aboutsummaryrefslogtreecommitdiffstats
path: root/capstone/arch/AArch64/AArch64AddressingModes.h
diff options
context:
space:
mode:
authorAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
committerAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
commitaf1a266670d040d2f4083ff309d732d648afba2a (patch)
tree2fc46203448ddcc6f81546d379abfaeb323575e9 /capstone/arch/AArch64/AArch64AddressingModes.h
parente02cda008591317b1625707ff8e115a4841aa889 (diff)
Add submodule dependency filesHEADmaster
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'capstone/arch/AArch64/AArch64AddressingModes.h')
-rw-r--r--capstone/arch/AArch64/AArch64AddressingModes.h945
1 files changed, 945 insertions, 0 deletions
diff --git a/capstone/arch/AArch64/AArch64AddressingModes.h b/capstone/arch/AArch64/AArch64AddressingModes.h
new file mode 100644
index 000000000..946b46073
--- /dev/null
+++ b/capstone/arch/AArch64/AArch64AddressingModes.h
@@ -0,0 +1,945 @@
+//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 addressing mode implementation stuff.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef CS_AARCH64_ADDRESSINGMODES_H
+#define CS_AARCH64_ADDRESSINGMODES_H
+
+/* Capstone Disassembly Engine */
+/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
+
+#include "../../MathExtras.h"
+
+/// AArch64_AM - AArch64 Addressing Mode Stuff
+
+//===----------------------------------------------------------------------===//
+// Shifts
+//
+typedef enum AArch64_AM_ShiftExtendType {
+ AArch64_AM_InvalidShiftExtend = -1,
+ AArch64_AM_LSL = 0,
+ AArch64_AM_LSR,
+ AArch64_AM_ASR,
+ AArch64_AM_ROR,
+ AArch64_AM_MSL,
+
+ AArch64_AM_UXTB,
+ AArch64_AM_UXTH,
+ AArch64_AM_UXTW,
+ AArch64_AM_UXTX,
+
+ AArch64_AM_SXTB,
+ AArch64_AM_SXTH,
+ AArch64_AM_SXTW,
+ AArch64_AM_SXTX,
+} AArch64_AM_ShiftExtendType;
+
+/// getShiftName - Get the string encoding for the shift type.
+static inline const char *AArch64_AM_getShiftExtendName(AArch64_AM_ShiftExtendType ST)
+{
+ switch (ST) {
+ default: return NULL; // never reach
+ case AArch64_AM_LSL: return "lsl";
+ case AArch64_AM_LSR: return "lsr";
+ case AArch64_AM_ASR: return "asr";
+ case AArch64_AM_ROR: return "ror";
+ case AArch64_AM_MSL: return "msl";
+ case AArch64_AM_UXTB: return "uxtb";
+ case AArch64_AM_UXTH: return "uxth";
+ case AArch64_AM_UXTW: return "uxtw";
+ case AArch64_AM_UXTX: return "uxtx";
+ case AArch64_AM_SXTB: return "sxtb";
+ case AArch64_AM_SXTH: return "sxth";
+ case AArch64_AM_SXTW: return "sxtw";
+ case AArch64_AM_SXTX: return "sxtx";
+ }
+}
+
+/// getShiftType - Extract the shift type.
+static inline AArch64_AM_ShiftExtendType AArch64_AM_getShiftType(unsigned Imm)
+{
+ switch ((Imm >> 6) & 0x7) {
+ default: return AArch64_AM_InvalidShiftExtend;
+ case 0: return AArch64_AM_LSL;
+ case 1: return AArch64_AM_LSR;
+ case 2: return AArch64_AM_ASR;
+ case 3: return AArch64_AM_ROR;
+ case 4: return AArch64_AM_MSL;
+ }
+}
+
+/// getShiftValue - Extract the shift value.
+static inline unsigned AArch64_AM_getShiftValue(unsigned Imm)
+{
+ return Imm & 0x3f;
+}
+
+static inline unsigned AArch64_AM_getShifterImm(AArch64_AM_ShiftExtendType ST, unsigned Imm)
+{
+ // assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
+ unsigned STEnc = 0;
+
+ switch (ST) {
+ default: // llvm_unreachable("Invalid shift requested");
+ case AArch64_AM_LSL: STEnc = 0; break;
+ case AArch64_AM_LSR: STEnc = 1; break;
+ case AArch64_AM_ASR: STEnc = 2; break;
+ case AArch64_AM_ROR: STEnc = 3; break;
+ case AArch64_AM_MSL: STEnc = 4; break;
+ }
+
+ return (STEnc << 6) | (Imm & 0x3f);
+}
+
+//===----------------------------------------------------------------------===//
+// Extends
+//
+
+/// getArithShiftValue - get the arithmetic shift value.
