aboutsummaryrefslogtreecommitdiffstats
path: root/block/nvme.c
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /block/nvme.c
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'block/nvme.c')
-rw-r--r--block/nvme.c1651
1 files changed, 1651 insertions, 0 deletions
diff --git a/block/nvme.c b/block/nvme.c
new file mode 100644
index 000000000..e4f336d79
--- /dev/null
+++ b/block/nvme.c
@@ -0,0 +1,1651 @@
+/*
+ * NVMe block driver based on vfio
+ *
+ * Copyright 2016 - 2018 Red Hat, Inc.
+ *
+ * Authors:
+ * Fam Zheng <famz@redhat.com>
+ * Paolo Bonzini <pbonzini@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include "qemu/osdep.h"
+#include <linux/vfio.h>
+#include "qapi/error.h"
+#include "qapi/qmp/qdict.h"
+#include "qapi/qmp/qstring.h"
+#include "qemu/error-report.h"
+#include "qemu/main-loop.h"
+#include "qemu/module.h"
+#include "qemu/cutils.h"
+#include "qemu/option.h"
+#include "qemu/vfio-helpers.h"
+#include "block/block_int.h"
+#include "sysemu/replay.h"
+#include "trace.h"
+
+#include "block/nvme.h"
+
+#define NVME_SQ_ENTRY_BYTES 64
+#define NVME_CQ_ENTRY_BYTES 16
+#define NVME_QUEUE_SIZE 128
+#define NVME_DOORBELL_SIZE 4096
+
+/*
+ * We have to leave one slot empty as that is the full queue case where
+ * head == tail + 1.
+ */
+#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
+
+typedef struct BDRVNVMeState BDRVNVMeState;
+
+/* Same index is used for queues and IRQs */
+#define INDEX_ADMIN 0
+#define INDEX_IO(n) (1 + n)
+
+/* This driver shares a single MSIX IRQ for the admin and I/O queues */
+enum {
+ MSIX_SHARED_IRQ_IDX = 0,
+ MSIX_IRQ_COUNT = 1
+};
+
+typedef struct {
+ int32_t head, tail;
+ uint8_t *queue;
+ uint64_t iova;
+ /* Hardware MMIO register */
+ volatile uint32_t *doorbell;
+} NVMeQueue;
+
+typedef struct {
+ BlockCompletionFunc *cb;
+ void *opaque;
+ int cid;
+ void *prp_list_page;
+ uint64_t prp_list_iova;
+ int free_req_next; /* q->reqs[] index of next free req */
+} NVMeRequest;
+
+typedef struct {
+ QemuMutex lock;
+
+ /* Read from I/O code path, initialized under BQL */
+ BDRVNVMeState *s;
+ int index;
+
+ /* Fields protected by BQL */
+ uint8_t *prp_list_pages;
+
+ /* Fields protected by @lock */
+ CoQueue free_req_queue;
+ NVMeQueue sq, cq;
+ int cq_phase;
+ int free_req_head;
+ NVMeRequest reqs[NVME_NUM_REQS];
+ int need_kick;
+ int inflight;
+
+ /* Thread-safe, no lock necessary */
+ QEMUBH *completion_bh;
+} NVMeQueuePair;
+
+struct BDRVNVMeState {
+ AioContext *aio_context;
+ QEMUVFIOState *vfio;
+ void *bar0_wo_map;
+ /* Memory mapped registers */
+ volatile struct {
+ uint32_t sq_tail;
+ uint32_t cq_head;
+ } *doorbells;
+ /* The submission/completion queue pairs.
+ * [0]: admin queue.
+ * [1..]: io queues.
+ */
+ NVMeQueuePair **queues;
+ unsigned queue_count;
+ size_t page_size;
+ /* How many uint32_t elements does each doorbell entry take. */
+ size_t doorbell_scale;
+ bool write_cache_supported;
+ EventNotifier irq_notifier[MSIX_IRQ_COUNT];
+
+ uint64_t nsze; /* Namespace size reported by identify command */
+ int nsid; /* The namespace id to read/write data. */
+ int blkshift;
+
+ uint64_t max_transfer;
+ bool plugged;
+
+ bool supports_write_zeroes;
+ bool supports_discard;
+
+ CoMutex dma_map_lock;
+ CoQueue dma_flush_queue;
+
+ /* Total size of mapped qiov, accessed under dma_map_lock */
+ int dma_map_count;
+
+ /* PCI address (required for nvme_refresh_filename()) */
+ char *device;
+
+ struct {
+ uint64_t completion_errors;
+ uint64_t aligned_accesses;
+ uint64_t unaligned_accesses;
+ } stats;
+};
+
+#define NVME_BLOCK_OPT_DEVICE "device"
+#define NVME_BLOCK_OPT_NAMESPACE "namespace"
+
+static void nvme_process_completion_bh(void *opaque);
+
+static QemuOptsList runtime_opts = {
+ .name = "nvme",
+ .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
+ .desc = {
+ {
+ .name = NVME_BLOCK_OPT_DEVICE,
+ .type = QEMU_OPT_STRING,
+ .help = "NVMe PCI device address",
+ },
+ {
+ .name = NVME_BLOCK_OPT_NAMESPACE,
+ .type = QEMU_OPT_NUMBER,
+ .help = "NVMe namespace",
+ },
+ { /* end of list */ }
+ },
+};
+
+/* Returns true on success, false on failure. */
+static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
+ unsigned nentries, size_t entry_bytes, Error **errp)
+{
+ size_t bytes;
+ int r;
+
+ bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
+ q->head = q->tail = 0;
+ q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
+ if (!q->queue) {
+ error_setg(errp, "Cannot allocate queue");
+ return false;
+ }
+ memset(q->queue, 0, bytes);
+ r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
+ if (r) {
+ error_prepend(errp, "Cannot map queue: ");
+ }
+ return r == 0;
+}
+
+static void nvme_free_queue(NVMeQueue *q)
+{
+ qemu_vfree(q->queue);
+}
+
+static void nvme_free_queue_pair(NVMeQueuePair *q)
+{
+ trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
+ if (q->completion_bh) {
+ qemu_bh_delete(q->completion_bh);
