nvme_rw_done(s, true, offset, bytes, data.ret); + return data.ret; +} + + +static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs, + int64_t offset, + int64_t bytes) +{ + BDRVNVMeState *s = bs->opaque; + NVMeQueuePair *ioq = s->queues[INDEX_IO(0)]; + NVMeRequest *req; + QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL; + QEMUIOVector local_qiov; + int ret; + + NvmeCmd cmd = { + .opcode = NVME_CMD_DSM, + .nsid = cpu_to_le32(s->nsid), + .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/ + .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/ + }; + + NVMeCoData data = { + .ctx = bdrv_get_aio_context(bs), + .ret = -EINPROGRESS, + }; + + if (!s->supports_discard) { + return -ENOTSUP; + } + + assert(s->queue_count > 1); + + /* + * Filling the @buf requires @offset and @bytes to satisfy restrictions + * defined in nvme_refresh_limits(). + */ + assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift)); + assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift)); + assert((bytes >> s->blkshift) <= UINT32_MAX); + + buf = qemu_try_memalign(s->page_size, s->page_size); + if (!buf) { + return -ENOMEM; + } + memset(buf, 0, s->page_size); + buf->nlb = cpu_to_le32(bytes >> s->blkshift); + buf->slba = cpu_to_le64(offset >> s->blkshift); + buf->cattr = 0; + + qemu_iovec_init(&local_qiov, 1); + qemu_iovec_add(&local_qiov, buf, 4096); + + req = nvme_get_free_req(ioq); + assert(req); + + qemu_co_mutex_lock(&s->dma_map_lock); + ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov); + qemu_co_mutex_unlock(&s->dma_map_lock); + + if (ret) { + nvme_put_free_req_and_wake(ioq, req); + goto out; + } + + trace_nvme_dsm(s, offset, bytes); + + nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data); + + data.co = qemu_coroutine_self(); + while (data.ret == -EINPROGRESS) { + qemu_coroutine_yield(); + } + + qemu_co_mutex_lock(&s->dma_map_lock); + ret = nvme_cmd_unmap_qiov(bs, &local_qiov); + qemu_co_mutex_unlock(&s->dma_map_lock); + + if (ret) { + goto out; + } + + ret = data.ret; + trace_nvme_dsm_done(s, offset, bytes, ret); +out: + qemu_iovec_destroy(&local_qiov); + return ret; + +} + +static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset, + bool exact, PreallocMode prealloc, + BdrvRequestFlags flags, Error **errp) +{ + int64_t cur_length; + + if (prealloc != PREALLOC_MODE_OFF) { + error_setg(errp, "Unsupported preallocation mode '%s'", + PreallocMode_str(prealloc)); + return -ENOTSUP; + } + + cur_length = nvme_getlength(bs); + if (offset != cur_length && exact) { + error_setg(errp, "Cannot resize NVMe devices"); + return -ENOTSUP; + } else if (offset > cur_length) { + error_setg(errp, "Cannot grow NVMe devices"); + return -EINVAL; + } + + return 0; +} + +static int nvme_reopen_prepare(BDRVReopenState *reopen_state, + BlockReopenQueue *queue, Error **errp) +{ + return 0; +} + +static void nvme_refresh_filename(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + + snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", + s->device, s->nsid); +} + +static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) +{ + BDRVNVMeState *s = bs->opaque; + + bs->bl.opt_mem_alignment = s->page_size; + bs->bl.request_alignment = s->page_size; + bs->bl.max_transfer = s->max_transfer; + + /* + * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get + * at most 0xFFFF + */ + bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16); + bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment, + 1UL << s->blkshift); + + bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift; + bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment, + 1UL << s->blkshift); +} + +static void nvme_detach_aio_context(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + + for (unsigned i = 0; i < s->queue_count; i++) { + NVMeQueuePair *q = s->queues[i]; + + qemu_bh_delete(q->completion_bh); + q->completion_bh = NULL; + } + + aio_set_event_notifier(bdrv_get_aio_context(bs), + &s->irq_notifier[MSIX_SHARED_IRQ_IDX], + false, NULL, NULL); +} + +static void nvme_attach_aio_context(BlockDriverState *bs, + AioContext *new_context) +{ + BDRVNVMeState *s = bs->opaque; + + s->aio_context = new_context; + aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX], + false, nvme_handle_event, nvme_poll_cb); + + for (unsigned i = 0; i < s->queue_count; i++) { + NVMeQueuePair *q = s->queues[i]; + + q->completion_bh = + aio_bh_new(new_context, nvme_process_completion_bh, q); + } +} + +static void nvme_aio_plug(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + assert(!s->plugged); + s->plugged = true; +} + +static void nvme_aio_unplug(BlockDriverState *bs) +{ + BDRVNVMeState *s = bs->opaque; + assert(s->plugged); + s->plugged = false; + for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) { + NVMeQueuePair *q = s->queues[i]; + qemu_mutex_lock(&q->lock); + nvme_kick(q); + nvme_process_completion(q); + qemu_mutex_unlock(&q->lock); + } +} + +static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) +{ + int ret; + Error *local_err = NULL; + BDRVNVMeState *s = bs->opaque; + + ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err); + if (ret) { + /* FIXME: we may run out of IOVA addresses after repeated + * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap + * doesn't reclaim addresses for fixed mappings. */ + error_reportf_err(local_err, "nvme_register_buf failed: "); + } +} + +static void nvme_unregister_buf(BlockDriverState *bs, void *host) +{ + BDRVNVMeState *s = bs->opaque; + + qemu_vfio_dma_unmap(s->vfio, host); +} + +static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs) +{ + BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1); + BDRVNVMeState *s = bs->opaque; + + stats->driver = BLOCKDEV_DRIVER_NVME; + stats->u.nvme = (BlockStatsSpecificNvme) { + .completion_errors = s->stats.completion_errors, + .aligned_accesses = s->stats.aligned_accesses, + .unaligned_accesses = s->stats.unaligned_accesses, + }; + + return stats; +} + +static const char *const nvme_strong_runtime_opts[] = { + NVME_BLOCK_OPT_DEVICE, + NVME_BLOCK_OPT_NAMESPACE, + + NULL +}; + +static BlockDriver bdrv_nvme = { + .format_name = "nvme", + .protocol_name = "nvme", + .instance_size = sizeof(BDRVNVMeState), + + .bdrv_co_create_opts = bdrv_co_create_opts_simple, + .create_opts = &bdrv_create_opts_simple, + + .bdrv_parse_filename = nvme_parse_filename, + .bdrv_file_open = nvme_file_open, + .bdrv_close = nvme_close, + .bdrv_getlength = nvme_getlength, + .bdrv_probe_blocksizes = nvme_probe_blocksizes, + .bdrv_co_truncate = nvme_co_truncate, + + .bdrv_co_preadv = nvme_co_preadv, + .bdrv_co_pwritev = nvme_co_pwritev, + + .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes, + .bdrv_co_pdiscard = nvme_co_pdiscard, + + .bdrv_co_flush_to_disk = nvme_co_flush, + .bdrv_reopen_prepare = nvme_reopen_prepare, + + .bdrv_refresh_filename = nvme_refresh_filename, + .bdrv_refresh_limits = nvme_refresh_limits, + .strong_runtime_opts = nvme_strong_runtime_opts, + .bdrv_get_specific_stats = nvme_get_specific_stats, + + .bdrv_detach_aio_context = nvme_detach_aio_context, + .bdrv_attach_aio_context = nvme_attach_aio_context, + + .bdrv_io_plug = nvme_aio_plug, + .bdrv_io_unplug = nvme_aio_unplug, + + .bdrv_register_buf = nvme_register_buf, + .bdrv_unregister_buf = nvme_unregister_buf, +}; + +static void bdrv_nvme_init(void) +{ + bdrv_register(&bdrv_nvme); +} + +block_init(bdrv_nvme_init); |