+static inline unsigned AArch64_AM_getArithShiftValue(unsigned Imm)
+{
+ return Imm & 0x7;
+}
+
+/// getExtendType - Extract the extend type for operands of arithmetic ops.
+static inline AArch64_AM_ShiftExtendType AArch64_AM_getExtendType(unsigned Imm)
+{
+ // assert((Imm & 0x7) == Imm && "invalid immediate!");
+ switch (Imm) {
+ default: // llvm_unreachable("Compiler bug!");
+ case 0: return AArch64_AM_UXTB;
+ case 1: return AArch64_AM_UXTH;
+ case 2: return AArch64_AM_UXTW;
+ case 3: return AArch64_AM_UXTX;
+ case 4: return AArch64_AM_SXTB;
+ case 5: return AArch64_AM_SXTH;
+ case 6: return AArch64_AM_SXTW;
+ case 7: return AArch64_AM_SXTX;
+ }
+}
+
+static inline AArch64_AM_ShiftExtendType AArch64_AM_getArithExtendType(unsigned Imm)
+{
+ return AArch64_AM_getExtendType((Imm >> 3) & 0x7);
+}
+
+/// Mapping from extend bits to required operation:
+/// shifter: 000 ==> uxtb
+/// 001 ==> uxth
+/// 010 ==> uxtw
+/// 011 ==> uxtx
+/// 100 ==> sxtb
+/// 101 ==> sxth
+/// 110 ==> sxtw
+/// 111 ==> sxtx
+static inline unsigned AArch64_AM_getExtendEncoding(AArch64_AM_ShiftExtendType ET)
+{
+ switch (ET) {
+ default: // llvm_unreachable("Invalid extend type requested");
+ case AArch64_AM_UXTB: return 0; break;
+ case AArch64_AM_UXTH: return 1; break;
+ case AArch64_AM_UXTW: return 2; break;
+ case AArch64_AM_UXTX: return 3; break;
+ case AArch64_AM_SXTB: return 4; break;
+ case AArch64_AM_SXTH: return 5; break;
+ case AArch64_AM_SXTW: return 6; break;
+ case AArch64_AM_SXTX: return 7; break;
+ }
+}
+
+/// getArithExtendImm - Encode the extend type and shift amount for an
+/// arithmetic instruction:
+/// imm: 3-bit extend amount
+/// {5-3} = shifter
+/// {2-0} = imm3
+static inline unsigned AArch64_AM_getArithExtendImm(AArch64_AM_ShiftExtendType ET, unsigned Imm)
+{
+ // assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
+ return (AArch64_AM_getExtendEncoding(ET) << 3) | (Imm & 0x7);
+}
+
+/// getMemDoShift - Extract the "do shift" flag value for load/store
+/// instructions.
+static inline bool AArch64_AM_getMemDoShift(unsigned Imm)
+{
+ return (Imm & 0x1) != 0;
+}
+
+/// getExtendType - Extract the extend type for the offset operand of
+/// loads/stores.
+static inline AArch64_AM_ShiftExtendType AArch64_AM_getMemExtendType(unsigned Imm)
+{
+ return AArch64_AM_getExtendType((Imm >> 1) & 0x7);
+}
+
+static inline uint64_t ror(uint64_t elt, unsigned size)
+{
+ return ((elt & 1) << (size-1)) | (elt >> 1);
+}
+
+/// processLogicalImmediate - Determine if an immediate value can be encoded
+/// as the immediate operand of a logical instruction for the given register
+/// size. If so, return true with "encoding" set to the encoded value in
+/// the form N:immr:imms.
+static inline bool AArch64_AM_processLogicalImmediate(uint64_t Imm, unsigned RegSize, uint64_t *Encoding)
+{
+ unsigned Size, Immr, N;
+ uint32_t CTO, I;
+ uint64_t Mask, NImms;
+
+ if (Imm == 0ULL || Imm == ~0ULL ||
+ (RegSize != 64 && (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize))))) {
+ return false;
+ }
+
+ // First, determine the element size.
+ Size = RegSize;
+ do {
+ uint64_t Mask;
+
+ Size /= 2;
+ Mask = (1ULL << Size) - 1;
+ if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
+ Size *= 2;
+ break;
+ }
+ } while (Size > 2);
+
+ // Second, determine the rotation to make the element be: 0^m 1^n.