+ }
+ nvme_free_queue(&q->sq);
+ nvme_free_queue(&q->cq);
+ qemu_vfree(q->prp_list_pages);
+ qemu_mutex_destroy(&q->lock);
+ g_free(q);
+}
+
+static void nvme_free_req_queue_cb(void *opaque)
+{
+ NVMeQueuePair *q = opaque;
+
+ qemu_mutex_lock(&q->lock);
+ while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
+ /* Retry all pending requests */
+ }
+ qemu_mutex_unlock(&q->lock);
+}
+
+static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
+ AioContext *aio_context,
+ unsigned idx, size_t size,
+ Error **errp)
+{
+ int i, r;
+ NVMeQueuePair *q;
+ uint64_t prp_list_iova;
+ size_t bytes;
+
+ q = g_try_new0(NVMeQueuePair, 1);
+ if (!q) {
+ error_setg(errp, "Cannot allocate queue pair");
+ return NULL;
+ }
+ trace_nvme_create_queue_pair(idx, q, size, aio_context,
+ event_notifier_get_fd(s->irq_notifier));
+ bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
+ qemu_real_host_page_size);
+ q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
+ if (!q->prp_list_pages) {
+ error_setg(errp, "Cannot allocate PRP page list");
+ goto fail;
+ }
+ memset(q->prp_list_pages, 0, bytes);
+ qemu_mutex_init(&q->lock);
+ q->s = s;
+ q->index = idx;
+ qemu_co_queue_init(&q->free_req_queue);
+ q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
+ r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
+ false, &prp_list_iova, errp);
+ if (r) {
+ error_prepend(errp, "Cannot map buffer for DMA: ");
+ goto fail;
+ }
+ q->free_req_head = -1;
+ for (i = 0; i < NVME_NUM_REQS; i++) {
+ NVMeRequest *req = &q->reqs[i];
+ req->cid = i + 1;
+ req->free_req_next = q->free_req_head;
+ q->free_req_head = i;
+ req->prp_list_page = q->prp_list_pages + i * s->page_size;
+ req->prp_list_iova = prp_list_iova + i * s->page_size;
+ }
+
+ if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
+ goto fail;
+ }
+ q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
+
+ if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
+ goto fail;
+ }
+ q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
+
+ return q;
+fail:
+ nvme_free_queue_pair(q);
+ return NULL;
+}
+
+/* With q->lock */
+static void nvme_kick(NVMeQueuePair *q)
+{
+ BDRVNVMeState *s = q->s;
+
+ if (s->plugged || !q->need_kick) {
+ return;
+ }
+ trace_nvme_kick(s, q->index);
+ assert(!(q->sq.tail & 0xFF00));
+ /* Fence the write to submission queue entry before notifying the device. */
+ smp_wmb();
+ *q->sq.doorbell = cpu_to_le32(q->sq.tail);
+ q->inflight += q->need_kick;
+ q->need_kick = 0;
+}
+
+/* Find a free request element if any, otherwise:
+ * a) if in coroutine context, try to wait for one to become available;
+ * b) if not in coroutine, return NULL;
+ */
+static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
+{
+ NVMeRequest *req;
+
+ qemu_mutex_lock(&q->lock);
+
+ while (q->free_req_head == -1) {
+ if (qemu_in_coroutine()) {
+ trace_nvme_free_req_queue_wait(q->s, q->index);
+ qemu_co_queue_wait(&q->free_req_queue, &q->lock);
+ } else {
+ qemu_mutex_unlock(&q->lock);
+ return NULL;
+ }
+ }
+
+ req = &q->reqs[q->free_req_head];
+ q->free_req_head = req->free_req_next;
+ req->free_req_next = -1;
+
+ qemu_mutex_unlock(&q->lock);
+ return req;
+}
+
+/* With q->lock */
+static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
+{
+ req->free_req_next = q->free_req_head;
+ q->free_req_head = req - q->reqs;
+}
+
+/* With q->lock */
+static void nvme_wake_free_req_locked(NVMeQueuePair *q)
+{
+ if (!qemu_co_queue_empty(&q->free_req_queue)) {
+ replay_bh_schedule_oneshot_event(q->s->aio_context,
+ nvme_free_req_queue_cb, q);
+ }
+}
+
+/* Insert a request in the freelist and wake waiters */
+static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
+{
+ qemu_mutex_lock(&q->lock);
+ nvme_put_free_req_locked(q, req);
+ nvme_wake_free_req_locked(q);
+ qemu_mutex_unlock(&q->lock);
+}
+
+static inline int nvme_translate_error(const NvmeCqe *c)
+{
+ uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
+ if (status) {
+ trace_nvme_error(le32_to_cpu(c->result),
+ le16_to_cpu(c->sq_head),
+ le16_to_cpu(c->sq_id),
+ le16_to_cpu(c->cid),
+ le16_to_cpu(status));
+ }
+ switch (status) {
+ case 0:
+ return 0;
+ case 1:
+ return -ENOSYS;
+ case 2:
+ return -EINVAL;
+ default:
+ return -EIO;
+ }
+}
+
+/* With q->lock */
+static bool nvme_process_completion(NVMeQueuePair *q)
+{
+ BDRVNVMeState *s = q->s;
+ bool progress = false;
+ NVMeRequest *preq;
+ NVMeRequest req;
+ NvmeCqe *c;
+
+ trace_nvme_process_completion(s, q->index, q->inflight);
+ if (s->plugged) {
+ trace_nvme_process_completion_queue_plugged(s, q->index);
+ return false;
+ }
+
+ /*
+ * Support re-entrancy when a request cb() function invokes aio_poll().
+ * Pending completions must be visible to aio_poll() so that a cb()
+ * function can wait for the completion of another request.
+ *
+ * The aio_poll() loop will execute our BH and we'll resume completion
+ * processing there.
+ */
+ qemu_bh_schedule(q->completion_bh);
+
+ assert(q->inflight >= 0);
+ while (q->inflight) {
+ int ret;
+ int16_t cid;
+
+ c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
+ if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
+ break;
+ }
+ ret = nvme_translate_error(c);
+ if (ret) {
+ s->stats.completion_errors++;
+ }
+ q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
+ if (!q->cq.head) {
+ q->cq_phase = !q->cq_phase;
+ }
+ cid = le16_to_cpu(c->cid);
+ if (cid == 0 || cid > NVME_QUEUE_SIZE) {
+ warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
+ "queue size: %u", cid, NVME_QUEUE_SIZE);
+ continue;
+ }
+ trace_nvme_complete_command(s, q->index, cid);
+ preq = &q->reqs[cid - 1];
+ req = *preq;
+ assert(req.cid == cid);
+ assert(req.cb);
+ nvme_put_free_req_locked(q, preq);
+ preq->cb = preq->opaque = NULL;
+ q->inflight--;
+ qemu_mutex_unlock(&q->lock);
+ req.cb(req.opaque, ret);
+ qemu_mutex_lock(&q->lock);
+ progress = true;
+ }
+ if (progress) {
+ /* Notify the device so it can post more completions. */
+ smp_mb_release();
+ *q->cq.doorbell = cpu_to_le32(q->cq.head);
+ nvme_wake_free_req_locked(q);
+ }
+
+ qemu_bh_cancel(q->completion_bh);
+
+ return progress;
+}
+
+static void nvme_process_completion_bh(void *opaque)
+{
+ NVMeQueuePair *q = opaque;
+
+ /*
+ * We're being invoked because a nvme_process_completion() cb() function
+ * called aio_poll(). The callback may be waiting for further completions
+ * so notify the device that it has space to fill in more completions now.
+ */
+ smp_mb_release();
+ *q->cq.doorbell = cpu_to_le32(q->cq.head);
+ nvme_wake_free_req_locked(q);
+
+ nvme_process_completion(q);
+}
+
+static void nvme_trace_command(const NvmeCmd *cmd)
+{
+ int i;
+
+ if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
+ return;
+ }
+ for (i = 0; i < 8; ++i) {
+ uint8_t *cmdp = (uint8_t *)cmd + i * 8;
+ trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
+ cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
+ }
+}
+
+static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
+ NvmeCmd *cmd, BlockCompletionFunc cb,
+ void *opaque)
+{
+ assert(!req->cb);
+ req->cb = cb;
+ req->opaque = opaque;
+ cmd->cid = cpu_to_le16(req->cid);
+
+ trace_nvme_submit_command(q->s, q->index, req->cid);
+ nvme_trace_command(cmd);
+ qemu_mutex_lock(&q->lock);
+ memcpy((uint8_t *)q->sq.queue +
+ q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
+ q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
+ q->need_kick++;
+ nvme_kick(q);
+ nvme_process_completion(q);
+ qemu_mutex_unlock(&q->lock);
+}
+
+static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
+{
+ int *pret = opaque;
+ *pret = ret;
+ aio_wait_kick();
+}
+
+static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
+{
+ BDRVNVMeState *s = bs->opaque;
+ NVMeQueuePair *q = s->queues[INDEX_ADMIN];
+ AioContext *aio_context = bdrv_get_aio_context(bs);
+ NVMeRequest *req;
+ int ret = -EINPROGRESS;
+ req = nvme_get_free_req(q);
+ if (!req) {
+ return -EBUSY;
+ }
+ nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
+
+ AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
+ return ret;
+}
+
+/* Returns true on success, false on failure. */
+static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
+{
+ BDRVNVMeState *s = bs->opaque;
+ bool ret = false;
+ QEMU_AUTO_VFREE union {
+ NvmeIdCtrl ctrl;
+ NvmeIdNs ns;
+ } *id = NULL;
+ NvmeLBAF *lbaf;
+ uint16_t oncs;
+ int r;
+ uint64_t iova;
+ NvmeCmd cmd = {
+ .opcode = NVME_ADM_CMD_IDENTIFY,
+ .cdw10 = cpu_to_le32(0x1),
+ };
+ size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
+
+ id = qemu_try_memalign(qemu_real_host_page_size, id_size);
+ if (!id) {
+ error_setg(errp, "Cannot allocate buffer for identify response");
+ goto out;
+ }
+ r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
+ if (r) {
+ error_prepend(errp, "Cannot map buffer for DMA: ");
+ goto out;
+ }
+
+ memset(id, 0, id_size);
+ cmd.dptr.prp1 = cpu_to_le64(iova);
+ if (nvme_admin_cmd_sync(bs, &cmd)) {
+ error_setg(errp, "Failed to identify controller");
+ goto out;
+ }
+
+ if (le32_to_cpu(id->ctrl.nn) < namespace) {
+ error_setg(errp, "Invalid namespace");
+ goto out;
+ }
+ s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
+ s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
+ /* For now the page list buffer per command is one page, to hold at most
+ * s->page_size / sizeof(uint64_t) entries. */
+ s->max_transfer = MIN_NON_ZERO(s->max_transfer,
+ s->page_size / sizeof(uint64_t) * s->page_size);
+
+ oncs = le16_to_cpu(id->ctrl.oncs);
+ s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
+ s->supports_discard = !!(oncs & NVME_ONCS_DSM);
+
+ memset(id, 0, id_size);
+ cmd.cdw10 = 0;
+ cmd.nsid = cpu_to_le32(namespace);
+ if (nvme_admin_cmd_sync(bs, &cmd)) {
+ error_setg(errp, "Failed to identify namespace");
+ goto out;
+ }
+
+ s->nsze = le64_to_cpu(id->ns.nsze);
+ lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
+
+ if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
+ NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
+ NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
+ bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
+ }
+
+ if (lbaf->ms) {
+ error_setg(errp, "Namespaces with metadata are not yet supported");
+ goto out;
+ }
+
+ if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
+ (1 << lbaf->ds) > s->page_size)
+ {
+ error_setg(errp, "Namespace has unsupported block size (2^%d)",
+ lbaf->ds);
+ goto out;
+ }
+
+ ret = true;
+ s->blkshift = lbaf->ds;
+out:
+ qemu_vfio_dma_unmap(s->vfio, id);
+
+ return ret;
+}
+
+static bool nvme_poll_queue(NVMeQueuePair *q)
+{
+ bool progress = false;
+
+ const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
+ NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
+
+ trace_nvme_poll_queue(q->s, q->index);
+ /*
+ * Do an early check for completions. q->lock isn't needed because
+ * nvme_process_completion() only runs in the event loop thread and
+ * cannot race with itself.