+ Mask = ((uint64_t)-1LL) >> (64 - Size);
+ Imm &= Mask;
+
+ if (isShiftedMask_64(Imm)) {
+ I = CountTrailingZeros_32(Imm);
+ // assert(I < 64 && "undefined behavior");
+ CTO = CountTrailingOnes_32(Imm >> I);
+ } else {
+ unsigned CLO;
+
+ Imm |= ~Mask;
+ if (!isShiftedMask_64(~Imm))
+ return false;
+
+ CLO = CountLeadingOnes_32(Imm);
+ I = 64 - CLO;
+ CTO = CLO + CountTrailingOnes_32(Imm) - (64 - Size);
+ }
+
+ // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
+ // to our target value, where I is the number of RORs to go the opposite
+ // direction.
+ // assert(Size > I && "I should be smaller than element size");
+ Immr = (Size - I) & (Size - 1);
+
+ // If size has a 1 in the n'th bit, create a value that has zeroes in
+ // bits [0, n] and ones above that.
+ NImms = ~(Size-1) << 1;
+
+ // Or the CTO value into the low bits, which must be below the Nth bit
+ // bit mentioned above.
+ NImms |= (CTO-1);
+
+ // Extract the seventh bit and toggle it to create the N field.
+ N = ((NImms >> 6) & 1) ^ 1;
+
+ *Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
+
+ return true;
+}
+
+/// isLogicalImmediate - Return true if the immediate is valid for a logical
+/// immediate instruction of the given register size. Return false otherwise.
+static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize)
+{
+ uint64_t encoding;
+ return AArch64_AM_processLogicalImmediate(imm, regSize, &encoding);
+}
+
+/// encodeLogicalImmediate - Return the encoded immediate value for a logical
+/// immediate instruction of the given register size.
+static inline uint64_t AArch64_AM_encodeLogicalImmediate(uint64_t imm, unsigned regSize)
+{
+ uint64_t encoding = 0;
+
+ bool res = AArch64_AM_processLogicalImmediate(imm, regSize, &encoding);
+ // assert(res && "invalid logical immediate");
+ (void)res;
+
+ return encoding;
+}
+
+/// decodeLogicalImmediate - Decode a logical immediate value in the form
+/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
+/// integer value it represents with regSize bits.
+static inline uint64_t AArch64_AM_decodeLogicalImmediate(uint64_t val, unsigned regSize)
+{
+ // Extract the N, imms, and immr fields.
+ unsigned N = (val >> 12) & 1;
+ unsigned immr = (val >> 6) & 0x3f;
+ unsigned imms = val & 0x3f;
+ unsigned i, size, R, S;
+ uint64_t pattern;
+
+ // assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
+ int len = 31 - CountLeadingZeros_32((N << 6) | (~imms & 0x3f));
+
+ // assert(len >= 0 && "undefined logical immediate encoding");
+ size = (1 << len);
+ R = immr & (size - 1);
+ S = imms & (size - 1);
+
+ // assert(S != size - 1 && "undefined logical immediate encoding");
+ pattern = (1ULL << (S + 1)) - 1;
+
+ for (i = 0; i < R; ++i)
+ pattern = ror(pattern, size);
+
+ // Replicate the pattern to fill the regSize.
+ while (size != regSize) {
+ pattern |= (pattern << size);
+ size *= 2;
+ }
+
+ return pattern;
+}
+
+/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
+/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
+/// is a valid encoding for an integer value with regSize bits.
+static inline bool AArch64_AM_isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize)
+{
+ unsigned size, S;
+ int len;
+ // Extract the N and imms fields needed for checking.
+ unsigned N = (val >> 12) & 1;
+ unsigned imms = val & 0x3f;
+
+ if (regSize == 32 && N != 0) // undefined logical immediate encoding
+ return false;
+ len = 31 - CountLeadingZeros_32((N << 6) | (~imms & 0x3f));
+ if (len < 0) // undefined logical immediate encoding
+ return false;
+ size = (1 << len);
+ S = imms & (size - 1);
+ if (S == size - 1) // undefined logical immediate encoding
+ return false;
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating-point Immediates
+//
+static inline float AArch64_AM_getFPImmFloat(unsigned Imm)
+{
+ // We expect an 8-bit binary encoding of a floating-point number here.