+ */
+ if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
+ return false;
+ }
+
+ qemu_mutex_lock(&q->lock);
+ while (nvme_process_completion(q)) {
+ /* Keep polling */
+ progress = true;
+ }
+ qemu_mutex_unlock(&q->lock);
+
+ return progress;
+}
+
+static bool nvme_poll_queues(BDRVNVMeState *s)
+{
+ bool progress = false;
+ int i;
+
+ for (i = 0; i < s->queue_count; i++) {
+ if (nvme_poll_queue(s->queues[i])) {
+ progress = true;
+ }
+ }
+ return progress;
+}
+
+static void nvme_handle_event(EventNotifier *n)
+{
+ BDRVNVMeState *s = container_of(n, BDRVNVMeState,
+ irq_notifier[MSIX_SHARED_IRQ_IDX]);
+
+ trace_nvme_handle_event(s);
+ event_notifier_test_and_clear(n);
+ nvme_poll_queues(s);
+}
+
+static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
+{
+ BDRVNVMeState *s = bs->opaque;
+ unsigned n = s->queue_count;
+ NVMeQueuePair *q;
+ NvmeCmd cmd;
+ unsigned queue_size = NVME_QUEUE_SIZE;
+
+ assert(n <= UINT16_MAX);
+ q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
+ n, queue_size, errp);
+ if (!q) {
+ return false;
+ }
+ cmd = (NvmeCmd) {
+ .opcode = NVME_ADM_CMD_CREATE_CQ,
+ .dptr.prp1 = cpu_to_le64(q->cq.iova),
+ .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
+ .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
+ };
+ if (nvme_admin_cmd_sync(bs, &cmd)) {
+ error_setg(errp, "Failed to create CQ io queue [%u]", n);
+ goto out_error;
+ }
+ cmd = (NvmeCmd) {
+ .opcode = NVME_ADM_CMD_CREATE_SQ,
+ .dptr.prp1 = cpu_to_le64(q->sq.iova),
+ .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
+ .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
+ };
+ if (nvme_admin_cmd_sync(bs, &cmd)) {
+ error_setg(errp, "Failed to create SQ io queue [%u]", n);
+ goto out_error;
+ }
+ s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
+ s->queues[n] = q;
+ s->queue_count++;
+ return true;
+out_error:
+ nvme_free_queue_pair(q);
+ return false;
+}
+
+static bool nvme_poll_cb(void *opaque)
+{
+ EventNotifier *e = opaque;
+ BDRVNVMeState *s = container_of(e, BDRVNVMeState,
+ irq_notifier[MSIX_SHARED_IRQ_IDX]);
+
+ return nvme_poll_queues(s);
+}
+
+static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
+ Error **errp)
+{
+ BDRVNVMeState *s = bs->opaque;
+ NVMeQueuePair *q;
+ AioContext *aio_context = bdrv_get_aio_context(bs);
+ int ret;
+ uint64_t cap;
+ uint32_t ver;
+ uint64_t timeout_ms;
+ uint64_t deadline, now;
+ volatile NvmeBar *regs = NULL;
+
+ qemu_co_mutex_init(&s->dma_map_lock);
+ qemu_co_queue_init(&s->dma_flush_queue);
+ s->device = g_strdup(device);
+ s->nsid = namespace;
+ s->aio_context = bdrv_get_aio_context(bs);
+ ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
+ if (ret) {
+ error_setg(errp, "Failed to init event notifier");
+ return ret;
+ }
+
+ s->vfio = qemu_vfio_open_pci(device, errp);
+ if (!s->vfio) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
+ PROT_READ | PROT_WRITE, errp);
+ if (!regs) {
+ ret = -EINVAL;
+ goto out;
+ }
+ /* Perform initialize sequence as described in NVMe spec "7.6.1
+ * Initialization". */
+
+ cap = le64_to_cpu(regs->cap);
+ trace_nvme_controller_capability_raw(cap);
+ trace_nvme_controller_capability("Maximum Queue Entries Supported",
+ 1 + NVME_CAP_MQES(cap));
+ trace_nvme_controller_capability("Contiguous Queues Required",
+ NVME_CAP_CQR(cap));
+ trace_nvme_controller_capability("Doorbell Stride",
+ 1 << (2 + NVME_CAP_DSTRD(cap)));
+ trace_nvme_controller_capability("Subsystem Reset Supported",
+ NVME_CAP_NSSRS(cap));
+ trace_nvme_controller_capability("Memory Page Size Minimum",
+ 1 << (12 + NVME_CAP_MPSMIN(cap)));
+ trace_nvme_controller_capability("Memory Page Size Maximum",
+ 1 << (12 + NVME_CAP_MPSMAX(cap)));
+ if (!NVME_CAP_CSS(cap)) {
+ error_setg(errp, "Device doesn't support NVMe command set");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
+ s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
+ bs->bl.opt_mem_alignment = s->page_size;
+ bs->bl.request_alignment = s->page_size;
+ timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
+
+ ver = le32_to_cpu(regs->vs);
+ trace_nvme_controller_spec_version(extract32(ver, 16, 16),
+ extract32(ver, 8, 8),
+ extract32(ver, 0, 8));
+
+ /* Reset device to get a clean state. */
+ regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
+ /* Wait for CSTS.RDY = 0. */
+ deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
+ while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
+ if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
+ error_setg(errp, "Timeout while waiting for device to reset (%"
+ PRId64 " ms)",
+ timeout_ms);
+ ret = -ETIMEDOUT;
+ goto out;
+ }
+ }
+
+ s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
+ sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
+ PROT_WRITE, errp);
+ s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
+ if (!s->doorbells) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* Set up admin queue. */
+ s->queues = g_new(NVMeQueuePair *, 1);
+ q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
+ if (!q) {
+ ret = -EINVAL;
+ goto out;
+ }
+ s->queues[INDEX_ADMIN] = q;
+ s->queue_count = 1;
+ QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
+ regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
+ ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
+ regs->asq = cpu_to_le64(q->sq.iova);
+ regs->acq = cpu_to_le64(q->cq.iova);
+
+ /* After setting up all control registers we can enable device now. */
+ regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
+ (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
+ CC_EN_MASK);
+ /* Wait for CSTS.RDY = 1. */
+ now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
+ deadline = now + timeout_ms * SCALE_MS;
+ while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
+ if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
+ error_setg(errp, "Timeout while waiting for device to start (%"
+ PRId64 " ms)",
+ timeout_ms);
+ ret = -ETIMEDOUT;
+ goto out;
+ }
+ }
+
+ ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
+ VFIO_PCI_MSIX_IRQ_INDEX, errp);
+ if (ret) {
+ goto out;
+ }
+ aio_set_event_notifier(bdrv_get_aio_context(bs),
+ &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
+ false, nvme_handle_event, nvme_poll_cb);
+
+ if (!nvme_identify(bs, namespace, errp)) {
+ ret = -EIO;
+ goto out;
+ }
+
+ /* Set up command queues. */
+ if (!nvme_add_io_queue(bs, errp)) {
+ ret = -EIO;
+ }
+out:
+ if (regs) {
+ qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
+ }
+
+ /* Cleaning up is done in nvme_file_open() upon error. */
+ return ret;
+}
+
+/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
+ *
+ * nvme://0000:44:00.0/1
+ *
+ * where the "nvme://" is a fixed form of the protocol prefix, the middle part
+ * is the PCI address, and the last part is the namespace number starting from
+ * 1 according to the NVMe spec. */
+static void nvme_parse_filename(const char *filename, QDict *options,
+ Error **errp)
+{
+ int pref = strlen("nvme://");
+
+ if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
+ const char *tmp = filename + pref;
+ char *device;
+ const char *namespace;
+ unsigned long ns;
+ const char *slash = strchr(tmp, '/');
+ if (!slash) {
+ qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
+ return;
+ }
+ device = g_strndup(tmp, slash - tmp);
+ qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
+ g_free(device);
+ namespace = slash + 1;
+ if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
+ error_setg(errp, "Invalid namespace '%s', positive number expected",
+ namespace);
+ return;
+ }
+ qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
+ *namespace ? namespace : "1");
+ }
+}
+
+static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
+ Error **errp)
+{
+ int ret;
+ BDRVNVMeState *s = bs->opaque;
+ NvmeCmd cmd = {
+ .opcode = NVME_ADM_CMD_SET_FEATURES,
+ .nsid = cpu_to_le32(s->nsid),
+ .cdw10 = cpu_to_le32(0x06),
+ .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
+ };
+
+ ret = nvme_admin_cmd_sync(bs, &cmd);
+ if (ret) {
+ error_setg(errp, "Failed to configure NVMe write cache");
+ }
+ return ret;
+}
+
+static void nvme_close(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+
+ for (unsigned i = 0; i < s->queue_count; ++i) {
+ nvme_free_queue_pair(s->queues[i]);
+ }
+ g_free(s->queues);
+ aio_set_event_notifier(bdrv_get_aio_context(bs),
+ &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
+ false, NULL, NULL);
+ event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
+ qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
+ 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
+ qemu_vfio_close(s->vfio);
+
+ g_free(s->device);
+}
+
+static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
+ Error **errp)
+{
+ const char *device;
+ QemuOpts *opts;
+ int namespace;
+ int ret;
+ BDRVNVMeState *s = bs->opaque;
+
+ bs->supported_write_flags = BDRV_REQ_FUA;
+
+ opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
+ qemu_opts_absorb_qdict(opts, options, &error_abort);
+ device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
+ if (!device) {
+ error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
+ qemu_opts_del(opts);
+ return -EINVAL;
+ }
+
+ namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
+ ret = nvme_init(bs, device, namespace, errp);
+ qemu_opts_del(opts);
+ if (ret) {
+ goto fail;
+ }
+ if (flags & BDRV_O_NOCACHE) {
+ if (!s->write_cache_supported) {
+ error_setg(errp,
+ "NVMe controller doesn't support write cache configuration");
+ ret = -EINVAL;
+ } else {
+ ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
+ errp);
+ }
+ if (ret) {
+ goto fail;
+ }
+ }
+ return 0;
+fail:
+ nvme_close(bs);
+ return ret;
+}
+
+static int64_t nvme_getlength(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+ return s->nsze << s->blkshift;
+}
+
+static uint32_t nvme_get_blocksize(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+ assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
+ return UINT32_C(1) << s->blkshift;
+}
+
+static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
+{
+ uint32_t blocksize = nvme_get_blocksize(bs);
+ bsz->phys = blocksize;
+ bsz->log = blocksize;
+ return 0;
+}
+
+/* Called with s->dma_map_lock */
+static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
+ QEMUIOVector *qiov)
+{
+ int r = 0;
+ BDRVNVMeState *s = bs->opaque;
+
+ s->dma_map_count -= qiov->size;
+ if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
+ r = qemu_vfio_dma_reset_temporary(s->vfio);
+ if (!r) {
+ qemu_co_queue_restart_all(&s->dma_flush_queue);
+ }
+ }
+ return r;
+}
+
+/* Called with s->dma_map_lock */
+static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
+ NVMeRequest *req, QEMUIOVector *qiov)
+{
+ BDRVNVMeState *s = bs->opaque;
+ uint64_t *pagelist = req->prp_list_page;
+ int i, j, r;
+ int entries = 0;
+ Error *local_err = NULL, **errp = NULL;
+
+ assert(qiov->size);
+ assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
+ assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
+ for (i = 0; i < qiov->niov; ++i) {
+ bool retry = true;
+ uint64_t iova;
+ size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
+ qemu_real_host_page_size);
+try_map:
+ r = qemu_vfio_dma_map(s->vfio,
+ qiov->iov[i].iov_base,
+ len, true, &iova, errp);
+ if (r == -ENOSPC) {
+ /*
+ * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
+ * ioctl returns -ENOSPC to signal the user exhausted the DMA
+ * mappings available for a container since Linux kernel commit
+ * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
+ * April 2019, see CVE-2019-3882).