+ union {
+ uint32_t I;
+ float F;
+ } FPUnion;
+
+ uint8_t Sign = (Imm >> 7) & 0x1;
+ uint8_t Exp = (Imm >> 4) & 0x7;
+ uint8_t Mantissa = Imm & 0xf;
+
+ // 8-bit FP iEEEE Float Encoding
+ // abcd efgh aBbbbbbc defgh000 00000000 00000000
+ //
+ // where B = NOT(b);
+
+ FPUnion.I = 0;
+ FPUnion.I |= ((uint32_t)Sign) << 31;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
+ FPUnion.I |= (Exp & 0x3) << 23;
+ FPUnion.I |= Mantissa << 19;
+
+ return FPUnion.F;
+}
+
+//===--------------------------------------------------------------------===//
+// AdvSIMD Modified Immediates
+//===--------------------------------------------------------------------===//
+
+// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
+static inline bool AArch64_AM_isAdvSIMDModImmType1(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffffff00ffffff00ULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType1(uint64_t Imm)
+{
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType1(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+
+ return (EncVal << 32) | EncVal;
+}
+
+// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
+static inline bool AArch64_AM_isAdvSIMDModImmType2(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffff00ffffff00ffULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType2(uint64_t Imm)
+{
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType2(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 40) | (EncVal << 8);
+}
+
+// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
+static inline bool AArch64_AM_isAdvSIMDModImmType3(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xff00ffffff00ffffULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType3(uint64_t Imm)
+{
+ return (Imm & 0xff0000ULL) >> 16;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType3(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 16);
+}
+
+// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
+static inline bool AArch64_AM_isAdvSIMDModImmType4(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0x00ffffff00ffffffULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType4(uint64_t Imm)
+{
+ return (Imm & 0xff000000ULL) >> 24;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType4(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 56) | (EncVal << 24);
+}
+
+// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
+static inline bool AArch64_AM_isAdvSIMDModImmType5(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
+ ((Imm & 0xff00ff00ff00ff00ULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType5(uint64_t Imm)
+{
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType5(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
+}
+
+// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
+static inline bool AArch64_AM_isAdvSIMDModImmType6(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
+ ((Imm & 0x00ff00ff00ff00ffULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType6(uint64_t Imm)
+{
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType6(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
+}
+
+// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
+static inline bool AArch64_AM_isAdvSIMDModImmType7(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType7(uint64_t Imm)
+{
+ return (Imm & 0xff00ULL) >> 8;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType7(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
+}
+
+// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
+static inline bool AArch64_AM_isAdvSIMDModImmType8(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType8(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType8(uint64_t Imm)
+{
+ return (Imm & 0x00ff0000ULL) >> 16;
+}
+
+// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
+static inline bool AArch64_AM_isAdvSIMDModImmType9(uint64_t Imm)
+{
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
+ ((Imm >> 56) == (Imm & 0x000000ffULL));
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType9(uint64_t Imm)
+{
+ return (Imm & 0xffULL);
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType9(uint8_t Imm)
+{
+ uint64_t EncVal = Imm;
+ EncVal |= (EncVal << 8);
+ EncVal |= (EncVal << 16);
+ EncVal |= (EncVal << 32);
+
+ return EncVal;
+}
+
+// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
+// cmode: 1110, op: 1
+static inline bool AArch64_AM_isAdvSIMDModImmType10(uint64_t Imm)
+{
+ uint64_t ByteA = Imm & 0xff00000000000000ULL;
+ uint64_t ByteB = Imm & 0x00ff000000000000ULL;
+ uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
+ uint64_t ByteD = Imm & 0x000000ff00000000ULL;
+ uint64_t ByteE = Imm & 0x00000000ff000000ULL;
+ uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
+ uint64_t ByteG = Imm & 0x000000000000ff00ULL;