+ *
+ * This block driver already handles this error path by checking
+ * for the -ENOMEM error, so we directly replace -ENOSPC by
+ * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
+ * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
+ * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
+ * to add more storage to the blockdev. Not something we can do
+ * easily with an IOMMU :)
+ */
+ r = -ENOMEM;
+ }
+ if (r == -ENOMEM && retry) {
+ /*
+ * We exhausted the DMA mappings available for our container:
+ * recycle the volatile IOVA mappings.
+ */
+ retry = false;
+ trace_nvme_dma_flush_queue_wait(s);
+ if (s->dma_map_count) {
+ trace_nvme_dma_map_flush(s);
+ qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
+ } else {
+ r = qemu_vfio_dma_reset_temporary(s->vfio);
+ if (r) {
+ goto fail;
+ }
+ }
+ errp = &local_err;
+
+ goto try_map;
+ }
+ if (r) {
+ goto fail;
+ }
+
+ for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
+ pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
+ }
+ trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
+ qiov->iov[i].iov_len / s->page_size);
+ }
+
+ s->dma_map_count += qiov->size;
+
+ assert(entries <= s->page_size / sizeof(uint64_t));
+ switch (entries) {
+ case 0:
+ abort();
+ case 1:
+ cmd->dptr.prp1 = pagelist[0];
+ cmd->dptr.prp2 = 0;
+ break;
+ case 2:
+ cmd->dptr.prp1 = pagelist[0];
+ cmd->dptr.prp2 = pagelist[1];
+ break;
+ default:
+ cmd->dptr.prp1 = pagelist[0];
+ cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
+ break;
+ }
+ trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
+ for (i = 0; i < entries; ++i) {
+ trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
+ }
+ return 0;
+fail:
+ /* No need to unmap [0 - i) iovs even if we've failed, since we don't
+ * increment s->dma_map_count. This is okay for fixed mapping memory areas
+ * because they are already mapped before calling this function; for
+ * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
+ * calling qemu_vfio_dma_reset_temporary when necessary. */
+ if (local_err) {
+ error_reportf_err(local_err, "Cannot map buffer for DMA: ");
+ }
+ return r;
+}
+
+typedef struct {
+ Coroutine *co;
+ int ret;
+ AioContext *ctx;
+} NVMeCoData;
+
+static void nvme_rw_cb_bh(void *opaque)
+{
+ NVMeCoData *data = opaque;
+ qemu_coroutine_enter(data->co);
+}
+
+static void nvme_rw_cb(void *opaque, int ret)
+{
+ NVMeCoData *data = opaque;
+ data->ret = ret;
+ if (!data->co) {
+ /* The rw coroutine hasn't yielded, don't try to enter. */
+ return;
+ }
+ replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
+}
+
+static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
+ uint64_t offset, uint64_t bytes,
+ QEMUIOVector *qiov,
+ bool is_write,
+ int flags)
+{
+ int r;
+ BDRVNVMeState *s = bs->opaque;
+ NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
+ NVMeRequest *req;
+
+ uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
+ (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
+ NvmeCmd cmd = {
+ .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
+ .nsid = cpu_to_le32(s->nsid),
+ .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
+ .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
+ .cdw12 = cpu_to_le32(cdw12),
+ };
+ NVMeCoData data = {
+ .ctx = bdrv_get_aio_context(bs),
+ .ret = -EINPROGRESS,
+ };
+
+ trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
+ assert(s->queue_count > 1);
+ req = nvme_get_free_req(ioq);
+ assert(req);
+
+ qemu_co_mutex_lock(&s->dma_map_lock);
+ r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
+ qemu_co_mutex_unlock(&s->dma_map_lock);
+ if (r) {
+ nvme_put_free_req_and_wake(ioq, req);
+ return r;
+ }
+ nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
+
+ data.co = qemu_coroutine_self();
+ while (data.ret == -EINPROGRESS) {
+ qemu_coroutine_yield();
+ }
+
+ qemu_co_mutex_lock(&s->dma_map_lock);
+ r = nvme_cmd_unmap_qiov(bs, qiov);
+ qemu_co_mutex_unlock(&s->dma_map_lock);
+ if (r) {
+ return r;
+ }
+
+ trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
+ return data.ret;
+}
+
+static inline bool nvme_qiov_aligned(BlockDriverState *bs,
+ const QEMUIOVector *qiov)
+{
+ int i;
+ BDRVNVMeState *s = bs->opaque;
+
+ for (i = 0; i < qiov->niov; ++i) {
+ if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
+ qemu_real_host_page_size) ||
+ !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
+ trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
+ qiov->iov[i].iov_len, s->page_size);
+ return false;
+ }
+ }
+ return true;
+}
+
+static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
+ QEMUIOVector *qiov, bool is_write, int flags)
+{
+ BDRVNVMeState *s = bs->opaque;
+ int r;
+ QEMU_AUTO_VFREE uint8_t *buf = NULL;
+ QEMUIOVector local_qiov;
+ size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
+ assert(QEMU_IS_ALIGNED(offset, s->page_size));
+ assert(QEMU_IS_ALIGNED(bytes, s->page_size));
+ assert(bytes <= s->max_transfer);
+ if (nvme_qiov_aligned(bs, qiov)) {
+ s->stats.aligned_accesses++;
+ return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
+ }
+ s->stats.unaligned_accesses++;
+ trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
+ buf = qemu_try_memalign(qemu_real_host_page_size, len);
+
+ if (!buf) {
+ return -ENOMEM;
+ }
+ qemu_iovec_init(&local_qiov, 1);
+ if (is_write) {
+ qemu_iovec_to_buf(qiov, 0, buf, bytes);
+ }
+ qemu_iovec_add(&local_qiov, buf, bytes);
+ r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
+ qemu_iovec_destroy(&local_qiov);
+ if (!r && !is_write) {
+ qemu_iovec_from_buf(qiov, 0, buf, bytes);
+ }
+ return r;
+}
+
+static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
+ int64_t offset, int64_t bytes,
+ QEMUIOVector *qiov,
+ BdrvRequestFlags flags)
+{
+ return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
+}
+
+static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
+ int64_t offset, int64_t bytes,
+ QEMUIOVector *qiov,
+ BdrvRequestFlags flags)
+{
+ return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
+}
+
+static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+ NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
+ NVMeRequest *req;
+ NvmeCmd cmd = {
+ .opcode = NVME_CMD_FLUSH,
+ .nsid = cpu_to_le32(s->nsid),
+ };
+ NVMeCoData data = {
+ .ctx = bdrv_get_aio_context(bs),
+ .ret = -EINPROGRESS,
+ };
+
+ assert(s->queue_count > 1);
+ req = nvme_get_free_req(ioq);
+ assert(req);
+ nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
+
+ data.co = qemu_coroutine_self();
+ if (data.ret == -EINPROGRESS) {
+ qemu_coroutine_yield();
+ }
+
+ return data.ret;
+}
+
+
+static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
+ int64_t offset,
+ int64_t bytes,
+ BdrvRequestFlags flags)
+{
+ BDRVNVMeState *s = bs->opaque;
+ NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
+ NVMeRequest *req;
+ uint32_t cdw12;
+
+ if (!s->supports_write_zeroes) {
+ return -ENOTSUP;
+ }
+
+ if (bytes == 0) {
+ return 0;
+ }
+
+ cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
+ /*
+ * We should not lose information. pwrite_zeroes_alignment and
+ * max_pwrite_zeroes guarantees it.
+ */
+ assert(((cdw12 + 1) << s->blkshift) == bytes);
+
+ NvmeCmd cmd = {
+ .opcode = NVME_CMD_WRITE_ZEROES,
+ .nsid = cpu_to_le32(s->nsid),
+ .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
+ .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
+ };
+
+ NVMeCoData data = {
+ .ctx = bdrv_get_aio_context(bs),
+ .ret = -EINPROGRESS,
+ };
+
+ if (flags & BDRV_REQ_MAY_UNMAP) {
+ cdw12 |= (1 << 25);
+ }
+
+ if (flags & BDRV_REQ_FUA) {
+ cdw12 |= (1 << 30);
+ }
+
+ cmd.cdw12 = cpu_to_le32(cdw12);
+
+ trace_nvme_write_zeroes(s, offset, bytes, flags);
+ assert(s->queue_count > 1);
+ req = nvme_get_free_req(ioq);
+ assert(req);
+
+ nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
+
+ data.co = qemu_coroutine_self();
+ while (data.ret == -EINPROGRESS) {
+ qemu_coroutine_yield();
+ }
+
+ trace_nvme_rw_done(s, true, offset, bytes, data.ret);
+ return data.ret;
+}
+
+
+static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
+ int64_t offset,
+ int64_t bytes)
+{
+ BDRVNVMeState *s = bs->opaque;
+ NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
+ NVMeRequest *req;
+ QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
+ QEMUIOVector local_qiov;
+ int ret;
+
+ NvmeCmd cmd = {
+ .opcode = NVME_CMD_DSM,
+ .nsid = cpu_to_le32(s->nsid),
+ .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
+ .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
+ };
+
+ NVMeCoData data = {
+ .ctx = bdrv_get_aio_context(bs),
+ .ret = -EINPROGRESS,
+ };
+
+ if (!s->supports_discard) {
+ return -ENOTSUP;
+ }
+
+ assert(s->queue_count > 1);
+
+ /*
+ * Filling the @buf requires @offset and @bytes to satisfy restrictions
+ * defined in nvme_refresh_limits().