+ uint64_t ByteH = Imm & 0x00000000000000ffULL;
+
+ return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
+ (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
+ (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
+ (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
+ (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
+ (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
+ (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
+ (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType10(uint64_t Imm)
+{
+ uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
+ uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
+ uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
+ uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
+ uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
+
+ uint8_t EncVal = BitA;
+
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+
+ return EncVal;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType10(uint8_t Imm)
+{
+ uint64_t EncVal = 0;
+
+ if (Imm & 0x80)
+ EncVal |= 0xff00000000000000ULL;
+
+ if (Imm & 0x40)
+ EncVal |= 0x00ff000000000000ULL;
+
+ if (Imm & 0x20)
+ EncVal |= 0x0000ff0000000000ULL;
+
+ if (Imm & 0x10)
+ EncVal |= 0x000000ff00000000ULL;
+
+ if (Imm & 0x08)
+ EncVal |= 0x00000000ff000000ULL;
+
+ if (Imm & 0x04)
+ EncVal |= 0x0000000000ff0000ULL;
+
+ if (Imm & 0x02)
+ EncVal |= 0x000000000000ff00ULL;
+
+ if (Imm & 0x01)
+ EncVal |= 0x00000000000000ffULL;
+
+ return EncVal;
+}
+
+// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
+static inline bool AArch64_AM_isAdvSIMDModImmType11(uint64_t Imm)
+{
+ uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
+
+ return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
+ (BString == 0x1f || BString == 0x20) &&
+ ((Imm & 0x0007ffff0007ffffULL) == 0);
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType11(uint64_t Imm)
+{
+ uint8_t BitA = (Imm & 0x80000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x20000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x01000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x00800000ULL) != 0;
+ uint8_t BitE = (Imm & 0x00400000ULL) != 0;
+ uint8_t BitF = (Imm & 0x00200000ULL) != 0;
+ uint8_t BitG = (Imm & 0x00100000ULL) != 0;
+ uint8_t BitH = (Imm & 0x00080000ULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+
+ return EncVal;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType11(uint8_t Imm)
+{
+ uint64_t EncVal = 0;
+
+ if (Imm & 0x80)
+ EncVal |= 0x80000000ULL;
+
+ if (Imm & 0x40)
+ EncVal |= 0x3e000000ULL;
+ else
+ EncVal |= 0x40000000ULL;
+
+ if (Imm & 0x20)
+ EncVal |= 0x01000000ULL;
+
+ if (Imm & 0x10)
+ EncVal |= 0x00800000ULL;
+
+ if (Imm & 0x08)
+ EncVal |= 0x00400000ULL;
+
+ if (Imm & 0x04)
+ EncVal |= 0x00200000ULL;
+
+ if (Imm & 0x02)
+ EncVal |= 0x00100000ULL;
+
+ if (Imm & 0x01)
+ EncVal |= 0x00080000ULL;
+
+ return (EncVal << 32) | EncVal;
+}
+
+// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
+static inline bool AArch64_AM_isAdvSIMDModImmType12(uint64_t Imm)
+{
+ uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
+ return ((BString == 0xff || BString == 0x100) &&
+ ((Imm & 0x0000ffffffffffffULL) == 0));
+}
+
+static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType12(uint64_t Imm)
+{
+ uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
+ uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
+ uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
+ uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
+ uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
+ uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
+ uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
+ uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
+
+ uint8_t EncVal = BitA;
+ EncVal <<= 1;
+ EncVal |= BitB;
+ EncVal <<= 1;
+ EncVal |= BitC;
+ EncVal <<= 1;
+ EncVal |= BitD;
+ EncVal <<= 1;
+ EncVal |= BitE;
+ EncVal <<= 1;
+ EncVal |= BitF;
+ EncVal <<= 1;
+ EncVal |= BitG;
+ EncVal <<= 1;
+ EncVal |= BitH;
+
+ return EncVal;
+}
+
+static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType12(uint8_t Imm)
+{
+ uint64_t EncVal = 0;
+ if (Imm & 0x80)
+ EncVal |= 0x8000000000000000ULL;
+
+ if (Imm & 0x40)
+ EncVal |= 0x3fc0000000000000ULL;
+ else
+ EncVal |= 0x4000000000000000ULL;
+
+ if (Imm & 0x20)
+ EncVal |= 0x0020000000000000ULL;
+
+ if (Imm & 0x10)
+ EncVal |= 0x0010000000000000ULL;
+
+ if (Imm & 0x08)
+ EncVal |= 0x0008000000000000ULL;
+
+ if (Imm & 0x04)
+ EncVal |= 0x0004000000000000ULL;
+
+ if (Imm & 0x02)
+ EncVal |= 0x0002000000000000ULL;
+
+ if (Imm & 0x01)
+ EncVal |= 0x0001000000000000ULL;
+
+ return (EncVal << 32) | EncVal;
+}
+
+/// Returns true if Imm is the concatenation of a repeating pattern of type T.
+static inline bool AArch64_AM_isSVEMaskOfIdenticalElements8(int64_t Imm)
+{
+#define _VECSIZE (sizeof(int64_t)/sizeof(int8_t))
+ unsigned int i;
+ union {
+ int64_t Whole;
+ int8_t Parts[_VECSIZE];
+ } Vec;
+
+ Vec.Whole = Imm;
+
+ for(i = 1; i < _VECSIZE; i++) {
+ if (Vec.Parts[i] != Vec.Parts[0])
+ return false;
+ }
+#undef _VECSIZE
+
+ return true;
+}
+
+static inline bool AArch64_AM_isSVEMaskOfIdenticalElements16(int64_t Imm)
+{
+#define _VECSIZE (sizeof(int64_t)/sizeof(int16_t))
+ unsigned int i;
+ union {
+ int64_t Whole;
+ int16_t Parts[_VECSIZE];
+ } Vec;
+
+ Vec.Whole = Imm;
+
+ for(i = 1; i < _VECSIZE; i++) {
+ if (Vec.Parts[i] != Vec.Parts[0])
+ return false;
+ }
+#undef _VECSIZE
+
+ return true;
+}
+
+static inline bool AArch64_AM_isSVEMaskOfIdenticalElements32(int64_t Imm)
+{
+#define _VECSIZE (sizeof(int64_t)/sizeof(int32_t))
+ unsigned int i;
+ union {
+ int64_t Whole;
+ int32_t Parts[_VECSIZE];
+ } Vec;
+
+ Vec.Whole = Imm;
+
+ for(i = 1; i < _VECSIZE; i++) {
+ if (Vec.Parts[i] != Vec.Parts[0])
+ return false;
+ }
+#undef _VECSIZE
+
+ return true;
+}
+
+static inline bool AArch64_AM_isSVEMaskOfIdenticalElements64(int64_t Imm)
+{
+ return true;
+}
+
+static inline bool isSVECpyImm8(int64_t Imm)
+{
+ bool IsImm8 = (int8_t)Imm == Imm;
+
+ return IsImm8 || (uint8_t)Imm == Imm;
+}
+
+static inline bool isSVECpyImm16(int64_t Imm)
+{
+ bool IsImm8 = (int8_t)Imm == Imm;
+ bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
+
+ return IsImm8 || IsImm16 || (uint16_t)(Imm & ~0xff) == Imm;
+}
+
+static inline bool isSVECpyImm32(int64_t Imm)
+{
+ bool IsImm8 = (int8_t)Imm == Imm;
+ bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
+
+ return IsImm8 || IsImm16;
+}
+
+static inline bool isSVECpyImm64(int64_t Imm)
+{
+ bool IsImm8 = (int8_t)Imm == Imm;
+ bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
+
+ return IsImm8 || IsImm16;
+}
+
+/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
+static inline bool AArch64_AM_isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)
+{
+ union {
+ int64_t D;
+ int32_t S[2];
+ int16_t H[4];
+ int8_t B[8];
+ } Vec = {Imm};
+
+ if (isSVECpyImm64(Vec.D))
+ return false;
+
+ if (AArch64_AM_isSVEMaskOfIdenticalElements32(Imm) &&
+ isSVECpyImm32(Vec.S[0]))
+ return false;
+
+ if (AArch64_AM_isSVEMaskOfIdenticalElements16(Imm) &&
+ isSVECpyImm16(Vec.H[0]))
+ return false;
+
+ if (AArch64_AM_isSVEMaskOfIdenticalElements8(Imm) &&
+ isSVECpyImm8(Vec.B[0]))
+ return false;
+
+ return isLogicalImmediate(Vec.D, 64);
+}
+
+inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth)
+{
+ int Shift;
+
+ for (Shift = 0; Shift <= RegWidth - 16; Shift += 16)
+ if ((Value & ~(0xffffULL << Shift)) == 0)
+ return true;
+
+ return false;
+}
+
+inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth)
+{
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
+ if (Value == 0 && Shift != 0)
+ return false;
+
+ return (Value & ~(0xffffULL << Shift)) == 0;
+}
+
+inline static bool AArch64_AM_isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth)
+{
+ // MOVZ takes precedence over MOVN.
+ if (isAnyMOVZMovAlias(Value, RegWidth))
+ return false;
+
+ Value = ~Value;
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ return isMOVZMovAlias(Value, Shift, RegWidth);
+}
+
+inline static bool AArch64_AM_isAnyMOVWMovAlias(uint64_t Value, int RegWidth)
+{
+ if (isAnyMOVZMovAlias(Value, RegWidth))
+ return true;
+
+ // It's not a MOVZ, but it might be a MOVN.
+ Value = ~Value;
+ if (RegWidth == 32)
+ Value &= 0xffffffffULL;
+
+ return isAnyMOVZMovAlias(Value, RegWidth);
+}
+
+#endif