+ */
+ assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
+ assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
+ assert((bytes >> s->blkshift) <= UINT32_MAX);
+
+ buf = qemu_try_memalign(s->page_size, s->page_size);
+ if (!buf) {
+ return -ENOMEM;
+ }
+ memset(buf, 0, s->page_size);
+ buf->nlb = cpu_to_le32(bytes >> s->blkshift);
+ buf->slba = cpu_to_le64(offset >> s->blkshift);
+ buf->cattr = 0;
+
+ qemu_iovec_init(&local_qiov, 1);
+ qemu_iovec_add(&local_qiov, buf, 4096);
+
+ req = nvme_get_free_req(ioq);
+ assert(req);
+
+ qemu_co_mutex_lock(&s->dma_map_lock);
+ ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
+ qemu_co_mutex_unlock(&s->dma_map_lock);
+
+ if (ret) {
+ nvme_put_free_req_and_wake(ioq, req);
+ goto out;
+ }
+
+ trace_nvme_dsm(s, offset, bytes);
+
+ nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
+
+ data.co = qemu_coroutine_self();
+ while (data.ret == -EINPROGRESS) {
+ qemu_coroutine_yield();
+ }
+
+ qemu_co_mutex_lock(&s->dma_map_lock);
+ ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
+ qemu_co_mutex_unlock(&s->dma_map_lock);
+
+ if (ret) {
+ goto out;
+ }
+
+ ret = data.ret;
+ trace_nvme_dsm_done(s, offset, bytes, ret);
+out:
+ qemu_iovec_destroy(&local_qiov);
+ return ret;
+
+}
+
+static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
+ bool exact, PreallocMode prealloc,
+ BdrvRequestFlags flags, Error **errp)
+{
+ int64_t cur_length;
+
+ if (prealloc != PREALLOC_MODE_OFF) {
+ error_setg(errp, "Unsupported preallocation mode '%s'",
+ PreallocMode_str(prealloc));
+ return -ENOTSUP;
+ }
+
+ cur_length = nvme_getlength(bs);
+ if (offset != cur_length && exact) {
+ error_setg(errp, "Cannot resize NVMe devices");
+ return -ENOTSUP;
+ } else if (offset > cur_length) {
+ error_setg(errp, "Cannot grow NVMe devices");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
+ BlockReopenQueue *queue, Error **errp)
+{
+ return 0;
+}
+
+static void nvme_refresh_filename(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+
+ snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
+ s->device, s->nsid);
+}
+
+static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
+{
+ BDRVNVMeState *s = bs->opaque;
+
+ bs->bl.opt_mem_alignment = s->page_size;
+ bs->bl.request_alignment = s->page_size;
+ bs->bl.max_transfer = s->max_transfer;
+
+ /*
+ * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
+ * at most 0xFFFF
+ */
+ bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
+ bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
+ 1UL << s->blkshift);
+
+ bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
+ bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
+ 1UL << s->blkshift);
+}
+
+static void nvme_detach_aio_context(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+
+ for (unsigned i = 0; i < s->queue_count; i++) {
+ NVMeQueuePair *q = s->queues[i];
+
+ qemu_bh_delete(q->completion_bh);
+ q->completion_bh = NULL;
+ }
+
+ aio_set_event_notifier(bdrv_get_aio_context(bs),
+ &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
+ false, NULL, NULL);
+}
+
+static void nvme_attach_aio_context(BlockDriverState *bs,
+ AioContext *new_context)
+{
+ BDRVNVMeState *s = bs->opaque;
+
+ s->aio_context = new_context;
+ aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
+ false, nvme_handle_event, nvme_poll_cb);
+
+ for (unsigned i = 0; i < s->queue_count; i++) {
+ NVMeQueuePair *q = s->queues[i];
+
+ q->completion_bh =
+ aio_bh_new(new_context, nvme_process_completion_bh, q);
+ }
+}
+
+static void nvme_aio_plug(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+ assert(!s->plugged);
+ s->plugged = true;
+}
+
+static void nvme_aio_unplug(BlockDriverState *bs)
+{
+ BDRVNVMeState *s = bs->opaque;
+ assert(s->plugged);
+ s->plugged = false;
+ for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
+ NVMeQueuePair *q = s->queues[i];
+ qemu_mutex_lock(&q->lock);
+ nvme_kick(q);
+ nvme_process_completion(q);
+ qemu_mutex_unlock(&q->lock);
+ }
+}
+
+static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
+{
+ int ret;
+ Error *local_err = NULL;
+ BDRVNVMeState *s = bs->opaque;
+
+ ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
+ if (ret) {
+ /* FIXME: we may run out of IOVA addresses after repeated
+ * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
+ * doesn't reclaim addresses for fixed mappings. */
+ error_reportf_err(local_err, "nvme_register_buf failed: ");
+ }
+}
+
+static void nvme_unregister_buf(BlockDriverState *bs, void *host)
+{
+ BDRVNVMeState *s = bs->opaque;
+
+ qemu_vfio_dma_unmap(s->vfio, host);
+}
+
+static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
+{
+ BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
+ BDRVNVMeState *s = bs->opaque;
+
+ stats->driver = BLOCKDEV_DRIVER_NVME;
+ stats->u.nvme = (BlockStatsSpecificNvme) {
+ .completion_errors = s->stats.completion_errors,
+ .aligned_accesses = s->stats.aligned_accesses,
+ .unaligned_accesses = s->stats.unaligned_accesses,
+ };
+
+ return stats;
+}
+
+static const char *const nvme_strong_runtime_opts[] = {
+ NVME_BLOCK_OPT_DEVICE,
+ NVME_BLOCK_OPT_NAMESPACE,
+
+ NULL
+};
+
+static BlockDriver bdrv_nvme = {
+ .format_name = "nvme",
+ .protocol_name = "nvme",
+ .instance_size = sizeof(BDRVNVMeState),
+
+ .bdrv_co_create_opts = bdrv_co_create_opts_simple,
+ .create_opts = &bdrv_create_opts_simple,
+
+ .bdrv_parse_filename = nvme_parse_filename,
+ .bdrv_file_open = nvme_file_open,
+ .bdrv_close = nvme_close,
+ .bdrv_getlength = nvme_getlength,
+ .bdrv_probe_blocksizes = nvme_probe_blocksizes,
+ .bdrv_co_truncate = nvme_co_truncate,
+
+ .bdrv_co_preadv = nvme_co_preadv,
+ .bdrv_co_pwritev = nvme_co_pwritev,
+
+ .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
+ .bdrv_co_pdiscard = nvme_co_pdiscard,
+
+ .bdrv_co_flush_to_disk = nvme_co_flush,
+ .bdrv_reopen_prepare = nvme_reopen_prepare,
+
+ .bdrv_refresh_filename = nvme_refresh_filename,
+ .bdrv_refresh_limits = nvme_refresh_limits,
+ .strong_runtime_opts = nvme_strong_runtime_opts,
+ .bdrv_get_specific_stats = nvme_get_specific_stats,
+
+ .bdrv_detach_aio_context = nvme_detach_aio_context,
+ .bdrv_attach_aio_context = nvme_attach_aio_context,
+
+ .bdrv_io_plug = nvme_aio_plug,
+ .bdrv_io_unplug = nvme_aio_unplug,
+
+ .bdrv_register_buf = nvme_register_buf,
+ .bdrv_unregister_buf = nvme_unregister_buf,
+};
+
+static void bdrv_nvme_init(void)
+{
+ bdrv_register(&bdrv_nvme);
+}
+
+block_init(bdrv_nvme_init);